t2ance commited on
Commit
6edb4a9
·
verified ·
1 Parent(s): d4088e1

Initial upload: RNA-small molecule interaction prediction dataset with three evaluation scenarios

Browse files
.gitattributes CHANGED
@@ -57,3 +57,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ compound_ood/train_text.csv filter=lfs diff=lfs merge=lfs -text
61
+ in_distribution/train_text.csv filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DrugRNA Dataset
2
+
3
+ This repository contains the RNA-small molecule interaction prediction dataset used in the paper "LLM Agents Enable RNA–Small Molecule Interaction Prediction at Performance Comparable to Human-Designed Models".
4
+
5
+ ## Dataset Description
6
+
7
+ The dataset is derived from the RNAInter repository and contains experimentally validated RNA-compound interactions. It includes 45,049 RNA–compound pairs spanning 3,258 unique RNAs and 345 unique compounds, with a 1:4 positive/negative ratio.
8
+
9
+ ## Data Splits
10
+
11
+ The dataset is organized into three evaluation scenarios:
12
+
13
+ ### 1. In-Distribution Split (`in_distribution/`)
14
+ - **Purpose**: Standard 80/10/10 train/validation/test split for head-to-head performance comparison
15
+ - **Characteristics**: Complete entity overlap, testing interpolation within known molecular space
16
+ - **Files**:
17
+ - `train_text.csv` (36,040 samples, 20.0% positive)
18
+ - `val_text.csv` (4,504 samples, 19.8% positive)
19
+ - `test_text.csv` (4,505 samples, 20.2% positive)
20
+ - **Total**: 45,049 samples with 3,258 unique RNAs and 345 unique compounds
21
+
22
+ ### 2. Full Out-of-Domain Split (`full_ood/`)
23
+ - **Purpose**: Cold-start prediction with entirely novel entities
24
+ - **Characteristics**: Zero overlap for both RNAs and compounds between training and test sets
25
+ - **Files**:
26
+ - `train_text.csv` (21,794 samples, 18.4% positive)
27
+ - `val_text.csv` (1,081 samples, 22.1% positive)
28
+ - `test_text.csv` (1,020 samples, 24.2% positive)
29
+ - `DATASET_REPORT.md` (detailed statistics and construction methodology)
30
+ - **Total**: 23,895 samples with 3,142 unique RNAs and 363 unique compounds
31
+
32
+ ### 3. Compound Out-of-Domain Split (`compound_ood/`)
33
+ - **Purpose**: Virtual screening of novel compounds against known RNA targets
34
+ - **Characteristics**: Zero compound overlap, complete RNA reuse (86% of training RNAs appear in test)
35
+ - **Files**:
36
+ - `train_text.csv` (31,576 samples, 21.0% positive)
37
+ - `val_text.csv` (6,694 samples, 20.1% positive)
38
+ - `test_text.csv` (6,779 samples, 15.2% positive)
39
+ - `DATASET_REPORT.md` (detailed statistics and construction methodology)
40
+ - **Total**: 45,049 samples with 3,258 unique RNAs and 345 unique compounds
41
+
42
+ ## Data Format
43
+
44
+ Each CSV file contains the following columns:
45
+ - `rna_id`: RNA identifier
46
+ - `compound_id`: Compound identifier (PubChem CID)
47
+ - `rna_sequence`: RNA nucleotide sequence (A, U, G, C)
48
+ - `compound_smiles`: SMILES string representation of the compound
49
+ - `label`: Binary interaction label (1 = interaction, 0 = no interaction)
50
+
51
+ ## Scripts
52
+
53
+ The `scripts/` folder contains:
54
+ - `create_disjoint_splits.py`: Script used to generate the out-of-domain splits with strict entity disjointness
55
+
56
+ ## Data Sources
57
+
58
+ - **RNAs**: Mapped from NCBI, Ensembl, miRBase, and circBase
59
+ - **Compounds**: Mapped from PubChem
60
+ - **Interactions**: Curated from RNAInter repository with experimental evidence
61
+
62
+ ## Citation
63
+
64
+ If you use this dataset in your research, please cite:
65
+
66
+ ```bibtex
67
+ @article{drugrna2025,
68
+ title={LLM Agents Enable RNA–Small Molecule Interaction Prediction at Performance Comparable to Human-Designed Models},
69
+ author={...},
70
+ journal={...},
71
+ year={2025}
72
+ }
73
+ ```
74
+
75
+ ## License
76
+
77
+ This dataset is provided for research purposes. Please refer to the original data sources for specific licensing information.
