# /// script # dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "evalplus", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"] # /// """ HumanEval Evaluation v3: Direct Code Prompt Tests if using a "code only" prompt improves fine-tuned model scores """ import os import re import json import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel from datasets import load_dataset from tqdm import tqdm from huggingface_hub import HfApi print("=" * 60) print("EVALUATION v3: Direct Code Prompt Test") print("Benchmark: HumanEval") print("=" * 60) # Configuration BASE_MODEL = "mistralai/Devstral-Small-2505" FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small" OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small" TEMPERATURE = 0.1 MAX_NEW_TOKENS = 512 # Check GPU print(f"\nGPU available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"GPU: {torch.cuda.get_device_name(0)}") print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB") # Clear HF cache before loading to save storage import shutil cache_dir = os.path.expanduser("~/.cache/huggingface/hub") if os.path.exists(cache_dir): # Don't clear, but set HF to use minimal cache pass os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" # 4-bit quantization config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, ) def load_humaneval(): """Load HumanEval dataset""" print("\nLoading HumanEval dataset...") dataset = load_dataset("evalplus/humanevalplus", split="test") print(f"Loaded {len(dataset)} problems") return dataset def load_model(model_name, adapter_name=None): """Load model with optional LoRA adapter""" print(f"\nLoading model: {model_name}") if adapter_name: print(f"With adapter: {adapter_name}") tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, ) if adapter_name: print("Loading LoRA adapter...") model = PeftModel.from_pretrained(model, adapter_name) model = model.merge_and_unload() print("Adapter merged") model.eval() return model, tokenizer def extract_python_code(text): """Extract Python code from model output""" # Try ```python blocks pattern = r'```python\s*(.*?)\s*```' matches = re.findall(pattern, text, re.DOTALL) if matches: return matches[-1].strip() # Try ``` blocks pattern = r'```\s*(.*?)\s*```' matches = re.findall(pattern, text, re.DOTALL) if matches: return matches[-1].strip() return text.strip() def generate_completion_direct(model, tokenizer, prompt): """Generate code with DIRECT CODE prompt (no reasoning)""" # Optimized prompt for direct code output instruct_prompt = f"""[INST] Complete this Python function. Output ONLY the function body code, no explanations or markdown: {prompt}[/INST]""" inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=4096).to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, do_sample=True if TEMPERATURE > 0 else False, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) raw_completion = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) # Try to extract code from blocks if present completion = extract_python_code(raw_completion) # If extracted code contains full function, get just the body if completion.strip().startswith("def "): lines = completion.split('\n') body_lines = [] in_function = False for line in lines: if line.strip().startswith("def "): in_function = True continue if in_function: body_lines.append(line) if body_lines: completion = '\n'.join(body_lines) elif completion == raw_completion.strip(): # No code block found, use raw completion = raw_completion # Stop at function boundary stop_tokens = ["\ndef ", "\nclass ", "\nif __name__", "\n\n\n"] for stop in stop_tokens: if stop in completion: completion = completion[:completion.index(stop)] return completion def generate_completion_reasoning(model, tokenizer, prompt): """Generate code with REASONING prompt (original approach)""" instruct_prompt = f"""[INST] Solve this programming problem with detailed reasoning: Complete the following function: {prompt}[/INST]""" inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=4096).to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS * 2, temperature=TEMPERATURE, do_sample=True if TEMPERATURE > 0 else False, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) full_response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) code = extract_python_code(full_response) if "def " in code: lines = code.split('\n') result_lines = [] in_function = False for line in lines: if line.strip().startswith("def "): in_function = True continue if in_function: result_lines.append(line) if result_lines: return '\n'.join(result_lines) return code def evaluate_model(model, tokenizer, dataset, model_name, use_direct_prompt=False): """Evaluate model on HumanEval""" prompt_type = "DIRECT" if use_direct_prompt else "REASONING" print(f"\nEvaluating {model_name} with {prompt_type} prompt...") samples = [] for i, problem in enumerate(tqdm(dataset, desc=f"Generating ({model_name} - {prompt_type})")): task_id = problem["task_id"] prompt = problem["prompt"] try: if use_direct_prompt: completion = generate_completion_direct(model, tokenizer, prompt) else: completion = generate_completion_reasoning(model, tokenizer, prompt) samples.append({ "task_id": task_id, "prompt": prompt, "completion": completion, "model": model_name, "prompt_type": prompt_type }) except Exception as e: print(f"Error on {task_id}: {e}") samples.append({ "task_id": task_id, "prompt": prompt, "completion": "# Error during generation", "model": model_name, "prompt_type": prompt_type }) return samples def simple_syntax_check(code): """Basic syntax validation""" try: compile(code, '', 'exec') return True except SyntaxError: return False def evaluate_samples(samples, dataset): """Evaluate samples""" results = {"passed": 0, "failed": 0, "error": 0} detailed = [] for sample in samples: task_id = sample["task_id"] completion = sample["completion"] problem = None for p in dataset: if p["task_id"] == task_id: problem = p break if problem is None: results["error"] += 1 continue full_code = problem["prompt"] + completion if not simple_syntax_check(full_code): results["failed"] += 1 detailed.append({"task_id": task_id, "status": "syntax_error"}) continue try: exec_globals = {} exec(full_code, exec_globals) entry_point = problem.get("entry_point", task_id.split("/")[-1]) if entry_point in exec_globals: results["passed"] += 1 detailed.append({"task_id": task_id, "status": "passed"}) else: results["failed"] += 1 detailed.append({"task_id": task_id, "status": "missing_function"}) except Exception as e: results["error"] += 1 detailed.append({"task_id": task_id, "status": "runtime_error", "error": str(e)[:100]}) total = len(samples) pass_rate = results["passed"] / total if total > 0 else 0 return { "pass@1": pass_rate, "passed": results["passed"], "failed": results["failed"], "error": results["error"], "total": total, "detailed": detailed[:10] } def main(): dataset = load_humaneval() results = {} # Load fine-tuned model once print("\n" + "=" * 60) print("LOADING FINE-TUNED MODEL") print("=" * 60) model, tokenizer = load_model(BASE_MODEL, FINETUNED_ADAPTER) # Test 1: Direct prompt (new approach) print("\n" + "=" * 60) print("TEST 1: DIRECT CODE PROMPT") print("=" * 60) direct_samples = evaluate_model(model, tokenizer, dataset, "Alizee-Coder-Direct", use_direct_prompt=True) results["direct"] = evaluate_samples(direct_samples, dataset) print(f"\nDirect Prompt Results: pass@1 = {results['direct']['pass@1']*100:.2f}%") # Test 2: Reasoning prompt (original approach) print("\n" + "=" * 60) print("TEST 2: REASONING PROMPT (original)") print("=" * 60) reasoning_samples = evaluate_model(model, tokenizer, dataset, "Alizee-Coder-Reasoning", use_direct_prompt=False) results["reasoning"] = evaluate_samples(reasoning_samples, dataset) print(f"\nReasoning Prompt Results: pass@1 = {results['reasoning']['pass@1']*100:.2f}%") # Comparison print("\n" + "=" * 60) print("PROMPT COMPARISON - HumanEval") print("=" * 60) print(f"\n{'Prompt Type':<30} {'pass@1':>10} {'Passed':>8} {'Failed':>8}") print("-" * 60) print(f"{'Direct Code Prompt':<30} {results['direct']['pass@1']*100:>9.2f}% {results['direct']['passed']:>8} {results['direct']['failed']:>8}") print(f"{'Reasoning Prompt':<30} {results['reasoning']['pass@1']*100:>9.2f}% {results['reasoning']['passed']:>8} {results['reasoning']['failed']:>8}") improvement = (results['direct']['pass@1'] - results['reasoning']['pass@1']) * 100 sign = "+" if improvement >= 0 else "" print(f"\n{'Improvement (Direct vs Reasoning):':<30} {sign}{improvement:>9.2f}%") # Reference: Base model score print(f"\n{'Reference: Base Model (v2):':<30} {'82.93%':>10}") # Save results output = { "benchmark": "HumanEval", "experiment": "Prompt Comparison", "finetuned_model": FINETUNED_ADAPTER, "results": { "direct_prompt": { "pass@1": float(results['direct']['pass@1']), "passed": results['direct']['passed'], "failed": results['direct']['failed'], "total": results['direct']['total'] }, "reasoning_prompt": { "pass@1": float(results['reasoning']['pass@1']), "passed": results['reasoning']['passed'], "failed": results['reasoning']['failed'], "total": results['reasoning']['total'] }, "improvement": float(improvement), "base_model_reference": 0.8293 }, "samples": { "direct": direct_samples[:3], "reasoning": reasoning_samples[:3] } } with open("eval_humaneval_prompt_comparison.json", "w") as f: json.dump(output, f, indent=2) print("\nResults saved to eval_humaneval_prompt_comparison.json") try: api = HfApi() api.upload_file( path_or_fileobj="eval_humaneval_prompt_comparison.json", path_in_repo="eval_humaneval_prompt_comparison.json", repo_id=OUTPUT_REPO, repo_type="model", ) print(f"Results uploaded to {OUTPUT_REPO}") except Exception as e: print(f"Could not upload results: {e}") print("\n" + "=" * 60) print("EVALUATION COMPLETE") print("=" * 60) if __name__ == "__main__": main()