background
stringlengths
19
2.63k
Many studies have focused on investigating deviations from additive interaction of two dichotomous risk factors on a binary outcome. There is, however, a gap in the literature with respect to interactions on the additive scale of >2 risk factors. In this paper, we present an approach for examining deviations from additive interaction among three on more binary exposures. The relative excess risk due to interaction (RERI) is used as measure of additive interaction. First, we concentrate on three risk factors - we propose to decompose the total RERI to: the RERI owned to the joint presence of all 3 risk factors and the RERI of any two risk factors, given that the third is absent. We then extend this approach, to >3 binary risk factors. For illustration, we use a sample from data from the Greek EPIC cohort and we investigate the association with overall mortality of Mediterranean diet, body mass index (BMI), and, smoking. Our formulae enable better interpretability of any evidence for deviations from additivity owned to more than two risk factors and provide simple ways of communicating such results from a public health perspective by attributing any excess relative risk to specific combinations of these factors.
The paper aims to give an overview of various approaches to statistical disclosure control based on random noise that are currently being discussed for official population statistics and censuses. A particular focus is on a stringent delineation between different concepts influencing the discussion: we separate clearly between risk measures, noise distributions and output mechanisms - putting these concepts into scope and into relation with each other. After recapitulating differential privacy as a risk measure, the paper also remarks on utility and risk aspects of some specific output mechanisms and parameter setups, with special attention on static outputs that are rather typical in official population statistics. In particular, it is argued that unbounded noise distributions, such as plain Laplace, may jeopardise key unique census features without a clear need from a risk perspective. On the other hand, bounded noise distributions, such as the truncated Laplace or the cell key method, can be set up to keep unique census features while controlling disclosure risks in census-like outputs. Finally, the paper analyses some typical attack scenarios to constrain generic noise parameter ranges that suggest a good risk/utility compromise for the 2021 EU census output scenario. The analysis also shows that strictly differentially private mechanisms would be severely constrained in this scenario.
Functional principal component analysis (FPCA) has played an important role in the development of functional time series analysis. This paper investigates how FPCA can be used to analyze cointegrated functional time series and proposes a modification of FPCA as a novel statistical tool. Our modified FPCA not only provides an asymptotically more efficient estimator of the cointegrating vectors, but also leads to novel FPCA-based tests for examining some essential properties of cointegrated functional time series. As an empirical illustration, our methodology is applied to two empirical examples: age-specific employment rates and earning densities.
WOMBAT (the WOllongong Methodology for Bayesian Assimilation of Trace-gases) is a fully Bayesian hierarchical statistical framework for flux inversion of trace gases from flask, in situ, and remotely sensed data. WOMBAT extends the conventional Bayesian-synthesis framework through the consideration of a correlated error term, the capacity for online bias correction, and the provision of uncertainty quantification on all unknowns that appear in the Bayesian statistical model. We show, in an observing system simulation experiment (OSSE), that these extensions are crucial when the data are indeed biased and have errors that are correlated. Using the GEOS-Chem atmospheric transport model, we show that WOMBAT is able to obtain posterior means and uncertainties on non-fossil-fuel CO$_2$ fluxes from Orbiting Carbon Observatory-2 (OCO-2) data that are comparable to those from the Model Intercomparison Project (MIP) reported in Crowell et al. (2019, Atmos. Chem. Phys., vol. 19). We also find that our predictions of out-of-sample retrievals from the Total Column Carbon Observing Network are, for the most part, more accurate than those made by the MIP participants. Subsequent versions of the OCO-2 datasets will be ingested into WOMBAT as they become available.
A new robust class of multivariate skew distributions is introduced. Practical aspects such as parameter estimation method of the proposed class are discussed, we show that the proposed class can be fitted under a reasonable time frame. Our study shows that the class of distributions is capable to model multivariate skewness structure and does not suffer from the curse of dimensionality as heavily as other distributions of similar complexity do, such as the class of canonical skew distributions. We also derive a nested form of the proposed class which appears to be the most flexible class of multivariate skew distributions in literature that has a closed-form density function. Numerical examples on two data sets, i) a data set containing daily river flow data recorded in the UK; and ii) a data set containing biomedical variables of athletes collected by the Australian Institute of Sports (AIS), are demonstrated. These examples further support the practicality of the proposed class on moderate dimensional data sets.
