# /// script # dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "evalplus", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"] # /// """ Prompt Comparison: Direct Code vs Reasoning Tests if "code only" prompt improves fine-tuned model scores VERSION: 1.0 """ import os import re import json import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel from datasets import load_dataset from tqdm import tqdm from huggingface_hub import HfApi print("=" * 60) print("PROMPT COMPARISON TEST") print("Direct Code vs Reasoning Prompt") print("Benchmark: HumanEval") print("=" * 60) # Configuration BASE_MODEL = "mistralai/Devstral-Small-2505" FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small" OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small" TEMPERATURE = 0.1 MAX_NEW_TOKENS = 512 # Check GPU print(f"\nGPU available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"GPU: {torch.cuda.get_device_name(0)}") print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB") # 4-bit quantization config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, ) def load_humaneval(): """Load HumanEval dataset from EvalPlus""" print("\nLoading HumanEval dataset...") dataset = load_dataset("evalplus/humanevalplus", split="test") print(f"Loaded {len(dataset)} problems") return dataset def load_model(model_name, adapter_name=None): """Load model with optional LoRA adapter""" print(f"\nLoading model: {model_name}") if adapter_name: print(f"With adapter: {adapter_name}") tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, ) if adapter_name: print("Loading LoRA adapter...") model = PeftModel.from_pretrained(model, adapter_name) model = model.merge_and_unload() print("Adapter merged") model.eval() return model, tokenizer def extract_python_code(text): """Extract Python code from model output""" pattern = r'```python\s*(.*?)\s*```' matches = re.findall(pattern, text, re.DOTALL) if matches: return matches[-1].strip() pattern = r'```\s*(.*?)\s*```' matches = re.findall(pattern, text, re.DOTALL) if matches: return matches[-1].strip() return text.strip() def generate_direct_prompt(model, tokenizer, prompt): """Generate with DIRECT CODE prompt - no reasoning, just code""" instruct_prompt = f"[INST] Complete this Python function. Output ONLY the function body code, no explanations or markdown:\n\n{prompt}[/INST]" inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=4096).to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, do_sample=True if TEMPERATURE > 0 else False, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) raw = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) completion = extract_python_code(raw) # Extract function body if full function if completion.strip().startswith("def "): lines = completion.split('\n') body_lines = [] in_function = False for line in lines: if line.strip().startswith("def "): in_function = True continue if in_function: body_lines.append(line) if body_lines: completion = '\n'.join(body_lines) elif completion == raw.strip(): completion = raw # Stop at boundaries for stop in ["\ndef ", "\nclass ", "\nif __name__", "\n\n\n"]: if stop in completion: completion = completion[:completion.index(stop)] return completion def generate_reasoning_prompt(model, tokenizer, prompt): """Generate with REASONING prompt - original approach""" instruct_prompt = f"[INST] Solve this programming problem with detailed reasoning:\n\nComplete the following function:\n{prompt}\n[/INST]" inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=4096).to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS * 2, temperature=TEMPERATURE, do_sample=True if TEMPERATURE > 0 else False, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) full_response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) code = extract_python_code(full_response) if "def " in code: lines = code.split('\n') result_lines = [] in_function = False for line in lines: if line.strip().startswith("def "): in_function = True continue if in_function: result_lines.append(line) if result_lines: return '\n'.join(result_lines) return code def simple_syntax_check(code): """Basic syntax validation""" try: compile(code, '', 'exec') return True except SyntaxError: return False def evaluate_samples(samples, dataset): """Evaluate samples""" results = {"passed": 0, "failed": 0, "error": 0} for sample in samples: task_id = sample["task_id"] completion = sample["completion"] problem = None for p in dataset: if p["task_id"] == task_id: problem = p break if problem is None: results["error"] += 1 continue full_code = problem["prompt"] + completion if not simple_syntax_check(full_code): results["failed"] += 1 continue try: exec_globals = {} exec(full_code, exec_globals) entry_point = problem.get("entry_point", task_id.split("/")[-1]) if entry_point in exec_globals: results["passed"] += 1 else: results["failed"] += 1 except Exception: results["error"] += 1 total = len(samples) pass_rate = results["passed"] / total if total > 0 else 0 return { "pass@1": pass_rate, "passed": results["passed"], "failed": results["failed"], "error": results["error"], "total": total } def main(): dataset = load_humaneval() # Load fine-tuned model print("\n" + "=" * 60) print("LOADING FINE-TUNED MODEL") print("=" * 60) model, tokenizer = load_model(BASE_MODEL, FINETUNED_ADAPTER) results = {} # Test 1: Direct prompt print("\n" + "=" * 60) print("TEST 1: DIRECT CODE PROMPT") print("'Output ONLY the code, no explanations'") print("=" * 60) direct_samples = [] for problem in tqdm(dataset, desc="Direct Prompt"): task_id = problem["task_id"] prompt = problem["prompt"] try: completion = generate_direct_prompt(model, tokenizer, prompt) direct_samples.append({"task_id": task_id, "completion": completion}) except Exception as e: print(f"Error on {task_id}: {e}") direct_samples.append({"task_id": task_id, "completion": "# Error"}) results["direct"] = evaluate_samples(direct_samples, dataset) print(f"\nDirect Prompt Results: pass@1 = {results['direct']['pass@1']*100:.2f}%") # Test 2: Reasoning prompt print("\n" + "=" * 60) print("TEST 2: REASONING PROMPT (original)") print("'Solve with detailed reasoning'") print("=" * 60) reasoning_samples = [] for problem in tqdm(dataset, desc="Reasoning Prompt"): task_id = problem["task_id"] prompt = problem["prompt"] try: completion = generate_reasoning_prompt(model, tokenizer, prompt) reasoning_samples.append({"task_id": task_id, "completion": completion}) except Exception as e: print(f"Error on {task_id}: {e}") reasoning_samples.append({"task_id": task_id, "completion": "# Error"}) results["reasoning"] = evaluate_samples(reasoning_samples, dataset) print(f"\nReasoning Prompt Results: pass@1 = {results['reasoning']['pass@1']*100:.2f}%") # Summary print("\n" + "=" * 60) print("PROMPT COMPARISON SUMMARY - HumanEval") print("=" * 60) print(f"\n{'Prompt Type':<30} {'pass@1':>10} {'Passed':>8} {'Failed':>8}") print("-" * 60) print(f"{'Direct Code Prompt':<30} {results['direct']['pass@1']*100:>9.2f}% {results['direct']['passed']:>8} {results['direct']['failed']:>8}") print(f"{'Reasoning Prompt (original)':<30} {results['reasoning']['pass@1']*100:>9.2f}% {results['reasoning']['passed']:>8} {results['reasoning']['failed']:>8}") improvement = (results['direct']['pass@1'] - results['reasoning']['pass@1']) * 100 sign = "+" if improvement >= 0 else "" print(f"\n{'Improvement (Direct vs Reasoning):':<30} {sign}{improvement:>9.2f}%") # Reference print(f"\n{'Reference - Base Model (v2):':<30} {'82.93%':>10}") print(f"{'Reference - Reasoning (v2):':<30} {'62.20%':>10}") # Save results output = { "benchmark": "HumanEval", "experiment": "Prompt Comparison", "model": FINETUNED_ADAPTER, "results": { "direct_prompt": { "pass@1": float(results['direct']['pass@1']), "passed": results['direct']['passed'], "failed": results['direct']['failed'], "total": results['direct']['total'] }, "reasoning_prompt": { "pass@1": float(results['reasoning']['pass@1']), "passed": results['reasoning']['passed'], "failed": results['reasoning']['failed'], "total": results['reasoning']['total'] }, "improvement": float(improvement), "base_model_reference": 0.8293, "reasoning_reference": 0.6220 }, "samples": { "direct": direct_samples[:3], "reasoning": reasoning_samples[:3] } } with open("eval_prompt_comparison.json", "w") as f: json.dump(output, f, indent=2) print("\nResults saved to eval_prompt_comparison.json") try: api = HfApi() api.upload_file( path_or_fileobj="eval_prompt_comparison.json", path_in_repo="eval_prompt_comparison.json", repo_id=OUTPUT_REPO, repo_type="model", ) print(f"Results uploaded to {OUTPUT_REPO}") except Exception as e: print(f"Could not upload results: {e}") print("\n" + "=" * 60) print("EVALUATION COMPLETE") print("=" * 60) if __name__ == "__main__": main()