78
+
79
+ ## Contact
80
+
81
+ For questions or issues, please open an issue on the GitHub repository or contact the authors.
compound_ood/DATASET_REPORT.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # rna_inter_disjoint_compound Dataset Report
2
+
3
+ ## Overview
4
+ Disjoint splits created from rna_inter (public RNA-compound interaction dataset).
5
+
6
+ ## Split Statistics
7
+
8
+ ### Sample Counts
9
+ - Train: 31,576 samples (21.0% positive)
10
+ - Val: 6,694 samples (20.1% positive)
11
+ - Test: 6,779 samples (15.2% positive)
12
+ - Total: 45,049 samples
13
+
14
+ ### Unique Entities
15
+
16
+ #### Compounds
17
+ - Train: 238
18
+ - Val: 52
19
+ - Test: 55
20
+
21
+ #### RNAs
22
+ - Train: 2,784
23
+ - Val: 2,390
24
+ - Test: 2,403
25
+
26
+ ## Disjointness Properties
27
+
28
+ ### Compound Disjointness
29
+ - Train-Val compound overlap: 0
30
+ - Train-Test compound overlap: 0
31
+ - Val-Test compound overlap: 0
32
+
33
+ ### RNA Disjointness
34
+ - Train-Val RNA overlap: 2390
35
+ - Train-Test RNA overlap: 2403
36
+ - Val-Test RNA overlap: 2065
37
+
38
+ ## Output Format
39
+ Same as rna_inter:
40
+ - Columns: RNA_ID, Compound_ID, RNA_seq, SMILES, text, label
41
+ - Files: train_text.csv, val_text.csv, test_text.csv
42
+
43
+ ## Use Case
44
+ This split tests the model's ability to generalize to:
45
+ - New RNAs
46
+
47
+ Date: 2025-10-27 16:16:05
compound_ood/test_text.csv ADDED
The diff for this file is too large to render. See raw diff
 
compound_ood/train_text.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35385af14685d07a11b74857c667e77129d0e66337d0d96eb3a66cdcdd4360b6
3
+ size 12787901
compound_ood/val_text.csv ADDED
The diff for this file is too large to render. See raw diff
 
full_ood/DATASET_REPORT.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # rna_inter_disjoint Dataset Report
2
+
3
+ ## Overview
4
+ Disjoint splits created from rna_inter (public RNA-compound interaction dataset).
5
+
6
+ ## Split Statistics
7
+
8
+ ### Sample Counts
9
+ - Train: 21,794 samples (18.4% positive)
10
+ - Val: 1,081 samples (22.1% positive)
11
+ - Test: 1,020 samples (24.2% positive)
12
+ - Total: 23,895 samples
13
+
14
+ ### Unique Entities
15
+
16
+ #### Compounds
17
+ - Train: 241
18
+ - Val: 51
19
+ - Test: 53
20
+
21
+ #### RNAs
22
+ - Train: 1,948
23
+ - Val: 368
24
+ - Test: 371
25
+
26
+ ## Disjointness Properties
27
+
28
+ ### Compound Disjointness
29
+ - Train-Val compound overlap: 0
30
+ - Train-Test compound overlap: 0
31
+ - Val-Test compound overlap: 0
32
+
33
+ ### RNA Disjointness
34
+ - Train-Val RNA overlap: 0
35
+ - Train-Test RNA overlap: 0
36
+ - Val-Test RNA overlap: 0
37
+
38
+ ## Output Format
39
+ Same as rna_inter:
40
+ - Columns: RNA_ID, Compound_ID, RNA_seq, SMILES, text, label
41
+ - Files: train_text.csv, val_text.csv, test_text.csv
42
+
43
+ ## Use Case
44
+ This split tests the model's ability to generalize to:
45
+ - New RNAs
46
+
47
+ Date: 2025-10-27 16:16:04
full_ood/test_text.csv ADDED
The diff for this file is too large to render. See raw diff
 
full_ood/train_text.csv ADDED
The diff for this file is too large to render. See raw diff
 
full_ood/val_text.csv ADDED
The diff for this file is too large to render. See raw diff
 
in_distribution/test_text.csv ADDED
The diff for this file is too large to render. See raw diff
 
in_distribution/train_text.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec89af53e0d5be4d4bcb4c09b976ce84249e3c1098ee27f4e382ebf6875dc0b4
3
+ size 14296166
in_distribution/val_text.csv ADDED
The diff for this file is too large to render. See raw diff
 
scripts/create_disjoint_splits.py ADDED
@@ -0,0 +1,472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Create disjoint splits from drug_rna_cds_sampled_11 dataset.