The methodological advancements made in the field of joint models are numerous. None the less, the case of competing risks joint models have largely been neglected, especially from a practitioner's point of view. In the relevant works on competing risks joint models, the assumptions of Gaussian linear longitudinal series and proportional cause-specific hazard functions, amongst others, have remained unchallenged. In this paper, we provide a framework based on R-INLA to apply competing risks joint models in a unifying way such that non-Gaussian longitudinal data, spatial structures, time dependent splines and various latent association structures, to mention a few, are all embraced in our approach. Our motivation stems from the SANAD trial which exhibits non-linear longitudinal trajectories and competing risks for failure of treatment. We also present a discrete competing risks joint model for longitudinal count data as well as a spatial competing risks joint model, as specific examples.
In a case-control study aimed at locating autosomal disease variants for a disease of interest, association between markers and the disease status is often tested by comparing the marker minor allele frequencies (MAFs) between cases and controls. For most common allele-based tests the statistical power is highly dependent on the actual values of these MAFs, where associated markers with low MAFs have less power to be detected compared to associated markers with high MAFs. Therefore, the popular strategy of selecting markers for follow-up studies based primarily on their p-values is likely to preferentially select markers with high MAFs. We propose a new test which does not favor markers with high MAFs and improves the power for markers with low to moderate MAFs without sacrificing performance for markers with high MAFs and is therefore superior to most existing tests in this regard. An explicit formula for the asymptotic power function of the proposed test is derived theoretically, which allows for fast and easy computation of the corresponding p-values. The performance of the proposed test is compared with several existing tests both in the asymptotic and the finite sample size settings.
The paper discusses empirical Bayes methodology for repeated quality comparisons of health care institutions using data from the Dutch VOKS study that annually monitors the relative performance and quality of nearly all Dutch gynecological centres with respect to different aspects of the childbirths taking place in these centres. This paper can be seen as an extension of the pioneering work of Thomas, Longford and Rolph and Goldstein and Spiegelhalter. First of all, this paper introduces a new simple crude estimate of the centre effect in a logistic regression setting. Next, a simple estimate of the expected percentile of a centre given all data and a measure of rankability of the centres based on the expected percentiles are presented. Finally, the temporal dimension is explored and methods are discussed to predict next years performance.
Predicting the relationship between a molecule's structure and its odor remains a difficult, decades-old task. This problem, termed quantitative structure-odor relationship (QSOR) modeling, is an important challenge in chemistry, impacting human nutrition, manufacture of synthetic fragrance, the environment, and sensory neuroscience. We propose the use of graph neural networks for QSOR, and show they significantly out-perform prior methods on a novel data set labeled by olfactory experts. Additional analysis shows that the learned embeddings from graph neural networks capture a meaningful odor space representation of the underlying relationship between structure and odor, as demonstrated by strong performance on two challenging transfer learning tasks. Machine learning has already had a large impact on the senses of sight and sound. Based on these early results with graph neural networks for molecular properties, we hope machine learning can eventually do for olfaction what it has already done for vision and hearing.
This article explores the required amount of time series points from a high-speed traffic network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series, followed by addressing the minimum amount of points required to obtain accurate estimates of the Hurst exponent in real-time. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behavior, standard deviation, mean square error, and convergence using fractional gaussian noise signals with stationary increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed network based on the IEEE 802.3ab standard.
