#!/usr/bin/env python3 """ Create disjoint splits from drug_rna_cds_sampled_11 dataset. Creates three datasets: 1. drug_rna_cds_disjoint (fully disjoint if possible) 2. drug_rna_cds_disjoint_rna (RNA-disjoint) 3. drug_rna_cds_disjoint_compound (compound-disjoint) """ import pandas as pd import numpy as np from pathlib import Path from collections import defaultdict import argparse def analyze_disjoint_feasibility(df): """Analyze if fully disjoint split is feasible.""" print("=" * 80) print("ANALYZING DISJOINT SPLIT FEASIBILITY") print("=" * 80) n_compounds = df['SMILES'].nunique() n_rnas = df['RNA_seq'].nunique() n_samples = len(df) print(f"\nDataset statistics:") print(f" Total samples: {n_samples:,}") print(f" Unique compounds: {n_compounds:,}") print(f" Unique RNAs: {n_rnas:,}") # Analyze compound-RNA pairs pairs = df.groupby(['SMILES', 'RNA_seq']).size().reset_index(name='count') print(f" Unique (compound, RNA) pairs: {len(pairs):,}") # Check samples per entity samples_per_compound = df.groupby('SMILES').size() samples_per_rna = df.groupby('RNA_seq').size() print(f"\n Samples per compound: mean={samples_per_compound.mean():.1f}, median={samples_per_compound.median():.1f}") print(f" Samples per RNA: mean={samples_per_rna.mean():.1f}, median={samples_per_rna.median():.1f}") # Estimate fully disjoint feasibility # For fully disjoint: need non-overlapping sets of (compound, RNA) pairs # This is only possible if we can partition compounds and RNAs # Simple heuristic: check if we have enough samples min_samples_needed = int(0.15 * n_samples) # For test set (15%) print(f"\n Minimum samples needed for test (15%): {min_samples_needed:,}") # Check if we can allocate compounds/RNAs n_compounds_test = int(0.15 * n_compounds) n_rnas_test = int(0.15 * n_rnas) print(f" If we allocate 15% of compounds: {n_compounds_test} compounds") print(f" If we allocate 15% of RNAs: {n_rnas_test} RNAs") print(f" Max possible samples (all pairs): {n_compounds_test * n_rnas_test:,}") # Check actual connectivity compound_to_rnas = df.groupby('SMILES')['RNA_seq'].apply(set).to_dict() rna_to_compounds = df.groupby('RNA_seq')['SMILES'].apply(set).to_dict() # Calculate how connected the graph is avg_rnas_per_compound = df.groupby('SMILES')['RNA_seq'].nunique().mean() avg_compounds_per_rna = df.groupby('RNA_seq')['SMILES'].nunique().mean() print(f"\n Connectivity:") print(f" Avg RNAs per compound: {avg_rnas_per_compound:.1f}") print(f" Avg compounds per RNA: {avg_compounds_per_rna:.1f}") # Determine feasibility fully_disjoint_feasible = (n_compounds_test * n_rnas_test >= min_samples_needed) print(f"\n Fully disjoint split feasible: {'YES' if fully_disjoint_feasible else 'NO'}") return fully_disjoint_feasible def create_fully_disjoint_split(df, train_ratio=0.7, val_ratio=0.15, seed=42): """Create fully disjoint split (compounds AND RNAs don't overlap).""" print("\n" + "=" * 80) print("CREATING FULLY DISJOINT SPLIT") print("=" * 80) np.random.seed(seed) # Get unique entities compounds = df['SMILES'].unique() rnas = df['RNA_seq'].unique() # Shuffle np.random.shuffle(compounds) np.random.shuffle(rnas) # Split compounds n_compounds = len(compounds) n_train_comp = int(train_ratio * n_compounds) n_val_comp = int(val_ratio * n_compounds) train_compounds = set(compounds[:n_train_comp]) val_compounds = set(compounds[n_train_comp:n_train_comp + n_val_comp]) test_compounds = set(compounds[n_train_comp + n_val_comp:]) # Split RNAs n_rnas = len(rnas) n_train_rna = int(train_ratio * n_rnas) n_val_rna = int(val_ratio * n_rnas) train_rnas = set(rnas[:n_train_rna]) val_rnas = set(rnas[n_train_rna:n_train_rna + n_val_rna]) test_rnas = set(rnas[n_train_rna + n_val_rna:]) # Assign samples based on BOTH compound and RNA membership train_df = df[(df['SMILES'].isin(train_compounds)) & (df['RNA_seq'].isin(train_rnas))].copy() val_df = df[(df['SMILES'].isin(val_compounds)) & (df['RNA_seq'].isin(val_rnas))].copy() test_df = df[(df['SMILES'].isin(test_compounds)) & (df['RNA_seq'].isin(test_rnas))].copy() print(f"\n Allocated:") print(f" Train: {len(train_compounds)} compounds, {len(train_rnas)} RNAs → {len(train_df)} samples") print(f" Val: {len(val_compounds)} compounds, {len(val_rnas)} RNAs → {len(val_df)} samples") print(f" Test: {len(test_compounds)} compounds, {len(test_rnas)} RNAs → {len(test_df)} samples") total_samples = len(train_df) + len(val_df) + len(test_df) print(f"\n Total samples retained: {total_samples:,} / {len(df):,} ({100*total_samples/len(df):.1f}%)") if total_samples < 0.5 * len(df): print(f"\n ⚠️ Warning: Lost {100*(1-total_samples/len(df)):.1f}% of samples") print(f" Fully disjoint split may not be practical for this dataset") return None return train_df, val_df, test_df def create_rna_disjoint_split(df, train_ratio=0.7, val_ratio=0.15, seed=42): """Create RNA-disjoint split (RNAs don't overlap across splits).""" print("\n" + "=" * 80) print("CREATING RNA-DISJOINT SPLIT (Target: 70:15:15)") print("=" * 80) np.random.seed(seed) # Get RNAs with their sample counts rna_counts = df.groupby('RNA_seq').size().reset_index(name='count') rna_counts = rna_counts.sample(frac=1, random_state=seed).reset_index(drop=True) # Shuffle # Target sample counts total_samples = len(df) target_train = int(train_ratio * total_samples) target_val = int(val_ratio * total_samples) target_test = total_samples - target_train - target_val print(f"\n Target sample distribution:") print(f" Train: {target_train:,} ({train_ratio*100:.0f}%)") print(f" Val: {target_val:,} ({val_ratio*100:.0f}%)") print(f" Test: {target_test:,} ({(1-train_ratio-val_ratio)*100:.0f}%)") # Greedy assignment: assign RNAs to splits to match target ratios train_rnas = [] val_rnas = [] test_rnas = [] train_count = 0 val_count = 0 test_count = 0 for _, row in rna_counts.iterrows(): rna = row['RNA_seq'] count = row['count'] # Assign to the split that needs samples most train_deficit = target_train - train_count val_deficit = target_val - val_count test_deficit = target_test - test_count if train_deficit >= val_deficit and train_deficit >= test_deficit: train_rnas.append(rna) train_count += count elif val_deficit >= test_deficit: val_rnas.append(rna) val_count += count else: test_rnas.append(rna) test_count += count train_rnas = set(train_rnas) val_rnas = set(val_rnas) test_rnas = set(test_rnas) # Assign samples based on RNA train_df = df[df['RNA_seq'].isin(train_rnas)].copy() val_df = df[df['RNA_seq'].isin(val_rnas)].copy() test_df = df[df['RNA_seq'].isin(test_rnas)].copy() print(f"\n Split RNAs:") print(f" Train: {len(train_rnas)} RNAs ({len(train_df):,} samples, {100*len(train_df)/len(df):.1f}%)") print(f" Val: {len(val_rnas)} RNAs ({len(val_df):,} samples, {100*len(val_df)/len(df):.1f}%)") print(f" Test: {len(test_rnas)} RNAs ({len(test_df):,} samples, {100*len(test_df)/len(df):.1f}%)") # Verify disjointness assert len(train_rnas & val_rnas) == 0, "Train and val RNAs overlap!" assert len(train_rnas & test_rnas) == 0, "Train and test RNAs overlap!" assert len(val_rnas & test_rnas) == 0, "Val and test RNAs overlap!" print(f"\n ✓ RNA-disjoint verified: no RNA overlap across splits") # Check compound overlap (expected) train_compounds = set(train_df['SMILES'].unique()) val_compounds = set(val_df['SMILES'].unique()) test_compounds = set(test_df['SMILES'].unique()) overlap_train_val = len(train_compounds & val_compounds) overlap_train_test = len(train_compounds & test_compounds) print(f"\n Compound overlap (expected):") print(f" Train-Val: {overlap_train_val} compounds") print(f" Train-Test: {overlap_train_test} compounds") return train_df, val_df, test_df def create_compound_disjoint_split(df, train_ratio=0.7, val_ratio=0.15, seed=42): """Create compound-disjoint split (compounds don't overlap across splits).""" print("\n" + "=" * 80) print("CREATING