4
+
5
+ Creates three datasets:
6
+ 1. drug_rna_cds_disjoint (fully disjoint if possible)
7
+ 2. drug_rna_cds_disjoint_rna (RNA-disjoint)
8
+ 3. drug_rna_cds_disjoint_compound (compound-disjoint)
9
+ """
10
+
11
+ import pandas as pd
12
+ import numpy as np
13
+ from pathlib import Path
14
+ from collections import defaultdict
15
+ import argparse
16
+
17
+
18
+ def analyze_disjoint_feasibility(df):
19
+ """Analyze if fully disjoint split is feasible."""
20
+ print("=" * 80)
21
+ print("ANALYZING DISJOINT SPLIT FEASIBILITY")
22
+ print("=" * 80)
23
+
24
+ n_compounds = df['SMILES'].nunique()
25
+ n_rnas = df['RNA_seq'].nunique()
26
+ n_samples = len(df)
27
+
28
+ print(f"\nDataset statistics:")
29
+ print(f" Total samples: {n_samples:,}")
30
+ print(f" Unique compounds: {n_compounds:,}")
31
+ print(f" Unique RNAs: {n_rnas:,}")
32
+
33
+ # Analyze compound-RNA pairs
34
+ pairs = df.groupby(['SMILES', 'RNA_seq']).size().reset_index(name='count')
35
+ print(f" Unique (compound, RNA) pairs: {len(pairs):,}")
36
+
37
+ # Check samples per entity
38
+ samples_per_compound = df.groupby('SMILES').size()
39
+ samples_per_rna = df.groupby('RNA_seq').size()
40
+
41
+ print(f"\n Samples per compound: mean={samples_per_compound.mean():.1f}, median={samples_per_compound.median():.1f}")
42
+ print(f" Samples per RNA: mean={samples_per_rna.mean():.1f}, median={samples_per_rna.median():.1f}")
43
+
44
+ # Estimate fully disjoint feasibility
45
+ # For fully disjoint: need non-overlapping sets of (compound, RNA) pairs
46
+ # This is only possible if we can partition compounds and RNAs
47
+
48
+ # Simple heuristic: check if we have enough samples
49
+ min_samples_needed = int(0.15 * n_samples) # For test set (15%)
50
+
51
+ print(f"\n Minimum samples needed for test (15%): {min_samples_needed:,}")
52
+
53
+ # Check if we can allocate compounds/RNAs
54
+ n_compounds_test = int(0.15 * n_compounds)
55
+ n_rnas_test = int(0.15 * n_rnas)
56
+
57
+ print(f" If we allocate 15% of compounds: {n_compounds_test} compounds")
58
+ print(f" If we allocate 15% of RNAs: {n_rnas_test} RNAs")
59
+ print(f" Max possible samples (all pairs): {n_compounds_test * n_rnas_test:,}")
60
+
61
+ # Check actual connectivity
62
+ compound_to_rnas = df.groupby('SMILES')['RNA_seq'].apply(set).to_dict()
63
+ rna_to_compounds = df.groupby('RNA_seq')['SMILES'].apply(set).to_dict()
64
+
65
+ # Calculate how connected the graph is
66
+ avg_rnas_per_compound = df.groupby('SMILES')['RNA_seq'].nunique().mean()
67
+ avg_compounds_per_rna = df.groupby('RNA_seq')['SMILES'].nunique().mean()
68
+
69
+ print(f"\n Connectivity:")
70
+ print(f" Avg RNAs per compound: {avg_rnas_per_compound:.1f}")
71
+ print(f" Avg compounds per RNA: {avg_compounds_per_rna:.1f}")
72
+
73
+ # Determine feasibility
74
+ fully_disjoint_feasible = (n_compounds_test * n_rnas_test >= min_samples_needed)
75
+
76
+ print(f"\n Fully disjoint split feasible: {'YES' if fully_disjoint_feasible else 'NO'}")
77
+
78
+ return fully_disjoint_feasible
79
+
80
+
81
+ def create_fully_disjoint_split(df, train_ratio=0.7, val_ratio=0.15, seed=42):
82
+ """Create fully disjoint split (compounds AND RNAs don't overlap)."""