The ability to identify time periods when individuals are most susceptible to exposures, as well as the biological mechanisms through which these exposures act, is of great public health interest. Growing evidence supports an association between prenatal exposure to air pollution and epigenetic marks, such as DNA methylation, but the timing and gene-specific effects of these epigenetic changes are not well understood. Here, we present the first study that aims to identify prenatal windows of susceptibility to air pollution exposures in cord blood DNA methylation. In particular, we propose a function-on-function regression model that leverages data from nearby DNA methylation probes to identify epigenetic regions that exhibit windows of susceptibility to ambient particulate matter less than 2.5 microns (PM$_{2.5}$). By incorporating the covariance structure among both the multivariate DNA methylation outcome and the time-varying exposure under study, this framework yields greater power to detect windows of susceptibility and greater control of false discoveries than methods that model probes independently. We compare our method to a distributed lag model approach that models DNA methylation in a probe-by-probe manner, both in simulation and by application to motivating data from the Project Viva birth cohort. In two epigenetic regions selected based on prior studies of air pollution effects on epigenome-wide methylation, we identify windows of susceptibility to PM$_{2.5}$ exposure near the beginning and middle of the third trimester of pregnancy.
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) is a momentum version of stochastic gradient descent with properly injected Gaussian noise to find a global minimum. In this paper, non-asymptotic convergence analysis of SGHMC is given in the context of non-convex optimization, where subsampling techniques are used over an i.i.d dataset for gradient updates. Our results complement those of [RRT17] and improve on those of [GGZ18].
In this paper we present a method to concatenate patent claims to their own description. By applying this method, BERT trains suitable descriptions for claims. Such a trained BERT (claim-to-description- BERT) could be able to identify novelty relevant descriptions for patents. In addition, we introduce a new scoring scheme, relevance scoring or novelty scoring, to process the output of BERT in a meaningful way. We tested the method on patent applications by training BERT on the first claims of patents and corresponding descriptions. BERT's output has been processed according to the relevance score and the results compared with the cited X documents in the search reports. The test showed that BERT has scored some of the cited X documents as highly relevant.
Determining the relationship between the electrical resistivity of soil and its geotechnical properties is an important engineering problem. This study aims to develop methodology for finding the best model that can be used to predict the electrical resistivity of soil, based on knowing its geotechnical properties. The research develops several linear models, three non-linear models, and three artificial neural network models (ANN). These models are applied to the experimental data set comprises 864 observations and five variables. The results show that there are significant exponential negative relationships between the electrical resistivity of soil and its geotechnical properties. The most accurate prediction values are obtained using the ANN model. The cross-validation analysis confirms the high precision of the selected predictive model. This research is the first rigorous systematic analysis and comparison of difference methodologies in ground electrical resistivity studies. It provides practical guidelines and examples of design, development and testing non-linear relationships in engineering intelligent systems and applications.
We consider the problem of extracting a common structure from multiple tensor datasets. For this purpose, we propose multilinear common component analysis (MCCA) based on Kronecker products of mode-wise covariance matrices. MCCA constructs a common basis represented by linear combinations of the original variables which loses as little information of the multiple tensor datasets. We also develop an estimation algorithm for MCCA that guarantees mode-wise global convergence. Numerical studies are conducted to show the effectiveness of MCCA.
EventDetectR: An efficient Event Detection System (EDS) capable of detecting unexpected water quality conditions. This approach uses multiple algorithms to model the relationship between various multivariate water quality signals. Then the residuals of the models were utilized in constructing the event detection algorithm, which provides a continuous measure of the probability of an event at every time step. The proposed framework was tested for water contamination events with industrial data from automated water quality sensors. The results showed that the framework is reliable with better performance and is highly suitable for event detection.
In search for the possible astrophysical sources behind origination of the diverse gamma-ray bursts, cluster analyses are performed to find homogeneous groups, which discover an intermediate group other than the conventional short and long bursts. However, very recently, few studies indicate a possibility of the existence of more than three (namely five) groups. Therefore, in this paper, fuzzy clustering is conducted on the gamma-ray bursts from the final 'Burst and Transient Source Experiment' catalog to cross-check the significance of these new groups. Meticulous study on individual bursts based on their memberships in the fuzzy clusters confirms the previously well-known three groups against the newly found five.