COMPOUND-DISJOINT SPLIT (Target: 70:15:15)") print("=" * 80) np.random.seed(seed) # Get compounds with their sample counts compound_counts = df.groupby('SMILES').size().reset_index(name='count') compound_counts = compound_counts.sample(frac=1, random_state=seed).reset_index(drop=True) # Shuffle # Target sample counts total_samples = len(df) target_train = int(train_ratio * total_samples) target_val = int(val_ratio * total_samples) target_test = total_samples - target_train - target_val print(f"\n Target sample distribution:") print(f" Train: {target_train:,} ({train_ratio*100:.0f}%)") print(f" Val: {target_val:,} ({val_ratio*100:.0f}%)") print(f" Test: {target_test:,} ({(1-train_ratio-val_ratio)*100:.0f}%)") # Greedy assignment: assign compounds to splits to match target ratios train_compounds = [] val_compounds = [] test_compounds = [] train_count = 0 val_count = 0 test_count = 0 for _, row in compound_counts.iterrows(): compound = row['SMILES'] count = row['count'] # Assign to the split that needs samples most train_deficit = target_train - train_count val_deficit = target_val - val_count test_deficit = target_test - test_count if train_deficit >= val_deficit and train_deficit >= test_deficit: train_compounds.append(compound) train_count += count elif val_deficit >= test_deficit: val_compounds.append(compound) val_count += count else: test_compounds.append(compound) test_count += count train_compounds = set(train_compounds) val_compounds = set(val_compounds) test_compounds = set(test_compounds) # Assign samples based on compound train_df = df[df['SMILES'].isin(train_compounds)].copy() val_df = df[df['SMILES'].isin(val_compounds)].copy() test_df = df[df['SMILES'].isin(test_compounds)].copy() print(f"\n Split compounds:") print(f" Train: {len(train_compounds)} compounds ({len(train_df):,} samples, {100*len(train_df)/len(df):.1f}%)") print(f" Val: {len(val_compounds)} compounds ({len(val_df):,} samples, {100*len(val_df)/len(df):.1f}%)") print(f" Test: {len(test_compounds)} compounds ({len(test_df):,} samples, {100*len(test_df)/len(df):.1f}%)") # Verify disjointness assert len(train_compounds & val_compounds) == 0, "Train and val compounds overlap!" assert len(train_compounds & test_compounds) == 0, "Train and test compounds overlap!" assert len(val_compounds & test_compounds) == 0, "Val and test compounds overlap!" print(f"\n ✓ Compound-disjoint verified: no compound overlap across splits") # Check RNA overlap (expected) train_rnas = set(train_df['RNA_seq'].unique()) val_rnas = set(val_df['RNA_seq'].unique()) test_rnas = set(test_df['RNA_seq'].unique()) overlap_train_val = len(train_rnas & val_rnas) overlap_train_test = len(train_rnas & test_rnas) print(f"\n RNA overlap (expected):") print(f" Train-Val: {overlap_train_val} RNAs") print(f" Train-Test: {overlap_train_test} RNAs") return train_df, val_df, test_df def save_splits(train_df, val_df, test_df, output_dir, dataset_name): """Save splits to files.""" output_path = Path(output_dir) output_path.mkdir(parents=True, exist_ok=True) # Save CSV files train_df.to_csv(output_path / 'train_text.csv', index=False) val_df.to_csv(output_path / 'val_text.csv', index=False) test_df.to_csv(output_path / 'test_text.csv', index=False) # Create report report = f"""# {dataset_name} Dataset Report ## Overview Disjoint splits created from drug_rna_cds_sampled_11 dataset. ## Split Statistics ### Sample Counts - Train: {len(train_df):,} samples ({100*train_df['label'].mean():.1f}% positive) - Val: {len(val_df):,} samples ({100*val_df['label'].mean():.1f}% positive) - Test: {len(test_df):,} samples ({100*test_df['label'].mean():.1f}% positive) - Total: {len(train_df) + len(val_df) + len(test_df):,} samples ### Unique Entities #### Compounds - Train: {train_df['SMILES'].nunique():,} - Val: {val_df['SMILES'].nunique():,} - Test: {test_df['SMILES'].nunique():,} #### RNAs - Train: {train_df['RNA_seq'].nunique():,} - Val: {val_df['RNA_seq'].nunique():,} - Test: {test_df['RNA_seq'].nunique():,} ## Disjointness Properties ### Compound Disjointness - Train-Val compound overlap: {len(set(train_df['SMILES'].unique()) & set(val_df['SMILES'].unique()))} - Train-Test compound overlap: {len(set(train_df['SMILES'].unique()) & set(test_df['SMILES'].unique()))} - Val-Test compound overlap: {len(set(val_df['SMILES'].unique()) & set(test_df['SMILES'].unique()))} ### RNA Disjointness - Train-Val RNA overlap: {len(set(train_df['RNA_seq'].unique()) & set(val_df['RNA_seq'].unique()))} - Train-Test RNA overlap: {len(set(train_df['RNA_seq'].unique()) & set(test_df['RNA_seq'].unique()))} - Val-Test RNA overlap: {len(set(val_df['RNA_seq'].unique()) & set(test_df['RNA_seq'].unique()))} ## Output Format Same as drug_rna_cds_sampled_11: - Columns: RNA_ID, Compound_ID, RNA_seq, SMILES, text, label - Files: train_text.csv, val_text.csv, test_text.csv ## Use Case This split tests the model's ability to generalize to: - {'New compounds AND new RNAs' if 'disjoint' in dataset_name and 'rna' not in dataset_name and 'compound' not in dataset_name else 'New RNAs' if 'rna' in dataset_name else 'New compounds' if 'compound' in dataset_name else 'New samples'} Date: {pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')} """ with open(output_path / 'DATASET_REPORT.md', 'w') as f: f.write(report) print(f"\n Saved to: {output_path}") print(f" - train_text.csv") print(f" - val_text.csv") print(f" - test_text.csv") print(f" - DATASET_REPORT.md") def main(): parser = argparse.ArgumentParser( description="Create disjoint splits from drug_rna_cds_sampled_11" ) parser.add_argument( '--input', default='datasets/drug_rna_cds_sampled_11', help='Input dataset directory' ) parser.add_argument( '--seed', type=int, default=42, help='Random seed' ) args = parser.parse_args() print("=" * 80) print("CREATING DISJOINT SPLITS FROM drug_rna_cds_sampled_11") print("=" * 80) # Load data input_path = Path(args.input) # Combine all splits from source dfs = [] for split in ['train', 'val', 'test']: csv_path = input_path / f'{split}_text.csv' if csv_path.exists(): dfs.append(pd.read_csv(csv_path)) df = pd.concat(dfs, ignore_index=True) print(f"\nLoaded {len(df):,} samples from {input_path}") # Analyze feasibility fully_disjoint_feasible = analyze_disjoint_feasibility(df) # 1. Try fully disjoint if fully_disjoint_feasible: print("\n" + "#" * 80) print("# CREATING: drug_rna_cds_disjoint (FULLY DISJOINT)") print("#" * 80) result = create_fully_disjoint_split(df, seed=args.seed) if result is not None: train_df, val_df, test_df = result save_splits( train_df, val_df, test_df, 'datasets/drug_rna_cds_disjoint', 'drug_rna_cds_disjoint' ) else: print("\n ⚠️ Skipping fully disjoint split - not practical for this dataset") else: print("\n ⚠️ Skipping fully disjoint split - not enough samples") # 2. Create RNA-disjoint print("\n" + "#" * 80) print("# CREATING: drug_rna_cds_disjoint_rna (RNA-DISJOINT)") print("#" * 80) train_df, val_df, test_df = create_rna_disjoint_split(df, seed=args.seed) save_splits( train_df, val_df, test_df, 'datasets/drug_rna_cds_disjoint_rna', 'drug_rna_cds_disjoint_rna' ) # 3. Create compound-disjoint print("\n" + "#" * 80) print("# CREATING: drug_rna_cds_disjoint_compound (COMPOUND-DISJOINT)") print("#" * 80) train_df, val_df, test_df = create_compound_disjoint_split(df, seed=args.seed) save_splits( train_df, val_df, test_df, 'datasets/drug_rna_cds_disjoint_compound', 'drug_rna_cds_disjoint_compound' ) print("\n" + "=" * 80) print("ALL DISJOINT SPLITS CREATED SUCCESSFULLY") print("=" * 80) print("\nCreated datasets:") if fully_disjoint_feasible: print(" 1. drug_rna_cds_disjoint - Fully disjoint (compounds AND RNAs)") print(" 2. drug_rna_cds_disjoint_rna - RNA-disjoint") print(" 3. drug_rna_cds_disjoint_compound - Compound-disjoint") if __name__ == "__main__": main()