83
+ print("\n" + "=" * 80)
84
+ print("CREATING FULLY DISJOINT SPLIT")
85
+ print("=" * 80)
86
+
87
+ np.random.seed(seed)
88
+
89
+ # Get unique entities
90
+ compounds = df['SMILES'].unique()
91
+ rnas = df['RNA_seq'].unique()
92
+
93
+ # Shuffle
94
+ np.random.shuffle(compounds)
95
+ np.random.shuffle(rnas)
96
+
97
+ # Split compounds
98
+ n_compounds = len(compounds)
99
+ n_train_comp = int(train_ratio * n_compounds)
100
+ n_val_comp = int(val_ratio * n_compounds)
101
+
102
+ train_compounds = set(compounds[:n_train_comp])
103
+ val_compounds = set(compounds[n_train_comp:n_train_comp + n_val_comp])
104
+ test_compounds = set(compounds[n_train_comp + n_val_comp:])
105
+
106
+ # Split RNAs
107
+ n_rnas = len(rnas)
108
+ n_train_rna = int(train_ratio * n_rnas)
109
+ n_val_rna = int(val_ratio * n_rnas)
110
+
111
+ train_rnas = set(rnas[:n_train_rna])
112
+ val_rnas = set(rnas[n_train_rna:n_train_rna + n_val_rna])
113
+ test_rnas = set(rnas[n_train_rna + n_val_rna:])
114
+
115
+ # Assign samples based on BOTH compound and RNA membership
116
+ train_df = df[(df['SMILES'].isin(train_compounds)) & (df['RNA_seq'].isin(train_rnas))].copy()
117
+ val_df = df[(df['SMILES'].isin(val_compounds)) & (df['RNA_seq'].isin(val_rnas))].copy()
118
+ test_df = df[(df['SMILES'].isin(test_compounds)) & (df['RNA_seq'].isin(test_rnas))].copy()
119
+
120
+ print(f"\n Allocated:")
121
+ print(f" Train: {len(train_compounds)} compounds, {len(train_rnas)} RNAs → {len(train_df)} samples")
122
+ print(f" Val: {len(val_compounds)} compounds, {len(val_rnas)} RNAs → {len(val_df)} samples")
123
+ print(f" Test: {len(test_compounds)} compounds, {len(test_rnas)} RNAs → {len(test_df)} samples")
124
+
125
+ total_samples = len(train_df) + len(val_df) + len(test_df)
126
+ print(f"\n Total samples retained: {total_samples:,} / {len(df):,} ({100*total_samples/len(df):.1f}%)")
127
+
128
+ if total_samples < 0.5 * len(df):
129
+ print(f"\n ⚠️ Warning: Lost {100*(1-total_samples/len(df)):.1f}% of samples")
130
+ print(f" Fully disjoint split may not be practical for this dataset")
131
+ return None
132
+
133
+ return train_df, val_df, test_df
134
+
135
+
136
+ def create_rna_disjoint_split(df, train_ratio=0.7, val_ratio=0.15, seed=42):
137
+ """Create RNA-disjoint split (RNAs don't overlap across splits)."""