In this paper, a regression algorithm based on Green's function theory is proposed and implemented. We first survey Green's function for the Dirichlet boundary value problem of 2nd order linear ordinary differential equation, which is a reproducing kernel of a suitable Hilbert space. We next consider a covariance matrix composed of the normalized Green's function, which is regarded as aprobability density function. By supporting Bayesian approach, the covariance matrix gives predictive distribution, which has the predictive mean $\mu$ and the confidence interval [$\mu$-2s, $\mu$+2s], where s stands for a standard deviation.
Given a set $\mathcal{C}=\{C_i\}_{i=1}^m$ of square matrices, the matrix blind joint block diagonalization problem (BJBDP) is to find a full column rank matrix $A$ such that $C_i=A\Sigma_iA^\text{T}$ for all $i$, where $\Sigma_i$'s are all block diagonal matrices with as many diagonal blocks as possible. The BJBDP plays an important role in independent subspace analysis (ISA). This paper considers the identification problem for BJBDP, that is, under what conditions and by what means, we can identify the diagonalizer $A$ and the block diagonal structure of $\Sigma_i$, especially when there is noise in $C_i$'s. In this paper, we propose a ``bi-block diagonalization'' method to solve BJBDP, and establish sufficient conditions under which the method is able to accomplish the task. Numerical simulations validate our theoretical results. To the best of the authors' knowledge, existing numerical methods for BJBDP have no theoretical guarantees for the identification of the exact solution, whereas our method does.
We derived a geometric goodness-of-fit index, similar to $R^2$ using topological data analysis techniques. We build the Vietoris-Rips complex from the data-cloud projected onto each variable. Estimating the area of the complex and their domain, we create an index that measures the emptiness of the space with respect to the data. We made the analysis with an own package called TopSA (Topological Sensitivy Analysis).
We outline a perspective of an entirely new research branch in Earth and climate sciences, where deep neural networks and Earth system models are dismantled as individual methodological approaches and reassembled as learning, self-validating, and interpretable Earth system model-network hybrids. Following this path, we coin the term "Neural Earth System Modelling" (NESYM) and highlight the necessity of a transdisciplinary discussion platform, bringing together Earth and climate scientists, big data analysts, and AI experts. We examine the concurrent potential and pitfalls of Neural Earth System Modelling and discuss the open question whether artificial intelligence will not only infuse Earth system modelling, but ultimately render them obsolete.
Given samples $x_1,\cdots,x_n$, it is well known that any sample median value (not necessarily unique) minimizes the absolute loss $\sum_{i=1}^n |q-x_i|$. Interestingly, we show that the minimizer of the loss $\sum_{i=1}^n|q-x_i|^{1+\epsilon}$ exhibits a singular perturbation behaviour that provides a unique definition for the sample median as $\epsilon \rightarrow 0$. This definition is the unique point among all candidate median values that balances the $logarithmic$ moment of the empirical distribution. The result generalizes directly to breaking ties among sample quantiles when the quantile regression loss is modified in the same way.
Parks are increasingly understood to be key community resources for public health, particularly for ethnic minority and low socioeconomic groups. At the same time, research suggests parks are underutilised by these groups. In order to design effective interventions to promote health, the determinants of park use for these groups must be understood. This study examines the associations between park features, park satisfaction and park use in a deprived and ethnically diverse sample in Bradford, UK. 652 women from the Born in Bradford cohort completed a survey on park satisfaction and park use. Using a standardised direct observation tool, 44 parks in the area were audited for present park features. Features assessed were: access, recreational facilities, amenities, natural features, significant natural features, non-natural features, incivilities and usability. Size and proximity to the park were also calculated. Multilevel linear regressions were performed to understand associations between park features and (1) park satisfaction and (2) park use. Interactions between park features, ethnicity and socioeconomic status were explored, and park satisfaction was tested as a mediator in the relationship between park features and park use. More amenities and greater usability were associated with increased park satisfaction, while more incivilities were negatively related to park satisfaction. Incivilities, access and proximity were also negatively associated with park use. Ethnicity and socioeconomic status had no moderating role, and there was no evidence for park satisfaction as a mediator between park features and park use. Results suggest diverse park features are associated with park satisfaction and park use, but this did not vary by ethnicity or socioeconomic status. The reduction of incivilities should be prioritised where the aim is to encourage park satisfaction and park use.
