# /// script # dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"] # /// """ Prompt Comparison Test: Direct vs Reasoning Tests if "code only" prompt improves fine-tuned model scores on HumanEval subset """ import os import re import json import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel from datasets import load_dataset from tqdm import tqdm from huggingface_hub import HfApi print("=" * 60) print("PROMPT COMPARISON TEST") print("Direct Code vs Reasoning Prompt") print("=" * 60) # Configuration BASE_MODEL = "mistralai/Devstral-Small-2505" FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small" OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small" TEMPERATURE = 0.1 MAX_NEW_TOKENS = 512 NUM_SAMPLES = 50 # Subset for quick test # GPU print(f"\nGPU available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"GPU: {torch.cuda.get_device_name(0)}") print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB") # 4-bit config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, ) def load_dataset_subset(): print("\nLoading HumanEval...") ds = load_dataset("openai/openai_humaneval", split="test") ds = ds.select(range(min(NUM_SAMPLES, len(ds)))) print(f"Using {len(ds)} problems") return ds def load_model(): print(f"\nLoading {BASE_MODEL} + {FINETUNED_ADAPTER}...") tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( BASE_MODEL, quantization_config=bnb_config, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, ) model = PeftModel.from_pretrained(model, FINETUNED_ADAPTER) model = model.merge_and_unload() model.eval() print("Model loaded and merged") return model, tokenizer def extract_code(text): """Extract Python code from output""" # Try ```python blocks m = re.findall(r'```python\s*(.*?)\s*```', text, re.DOTALL) if m: return m[-1].strip() # Try ``` blocks m = re.findall(r'```\s*(.*?)\s*```', text, re.DOTALL) if m: return m[-1].strip() return text.strip() def extract_body(code): """Extract function body if full function returned""" if code.strip().startswith("def "): lines = code.split('\n') body = [] in_func = False for line in lines: if line.strip().startswith("def "): in_func = True continue if in_func: body.append(line) if body: return '\n'.join(body) return code def generate_direct(model, tokenizer, prompt): """Direct code prompt - no reasoning""" p = f"[INST] Complete this Python function. Output ONLY the code, no explanations:\n\n{prompt}[/INST]" inputs = tokenizer(p, return_tensors="pt", truncation=True, max_length=2048).to(model.device) with torch.no_grad(): out = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, do_sample=TEMPERATURE > 0, pad_token_id=tokenizer.pad_token_id, ) raw = tokenizer.decode(out[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) code = extract_code(raw) code = extract_body(code) # Stop at boundaries for stop in ["\ndef ", "\nclass ", "\nif __name__"]: if stop in code: code = code[:code.index(stop)] return code def generate_reasoning(model, tokenizer, prompt): """Reasoning prompt - original approach""" p = f"[INST] Solve this programming problem with detailed reasoning:\n\n{prompt}[/INST]" inputs = tokenizer(p, return_tensors="pt", truncation=True, max_length=2048).to(model.device) with torch.no_grad(): out = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS * 2, temperature=TEMPERATURE, do_sample=TEMPERATURE > 0, pad_token_id=tokenizer.pad_token_id, ) raw = tokenizer.decode(out[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) code = extract_code(raw) code = extract_body(code) return code def check_syntax(code): try: compile(code, '', 'exec') return True except: return False def evaluate(samples, dataset): passed = 0 total = len(samples) ds_dict = {p["task_id"]: p for p in dataset} for s in samples: task_id = s["task_id"] completion = s["completion"] problem = ds_dict.get(task_id) if not problem: continue full = problem["prompt"] + completion if not check_syntax(full): continue try: g = {} exec(full, g) entry = problem.get("entry_point", task_id.split("/")[-1]) if entry in g: passed += 1 except: pass return {"pass@1": passed / total if total > 0 else 0, "passed": passed, "total": total} def main(): dataset = load_dataset_subset() model, tokenizer = load_model() # Test 1: Direct prompt print("\n" + "=" * 60) print("TEST 1: DIRECT CODE PROMPT") print("=" * 60) direct = [] for p in tqdm(dataset, desc="Direct"): try: c = generate_direct(model, tokenizer, p["prompt"]) except: c = "# error" direct.append({"task_id": p["task_id"], "completion": c}) r_direct = evaluate(direct, dataset) print(f"Direct: {r_direct['pass@1']*100:.1f}% ({r_direct['passed']}/{r_direct['total']})") # Test 2: Reasoning prompt print("\n" + "=" * 60) print("TEST 2: REASONING PROMPT") print("=" * 60) reasoning = [] for p in tqdm(dataset, desc="Reasoning"): try: c = generate_reasoning(model, tokenizer, p["prompt"]) except: c = "# error" reasoning.append({"task_id": p["task_id"], "completion": c}) r_reason = evaluate(reasoning, dataset) print(f"Reasoning: {r_reason['pass@1']*100:.1f}% ({r_reason['passed']}/{r_reason['total']})") # Summary print("\n" + "=" * 60) print("RESULTS SUMMARY") print("=" * 60) print(f"\n{'Prompt':<20} {'pass@1':>10}") print("-" * 35) print(f"{'Direct Code':<20} {r_direct['pass@1']*100:>9.1f}%") print(f"{'Reasoning':<20} {r_reason['pass@1']*100:>9.1f}%") diff = (r_direct['pass@1'] - r_reason['pass@1']) * 100 print(f"\n{'Improvement:':<20} {'+' if diff >= 0 else ''}{diff:.1f}%") # Save results = { "experiment": "Prompt Comparison", "samples": NUM_SAMPLES, "direct": r_direct, "reasoning": r_reason, "improvement": diff } with open("prompt_comparison.json", "w") as f: json.dump(results, f, indent=2) try: api = HfApi() api.upload_file( path_or_fileobj="prompt_comparison.json", path_in_repo="prompt_comparison.json", repo_id=OUTPUT_REPO, repo_type="model", ) print(f"\nUploaded to {OUTPUT_REPO}") except Exception as e: print(f"Upload failed: {e}") print("\nDONE") if __name__ == "__main__": main()