138
+ print("\n" + "=" * 80)
139
+ print("CREATING RNA-DISJOINT SPLIT (Target: 70:15:15)")
140
+ print("=" * 80)
141
+
142
+ np.random.seed(seed)
143
+
144
+ # Get RNAs with their sample counts
145
+ rna_counts = df.groupby('RNA_seq').size().reset_index(name='count')
146
+ rna_counts = rna_counts.sample(frac=1, random_state=seed).reset_index(drop=True) # Shuffle
147
+
148
+ # Target sample counts
149
+ total_samples = len(df)
150
+ target_train = int(train_ratio * total_samples)
151
+ target_val = int(val_ratio * total_samples)
152
+ target_test = total_samples - target_train - target_val
153
+
154
+ print(f"\n Target sample distribution:")
155
+ print(f" Train: {target_train:,} ({train_ratio*100:.0f}%)")
156
+ print(f" Val: {target_val:,} ({val_ratio*100:.0f}%)")
157
+ print(f" Test: {target_test:,} ({(1-train_ratio-val_ratio)*100:.0f}%)")
158
+
159
+ # Greedy assignment: assign RNAs to splits to match target ratios
160
+ train_rnas = []
161
+ val_rnas = []
162
+ test_rnas = []
163
+
164
+ train_count = 0
165
+ val_count = 0
166
+ test_count = 0
167
+
168
+ for _, row in rna_counts.iterrows():
169
+ rna = row['RNA_seq']
170
+ count = row['count']
171
+
172
+ # Assign to the split that needs samples most
173
+ train_deficit = target_train - train_count
174
+ val_deficit = target_val - val_count
175
+ test_deficit = target_test - test_count
176
+
177
+ if train_deficit >= val_deficit and train_deficit >= test_deficit:
178
+ train_rnas.append(rna)
179
+ train_count += count
180
+ elif val_deficit >= test_deficit:
181
+ val_rnas.append(rna)
182
+ val_count += count
183
+ else:
184
+ test_rnas.append(rna)
185
+ test_count += count
186
+
187
+ train_rnas = set(train_rnas)
188
+ val_rnas = set(val_rnas)
189
+ test_rnas = set(test_rnas)
190
+
191
+ # Assign samples based on RNA
192
+ train_df = df[df['RNA_seq'].isin(train_rnas)].copy()
193
+ val_df = df[df['RNA_seq'].isin(val_rnas)].copy()
194
+ test_df = df[df['RNA_seq'].isin(test_rnas)].copy()
195
+
196
+ print(f"\n Split RNAs:")
197
+ print(f" Train: {len(train_rnas)} RNAs ({len(train_df):,} samples, {100*len(train_df)/len(df):.1f}%)")
198
+ print(f" Val: {len(val_rnas)} RNAs ({len(val_df):,} samples, {100*len(val_df)/len(df):.1f}%)")
199
+ print(f" Test: {len(test_rnas)} RNAs ({len(test_df):,} samples, {100*len(test_df)/len(df):.1f}%)")
200
+
201
+ # Verify disjointness
202
+ assert len(train_rnas & val_rnas) == 0, "Train and val RNAs overlap!"
203
+ assert len(train_rnas & test_rnas) == 0, "Train and test RNAs overlap!"
204
+ assert len(val_rnas & test_rnas) == 0, "Val and test RNAs overlap!"
205
+
206
+ print(f"\n ✓ RNA-disjoint verified: no RNA overlap across splits")
207
+
208
+ # Check compound overlap (expected)
209
+ train_compounds = set(train_df['SMILES'].unique())
210
+ val_compounds = set(val_df['SMILES'].unique())
211
+ test_compounds = set(test_df['SMILES'].unique())
212
+
213
+ overlap_train_val = len(train_compounds & val_compounds)
214
+ overlap_train_test = len(train_compounds & test_compounds)
215
+
216
+ print(f"\n Compound overlap (expected):")
217
+ print(f" Train-Val: {overlap_train_val} compounds")
218
+ print(f" Train-Test: {overlap_train_test} compounds")
219
+
220
+ return train_df, val_df, test_df
221
+
222
+
223
+ def create_compound_disjoint_split(df, train_ratio=0.7, val_ratio=0.15, seed=42):
224
+ """Create compound-disjoint split (compounds don't overlap across splits)."""