The Ensemble Kalman Filter (EnKF) has achieved great successes in data assimilation in atmospheric and oceanic sciences, but its failure in convergence to the right filtering distribution precludes its use for uncertainty quantification. We reformulate the EnKF under the framework of Langevin dynamics, which leads to a new particle filtering algorithm, the so-called Langevinized EnKF. The Langevinized EnKF inherits the forecast-analysis procedure from the EnKF and the use of mini-batch data from the stochastic gradient Langevin-type algorithms, which make it scalable with respect to both the dimension and sample size. We prove that the Langevinized EnKF converges to the right filtering distribution in Wasserstein distance under the big data scenario that the dynamic system consists of a large number of stages and has a large number of samples observed at each stage. We reformulate the Bayesian inverse problem as a dynamic state estimation problem based on the techniques of subsampling and Langevin diffusion process. We illustrate the performance of the Langevinized EnKF using a variety of examples, including the Lorenz-96 model, high-dimensional variable selection, Bayesian deep learning, and Long Short Term Memory (LSTM) network learning with dynamic data.
Ethane is the most abundant non-methane hydrocarbon in the Earth's atmosphere and an important precursor of tropospheric ozone through various chemical pathways. Ethane is also an indirect greenhouse gas (global warming potential), influencing the atmospheric lifetime of methane through the consumption of the hydroxyl radical (OH). Understanding the development of trends and identifying trend reversals in atmospheric ethane is therefore crucial. Our dataset consists of four series of daily ethane columns obtained from ground-based FTIR measurements. As many other decadal time series, our data are characterized by autocorrelation, heteroskedasticity, and seasonal effects. Additionally, missing observations due to instrument failure or unfavorable measurement conditions are common in such series. The goal of this paper is therefore to analyze trends in atmospheric ethane with statistical tools that correctly address these data features. We present selected methods designed for the analysis of time trends and trend reversals. We consider bootstrap inference on broken linear trends and smoothly varying nonlinear trends. In particular, for the broken trend model, we propose a bootstrap method for inference on the break location and the corresponding changes in slope. For the smooth trend model we construct simultaneous confidence bands around the nonparametrically estimated trend. Our autoregressive wild bootstrap approach, combined with a seasonal filter, is able to handle all issues mentioned above.
The Eigenvector Method for Umbrella Sampling (EMUS) belongs to a popular class of methods in statistical mechanics which adapt the principle of stratified survey sampling to the computation of free energies. We develop a detailed theoretical analysis of EMUS. Based on this analysis, we show that EMUS is an efficient general method for computing averages over arbitrary target distributions. In particular, we show that EMUS can be dramatically more efficient than direct MCMC when the target distribution is multimodal or when the goal is to compute tail probabilities. To illustrate these theoretical results, we present a tutorial application of the method to a problem from Bayesian statistics.
This study presents a simulation study to compare different non-parametric global envelopes that are refinements of the rank envelope proposed by Myllym\"aki et al. (2017, Global envelope tests for spatial processes, J. R. Statist. Soc. B 79, 381-404, doi: 10.1111/rssb.12172). The global envelopes are constructed for a set of functions or vectors. For a large number of vectors, all the refinements lead to the same outcome as the global rank envelope. For smaller numbers of vectors the refinement playes a role, where different refinements are sensitive to different types of extremeness of a vector among the set of vectors. The performance of the different alternatives are compared in a simulation study with respect to the numbers of available vectors, the dimensionality of the vectors, the amount of dependence between the vector elements and the expected type of extremeness.
