# /// script # dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"] # /// """ MBPP Evaluation: Base Devstral vs Fine-tuned Alizee-Coder Runs on HF Jobs with GPU support VERSION: 3.0 - Proper code extraction for both base and fine-tuned models FIXED: - Extract code from ```python blocks for base model (handles chat-like responses) - Function renaming before test execution for both models """ import os import re import json import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel from datasets import load_dataset from tqdm import tqdm from huggingface_hub import HfApi print("=" * 60) print("EVALUATION: Devstral-Small vs Alizee-Coder-Devstral") print("Benchmark: MBPP (Mostly Basic Python Problems)") print("VERSION: Fixed function name extraction") print("=" * 60) # Configuration BASE_MODEL = "mistralai/Devstral-Small-2505" FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small" OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small" TEMPERATURE = 0.1 MAX_NEW_TOKENS = 512 # Check GPU print(f"\nGPU available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"GPU: {torch.cuda.get_device_name(0)}") print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB") # 4-bit quantization config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, ) def load_mbpp(): """Load MBPP dataset""" print("\nLoading MBPP dataset...") # Load the sanitized version (cleaner test cases) dataset = load_dataset("google-research-datasets/mbpp", "sanitized", split="test") print(f"Loaded {len(dataset)} problems") return dataset def load_model(model_name, adapter_name=None): """Load model with optional LoRA adapter""" print(f"\nLoading model: {model_name}") if adapter_name: print(f"With adapter: {adapter_name}") tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, ) if adapter_name: print("Loading LoRA adapter...") model = PeftModel.from_pretrained(model, adapter_name) model = model.merge_and_unload() print("Adapter merged") model.eval() return model, tokenizer def extract_function_name(test_list): """Extract expected function name from test cases""" if not test_list: return None # Try to find function call in first test case # Pattern: assert function_name(...) or function_name(...) test = test_list[0] # Match: assert func_name( or just func_name( patterns = [ r'assert\s+(\w+)\s*\(', # assert func_name( r'^\s*(\w+)\s*\(', # func_name( at start ] for pattern in patterns: match = re.search(pattern, test) if match: func_name = match.group(1) # Skip common non-function names if func_name not in ['assert', 'print', 'len', 'str', 'int', 'float', 'list', 'dict', 'set', 'tuple']: return func_name return None def extract_python_code(text): """Extract Python code from model output""" # Try ```python blocks pattern = r'```python\s*(.*?)\s*```' matches = re.findall(pattern, text, re.DOTALL) if matches: return matches[-1].strip() # Try ``` blocks pattern = r'```\s*(.*?)\s*```' matches = re.findall(pattern, text, re.DOTALL) if matches: return matches[-1].strip() return text.strip() def generate_completion_base(model, tokenizer, prompt, func_name=None): """Generate code completion for BASE model (handles both pure completion and chat-like responses)""" # Use a simple code completion prompt if func_name: code_prompt = f"# Task: {prompt}\n# Write a Python function named {func_name}\n\n" else: code_prompt = f"# Task: {prompt}\n\n" inputs = tokenizer(code_prompt, return_tensors="pt", truncation=True, max_length=2048).to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, do_sample=True if TEMPERATURE > 0 else False, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) completion = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) # Try to extract code from ```python blocks (if model generates chat-like response) code = extract_python_code(completion) # If no code block found, try to find a function definition directly if not code.startswith("def "): # Look for function definition in the raw completion match = re.search(r'(def\s+\w+\s*\([^)]*\).*?)(?=\ndef |\nclass |\n```|\Z)', completion, re.DOTALL) if match: code = match.group(1).strip() # Stop at function boundary stop_tokens = ["\ndef ", "\nclass ", "\nif __name__", "\n\n\n"] for stop in stop_tokens: if stop in code: code = code[:code.index(stop)] return code def generate_completion_finetuned(model, tokenizer, prompt, func_name=None): """Generate code completion for FINE-TUNED model (Instruct format)""" # Include expected function name in prompt if func_name: instruct_prompt = f"[INST] Solve this programming problem with detailed reasoning:\n\n{prompt}\n\nIMPORTANT: The function MUST be named `{func_name}`.\n[/INST]" else: instruct_prompt = f"[INST] Solve this programming problem with detailed reasoning:\n\n{prompt}\n[/INST]" inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=2048).to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS * 2, # More tokens for reasoning temperature=TEMPERATURE, do_sample=True if TEMPERATURE > 0 else False, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) full_response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) code = extract_python_code(full_response) # If function name was specified but model used different name, try to rename if func_name and code: # Find the actual function name in generated code match = re.search(r'def\s+(\w+)\s*\(', code) if match and match.group(1) != func_name: # Replace the function name code = re.sub(r'def\s+' + re.escape(match.group(1)) + r'\s*\(', f'def {func_name}(', code) return code def evaluate_model(model, tokenizer, dataset, model_name, is_finetuned=False): """Evaluate model on MBPP""" print(f"\nEvaluating {model_name}...") samples = [] for i, problem in enumerate(tqdm(dataset, desc=f"Generating ({model_name})")): task_id = problem.get("task_id", i) prompt = problem["prompt"] # Natural language description test_list = problem.get("test_list", []) # Extract expected function name from test cases func_name = extract_function_name(test_list) try: if is_finetuned: completion = generate_completion_finetuned(model, tokenizer, prompt, func_name) else: completion = generate_completion_base(model, tokenizer, prompt, func_name) samples.append({ "task_id": task_id, "prompt": prompt[:200], "completion": completion, "test_list": test_list, "expected_func": func_name, "model": model_name }) except Exception as e: print(f"Error on task {task_id}: {e}") samples.append({ "task_id": task_id, "prompt": prompt[:200], "completion": "# Error during generation", "test_list": test_list, "expected_func": func_name, "model": model_name }) return samples def run_tests(code, test_list): """Run test cases on generated code with automatic function renaming""" try: # Extract expected function name from first test expected_func = extract_function_name(test_list) # If we found an expected name, rename the function in code if expected_func and code: # Find the actual function name in generated code match = re.search(r'def\s+(\w+)\s*\(', code) if match: actual_func = match.group(1) if actual_func != expected_func: # Rename the function to match expected name code = re.sub(r'\b' + re.escape(actual_func) + r'\b', expected_func, code) # Create execution environment exec_globals = {} exec(code, exec_globals) # Run each test for test in test_list: try: exec(test, exec_globals) except AssertionError: return False except Exception: return False return True except Exception: return False def evaluate_samples(samples): """Evaluate samples by running test cases""" results = {"passed": 0, "failed": 0, "error": 0} detailed = [] for sample in samples: task_id = sample["task_id"] code = sample["completion"] test_list = sample.get("test_list", []) if not test_list: results["error"] += 1 detailed.append({"task_id": task_id, "status": "no_tests"}) continue # Try to run the tests if run_tests(code, test_list): results["passed"] += 1 detailed.append({"task_id": task_id, "status": "passed"}) else: results["failed"] += 1 detailed.append({"task_id": task_id, "status": "failed"}) total = results["passed"] + results["failed"] pass_rate = results["passed"] / total if total > 0 else 0 return { "pass@1": pass_rate, "passed": results["passed"], "failed": results["failed"], "error": results["error"], "total": total, "detailed": detailed[:10] } def main(): # Load dataset dataset = load_mbpp() results = {} # Evaluate base model print("\n" + "=" * 60) print("EVALUATING BASE MODEL") print("=" * 60) base_model, base_tokenizer = load_model(BASE_MODEL) base_samples = evaluate_model(base_model, base_tokenizer, dataset, "Devstral-Small-Base", is_finetuned=False) results["base"] = evaluate_samples(base_samples) print(f"\nBase Model Results: pass@1 = {results['base']['pass@1']*100:.2f}%") # Free memory del base_model torch.cuda.empty_cache() # Evaluate fine-tuned model print("\n" + "=" * 60) print("EVALUATING FINE-TUNED MODEL") print("=" * 60) ft_model, ft_tokenizer = load_model(BASE_MODEL, FINETUNED_ADAPTER) ft_samples = evaluate_model(ft_model, ft_tokenizer, dataset, "Alizee-Coder-Devstral", is_finetuned=True) results["finetuned"] = evaluate_samples(ft_samples) print(f"\nFine-tuned Model Results: pass@1 = {results['finetuned']['pass@1']*100:.2f}%") # Summary print("\n" + "=" * 60) print("COMPARISON SUMMARY - MBPP") print("=" * 60) print(f"\n{'Model':<40} {'pass@1':>10} {'Passed':>8} {'Failed':>8}") print("-" * 70) print(f"{'Devstral-Small-2505 (Base)':<40} {results['base']['pass@1']*100:>9.2f}% {results['base']['passed']:>8} {results['base']['failed']:>8}") print(f"{'Alizee-Coder-Devstral (Fine-tuned)':<40} {results['finetuned']['pass@1']*100:>9.2f}% {results['finetuned']['passed']:>8} {results['finetuned']['failed']:>8}") improvement = (results['finetuned']['pass@1'] - results['base']['pass@1']) * 100 sign = "+" if improvement >= 0 else "" print(f"\n{'Improvement:':<40} {sign}{improvement:>9.2f}%") # Save results output = { "benchmark": "MBPP", "base_model": BASE_MODEL, "finetuned_model": FINETUNED_ADAPTER, "results": { "base": { "pass@1": float(results['base']['pass@1']), "passed": results['base']['passed'], "failed": results['base']['failed'], "total": results['base']['total'] }, "finetuned": { "pass@1": float(results['finetuned']['pass@1']), "passed": results['finetuned']['passed'], "failed": results['finetuned']['failed'], "total": results['finetuned']['total'] }, "improvement": float(improvement) }, "samples": { "base": base_samples[:5], "finetuned": ft_samples[:5] } } # Save locally with open("eval_results_mbpp.json", "w") as f: json.dump(output, f, indent=2) print("\nResults saved to eval_results_mbpp.json") # Upload results try: api = HfApi() api.upload_file( path_or_fileobj="eval_results_mbpp.json", path_in_repo="eval_results_mbpp.json", repo_id=OUTPUT_REPO, repo_type="model", ) print(f"Results uploaded to {OUTPUT_REPO}") except Exception as e: print(f"Could not upload results: {e}") print("\n" + "=" * 60) print("EVALUATION COMPLETE") print("=" * 60) if __name__ == "__main__": main()