Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
hate-speech-detection
Size:
10K - 100K
ArXiv:
| # coding=utf-8 | |
| # Copyright 2022 Leon Derczynski. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """OffensEval 2020: Multilingual Offensive Language Detection""" | |
| import csv | |
| import os | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """\ | |
| @inproceedings{zampieri-etal-2020-semeval, | |
| title = "{S}em{E}val-2020 Task 12: Multilingual Offensive Language Identification in Social Media ({O}ffens{E}val 2020)", | |
| author = {Zampieri, Marcos and | |
| Nakov, Preslav and | |
| Rosenthal, Sara and | |
| Atanasova, Pepa and | |
| Karadzhov, Georgi and | |
| Mubarak, Hamdy and | |
| Derczynski, Leon and | |
| Pitenis, Zeses and | |
| Coltekin, Cagri, | |
| booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation", | |
| month = dec, | |
| year = "2020", | |
| address = "Barcelona (online)", | |
| publisher = "International Committee for Computational Linguistics", | |
| url = "https://aclanthology.org/2020.semeval-1.188", | |
| doi = "10.18653/v1/2020.semeval-1.188", | |
| pages = "1425--1447", | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| OffensEval 2020 features a multilingual dataset with five languages. The languages included in OffensEval 2020 are: | |
| * Arabic | |
| * Danish | |
| * English | |
| * Greek | |
| * Turkish | |
| The annotation follows the hierarchical tagset proposed in the Offensive Language Identification Dataset (OLID) and used in OffensEval 2019. | |
| In this taxonomy we break down offensive content into the following three sub-tasks taking the type and target of offensive content into account. | |
| The following sub-tasks were organized: | |
| * Sub-task A - Offensive language identification; | |
| * Sub-task B - Automatic categorization of offense types; | |
| * Sub-task C - Offense target identification. | |
| The English training data isn't included here (the text isn't available and needs rehydration of 9 million tweets; | |
| see [https://zenodo.org/record/3950379#.XxZ-aFVKipp](https://zenodo.org/record/3950379#.XxZ-aFVKipp)) | |
| """ | |
| # _URL = "" | |
| class OffensEval2020Config(datasets.BuilderConfig): | |
| """BuilderConfig for OffensEval2020""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig OffensEval2020. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(OffensEval2020Config, self).__init__(**kwargs) | |
| class OffensEval2020(datasets.GeneratorBasedBuilder): | |
| """OffensEval2020 dataset.""" | |
| BUILDER_CONFIGS = [ | |
| OffensEval2020Config(name="ar", version=datasets.Version("1.0.0"), description="Offensive language data in Arabic"), | |
| OffensEval2020Config(name="da", version=datasets.Version("1.0.0"), description="Offensive language data in Danish"), | |
| OffensEval2020Config(name="en", version=datasets.Version("1.0.0"), description="Offensive language data in English"), | |
| OffensEval2020Config(name="gr", version=datasets.Version("1.0.0"), description="Offensive language data in Greek"), | |
| OffensEval2020Config(name="tr", version=datasets.Version("1.0.0"), description="Offensive language data in Turkish"), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "original_id": datasets.Value("string"), | |
| "text": datasets.Value("string"), | |
| "subtask_a": datasets.features.ClassLabel( | |
| names=[ | |
| "NOT", | |
| "OFF", | |
| ] | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage="https://sites.google.com/site/offensevalsharedtask/results-and-paper-submission", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| train_text = dl_manager.download_and_extract(f"offenseval-{self.config.name}-training-v1.tsv") | |
| test_labels = dl_manager.download_and_extract(f"offenseval-{self.config.name}-labela-v1.csv") | |
| test_text = dl_manager.download_and_extract(f"offenseval-{self.config.name}-test-v1.tsv") | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_text, "split": 'train'}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": {'labels':test_labels, 'text':test_text}, "split": 'test'}), | |
| ] | |
| def _generate_examples(self, filepath, split=None): | |
| if split == "train": | |
| logger.info("⏳ Generating examples from = %s", filepath) | |
| with open(filepath, encoding="utf-8") as f: | |
| OffensEval2020_reader = csv.DictReader(f, delimiter="\t", quotechar='"') | |
| guid = 0 | |
| for instance in OffensEval2020_reader: | |
| instance["text"] = instance.pop("tweet") | |
| instance["original_id"] = instance.pop("id") | |
| instance["id"] = str(guid) | |
| yield guid, instance | |
| guid += 1 | |
| elif split == 'test': | |
| logger.info("⏳ Generating examples from = %s", filepath['text']) | |
| labeldict = {} | |
| with open(filepath['labels']) as labels: | |
| for line in labels: | |
| line = line.strip().split(',') | |
| if line: | |
| labeldict[line[0]] = line[1] | |
| with open(filepath['text']) as f: | |
| OffensEval2020_reader = csv.DictReader(f, delimiter="\t", quotechar='"') | |
| guid = 0 | |
| for instance in OffensEval2020_reader: | |
| instance["text"] = instance.pop("tweet") | |
| instance["original_id"] = instance.pop("id") | |
| instance["id"] = str(guid) | |
| instance["subtask_a"] = labeldict[instance["original_id"]] | |
| yield guid, instance | |
| guid += 1 | |