225
+ print("\n" + "=" * 80)
226
+ print("CREATING COMPOUND-DISJOINT SPLIT (Target: 70:15:15)")
227
+ print("=" * 80)
228
+
229
+ np.random.seed(seed)
230
+
231
+ # Get compounds with their sample counts
232
+ compound_counts = df.groupby('SMILES').size().reset_index(name='count')
233
+ compound_counts = compound_counts.sample(frac=1, random_state=seed).reset_index(drop=True) # Shuffle
234
+
235
+ # Target sample counts
236
+ total_samples = len(df)
237
+ target_train = int(train_ratio * total_samples)
238
+ target_val = int(val_ratio * total_samples)
239
+ target_test = total_samples - target_train - target_val
240
+
241
+ print(f"\n Target sample distribution:")
242
+ print(f" Train: {target_train:,} ({train_ratio*100:.0f}%)")
243
+ print(f" Val: {target_val:,} ({val_ratio*100:.0f}%)")
244
+ print(f" Test: {target_test:,} ({(1-train_ratio-val_ratio)*100:.0f}%)")
245
+
246
+ # Greedy assignment: assign compounds to splits to match target ratios
247
+ train_compounds = []
248
+ val_compounds = []
249
+ test_compounds = []
250
+
251
+ train_count = 0
252
+ val_count = 0
253
+ test_count = 0
254
+
255
+ for _, row in compound_counts.iterrows():
256
+ compound = row['SMILES']
257
+ count = row['count']
258
+
259
+ # Assign to the split that needs samples most
260
+ train_deficit = target_train - train_count
261
+ val_deficit = target_val - val_count
262
+ test_deficit = target_test - test_count
263
+
264
+ if train_deficit >= val_deficit and train_deficit >= test_deficit:
265
+ train_compounds.append(compound)
266
+ train_count += count
267
+ elif val_deficit >= test_deficit:
268
+ val_compounds.append(compound)
269
+ val_count += count
270
+ else:
271
+ test_compounds.append(compound)
272
+ test_count += count
273
+
274
+ train_compounds = set(train_compounds)
275
+ val_compounds = set(val_compounds)
276
+ test_compounds = set(test_compounds)
277
+
278
+ # Assign samples based on compound
279
+ train_df = df[df['SMILES'].isin(train_compounds)].copy()
280
+ val_df = df[df['SMILES'].isin(val_compounds)].copy()
281
+ test_df = df[df['SMILES'].isin(test_compounds)].copy()
282
+
283
+ print(f"\n Split compounds:")
284
+ print(f" Train: {len(train_compounds)} compounds ({len(train_df):,} samples, {100*len(train_df)/len(df):.1f}%)")
285
+ print(f" Val: {len(val_compounds)} compounds ({len(val_df):,} samples, {100*len(val_df)/len(df):.1f}%)")
286
+ print(f" Test: {len(test_compounds)} compounds ({len(test_df):,} samples, {100*len(test_df)/len(df):.1f}%)")
287
+
288
+ # Verify disjointness
289
+ assert len(train_compounds & val_compounds) == 0, "Train and val compounds overlap!"
290
+ assert len(train_compounds & test_compounds) == 0, "Train and test compounds overlap!"
291
+ assert len(val_compounds & test_compounds) == 0, "Val and test compounds overlap!"
292
+
293
+ print(f"\n ✓ Compound-disjoint verified: no compound overlap across splits")
294
+
295
+ # Check RNA overlap (expected)
296
+ train_rnas = set(train_df['RNA_seq'].unique())
297
+ val_rnas = set(val_df['RNA_seq'].unique())
298
+ test_rnas = set(test_df['RNA_seq'].unique())
299
+
300
+ overlap_train_val = len(train_rnas & val_rnas)
301
+ overlap_train_test = len(train_rnas & test_rnas)
302
+
303
+ print(f"\n RNA overlap (expected):")
304
+ print(f" Train-Val: {overlap_train_val} RNAs")
305
+ print(f" Train-Test: {overlap_train_test} RNAs")
306
+
307
+ return train_df, val_df, test_df
308
+
309
+
310
+ def save_splits(train_df, val_df, test_df, output_dir, dataset_name):
311
+ """Save splits to files."""
312
+ output_path = Path(output_dir)
313
+ output_path.mkdir(parents=True, exist_ok=True)
314
+
315
+ # Save CSV files
316
+ train_df.to_csv(output_path / 'train_text.csv', index=False)
317
+ val_df.to_csv(output_path / 'val_text.csv', index=False)
318
+ test_df.to_csv(output_path / 'test_text.csv', index=False)
319
+
320
+ # Create report
321
+ report = f"""# {dataset_name} Dataset Report
322
+
323
+ ## Overview
324
+ Disjoint splits created from drug_rna_cds_sampled_11 dataset.
325
+
326
+ ## Split Statistics
327
+
328
+ ### Sample Counts
329
+ - Train: {len(train_df):,} samples ({100*train_df['label'].mean():.1f}% positive)
330
+ - Val: {len(val_df):,} samples ({100*val_df['label'].mean():.1f}% positive)
331
+ - Test: {len(test_df):,} samples ({100*test_df['label'].mean():.1f}% positive)
332
+ - Total: {len(train_df) + len(val_df) + len(test_df):,} samples
333
+
334
+ ### Unique Entities
335
+
336
+ #### Compounds
337
+ - Train: {train_df['SMILES'].nunique():,}
338
+ - Val: {val_df['SMILES'].nunique():,}
339
+ - Test: {test_df['SMILES'].nunique():,}
340
+
341
+ #### RNAs
342
+ - Train: {train_df['RNA_seq'].nunique():,}
343
+ - Val: {val_df['RNA_seq'].nunique():,}
344
+ - Test: {test_df['RNA_seq'].nunique():,}
345
+
346
+ ## Disjointness Properties
347
+
348
+ ### Compound Disjointness
349
+ - Train-Val compound overlap: {len(set(train_df['SMILES'].unique()) & set(val_df['SMILES'].unique()))}
350
+ - Train-Test compound overlap: {len(set(train_df['SMILES'].unique()) & set(test_df['SMILES'].unique()))}
351
+ - Val-Test compound overlap: {len(set(val_df['SMILES'].unique()) & set(test_df['SMILES'].unique()))}
352
+
353
+ ### RNA Disjointness
354
+ - Train-Val RNA overlap: {len(set(train_df['RNA_seq'].unique()) & set(val_df['RNA_seq'].unique()))}
355
+ - Train-Test RNA overlap: {len(set(train_df['RNA_seq'].unique()) & set(test_df['RNA_seq'].unique()))}
356
+ - Val-Test RNA overlap: {len(set(val_df['RNA_seq'].unique()) & set(test_df['RNA_seq'].unique()))}
357
+
358
+ ## Output Format
359
+ Same as drug_rna_cds_sampled_11:
360
+ - Columns: RNA_ID, Compound_ID, RNA_seq, SMILES, text, label
361
+ - Files: train_text.csv, val_text.csv, test_text.csv
362
+
363
+ ## Use Case
364
+ This split tests the model's ability to generalize to:
365
+ - {'New compounds AND new RNAs' if 'disjoint' in dataset_name and 'rna' not in dataset_name and 'compound' not in dataset_name else 'New RNAs' if 'rna' in dataset_name else 'New compounds' if 'compound' in dataset_name else 'New samples'}
366
+
367
+ Date: {pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')}
368
+ """
369
+
370
+ with open(output_path / 'DATASET_REPORT.md', 'w') as f:
371
+ f.write(report)
372
+
373
+ print(f"\n Saved to: {output_path}")
374
+ print(f" - train_text.csv")
375
+ print(f" - val_text.csv")
376
+ print(f" - test_text.csv")
377
+ print(f" - DATASET_REPORT.md")
378
+
379
+
380
+ def main():
381
+ parser = argparse.ArgumentParser(
382
+ description="Create disjoint splits from drug_rna_cds_sampled_11"
383
+ )
384
+ parser.add_argument(
385
+ '--input',
386
+ default='datasets/drug_rna_cds_sampled_11',
387
+ help='Input dataset directory'
388
+ )
389
+ parser.add_argument(
390
+ '--seed',
391
+ type=int,
392
+ default=42,
393
+ help='Random seed'
394
+ )
395
+
396
+ args = parser.parse_args()
397
+
398
+ print("=" * 80)
399
+ print("CREATING DISJOINT SPLITS FROM drug_rna_cds_sampled_11")
400
+ print("=" * 80)
401
+
402
+ # Load data
403
+ input_path = Path(args.input)
404
+
405
+ # Combine all splits from source
406
+ dfs = []
407
+ for split in ['train', 'val', 'test']:
408
+ csv_path = input_path / f'{split}_text.csv'
409
+ if csv_path.exists():
410
+ dfs.append(pd.read_csv(csv_path))
411
+
412
+ df = pd.concat(dfs, ignore_index=True)
413
+ print(f"\nLoaded {len(df):,} samples from {input_path}")
414
+
415
+ # Analyze feasibility
416
+ fully_disjoint_feasible = analyze_disjoint_feasibility(df)
417
+
418
+ # 1. Try fully disjoint
419
+ if fully_disjoint_feasible:
420
+ print("\n" + "#" * 80)
421
+ print("# CREATING: drug_rna_cds_disjoint (FULLY DISJOINT)")
422
+ print("#" * 80)
423
+
424
+ result = create_fully_disjoint_split(df, seed=args.seed)
425
+ if result is not None:
426
+ train_df, val_df, test_df = result
427
+ save_splits(
428
+ train_df, val_df, test_df,
429
+ 'datasets/drug_rna_cds_disjoint',
430
+ 'drug_rna_cds_disjoint'
431
+ )
432
+ else:
433
+ print("\n ⚠️ Skipping fully disjoint split - not practical for this dataset")
434
+ else:
435
+ print("\n ⚠️ Skipping fully disjoint split - not enough samples")
436
+
437
+ # 2. Create RNA-disjoint
438
+ print("\n" + "#" * 80)
439
+ print("# CREATING: drug_rna_cds_disjoint_rna (RNA-DISJOINT)")
440
+ print("#" * 80)
441
+
442
+ train_df, val_df, test_df = create_rna_disjoint_split(df, seed=args.seed)
443
+ save_splits(
444
+ train_df, val_df, test_df,
445
+ 'datasets/drug_rna_cds_disjoint_rna',
446
+ 'drug_rna_cds_disjoint_rna'
447
+ )
448
+
449
+ # 3. Create compound-disjoint
450
+ print("\n" + "#" * 80)
451
+ print("# CREATING: drug_rna_cds_disjoint_compound (COMPOUND-DISJOINT)")
452
+ print("#" * 80)
453
+
454
+ train_df, val_df, test_df = create_compound_disjoint_split(df, seed=args.seed)
455
+ save_splits(
456
+ train_df, val_df, test_df,
457
+ 'datasets/drug_rna_cds_disjoint_compound',
458
+ 'drug_rna_cds_disjoint_compound'
459
+ )
460
+
461
+ print("\n" + "=" * 80)
462
+ print("ALL DISJOINT SPLITS CREATED SUCCESSFULLY")
463
+ print("=" * 80)
464
+ print("\nCreated datasets:")
465
+ if fully_disjoint_feasible:
466
+ print(" 1. drug_rna_cds_disjoint - Fully disjoint (compounds AND RNAs)")
467
+ print(" 2. drug_rna_cds_disjoint_rna - RNA-disjoint")
468
+ print(" 3. drug_rna_cds_disjoint_compound - Compound-disjoint")
469
+
470
+
471
+ if __name__ == "__main__":
472
+ main()