Diagnostic classification models (DCMs) are psychometric models for evaluating a student's mastery of the essential skills in a content domain based upon their responses to a set of test items. Currently, diagnostic model and/or Q-matrix misspecification is a known problem with limited avenues for remediation. To address this problem, this paper defines a one-sided score statistic that is a computationally efficient method for detecting under-specification of both the Q-matrix and the model parameters of the particular DCM chosen in the analysis. This method is analogous to the modification indices widely used in structural equation modeling. The results of a simulation study show the Type I error rate of modification indices for DCMs are acceptably close to the nominal significance level when the appropriate mixture chi-squared reference distribution is used. The simulation results indicate that modification indices are very powerful in the detection of an under-specified Q-matrix and have ample power to detect the omission of model parameters in large samples or when the items are highly discriminating. An application of modification indices for DCMs to analysis of response data from a large-scale administration of a diagnostic test demonstrates how they can be useful in diagnostic model refinement.
We review some developments on clustering stochastic processes and come with the conclusion that asymptotically consistent clustering algorithms can be obtained when the processes are ergodic and the dissimilarity measure satisfies the triangle inequality. Examples are provided when the processes are distribution ergodic, covariance ergodic and locally asymptotically self-similar, respectively.
In diverse biological applications, particle tracking of passive microscopic species has become the experimental measurement of choice -- when either the materials are of limited volume, or so soft as to deform uncontrollably when manipulated by traditional instruments. In a wide range of particle tracking experiments, a ubiquitous finding is that the mean squared displacement (MSD) of particle positions exhibits a power-law signature, the parameters of which reveal valuable information about the viscous and elastic properties of various biomaterials. However, MSD measurements are typically contaminated by complex and interacting sources of instrumental noise. As these often affect the high-frequency bandwidth to which MSD estimates are particularly sensitive, inadequate error correction can lead to severe bias in power law estimation and thereby, the inferred viscoelastic properties. In this article, we propose a novel strategy to filter high-frequency noise from particle tracking measurements. Our filters are shown theoretically to cover a broad spectrum of high-frequency noises, and lead to a parametric estimator of MSD power-law coefficients for which an efficient computational implementation is presented. Based on numerous analyses of experimental and simulated data, results suggest our methods perform very well compared to other denoising procedures.
Medication adherence is a problem of widespread concern in clinical care. Poor adherence is a particular problem for patients with chronic diseases requiring long-term medication because poor adherence can result in less successful treatment outcomes and even preventable deaths. Existing methods to collect information about patient adherence are resource-intensive or do not successfully detect low-adherers with high accuracy. Acknowledging that health measures recorded at clinic visits are more reliably recorded than a patient's adherence, we have developed an approach to infer medication adherence rates based on longitudinally recorded health measures that are likely impacted by time-varying adherence behaviors. Our framework permits the inclusion of baseline health characteristics and socio-demographic data. We employ a modular inferential approach. First, we fit a two-component model on a training set of patients who have detailed adherence data obtained from electronic medication monitoring. One model component predicts adherence behaviors only from baseline health and socio-demographic information, and the other predicts longitudinal health measures given the adherence and baseline health measures. Posterior draws of relevant model parameters are simulated from this model using Markov chain Monte Carlo methods. Second, we develop an approach to infer medication adherence from the time-varying health measures using a Sequential Monte Carlo algorithm applied to a new set of patients for whom no adherence data are available. We apply and evaluate the method on a cohort of hypertensive patients, using baseline health comorbidities, socio-demographic measures, and blood pressure measured over time to infer patients' adherence to antihypertensive medication.
Couplings play a central role in contemporary Markov chain Monte Carlo methods and in the analysis of their convergence to stationarity. In most cases, a coupling must induce relatively fast meeting between chains to ensure good performance. In this paper we fix attention on the random walk Metropolis algorithm and examine a range of coupling design choices. We introduce proposal and acceptance step couplings based on geometric, optimal transport, and maximality considerations. We consider the theoretical properties of these choices and examine their implication for the meeting time of the chains. We conclude by extracting a few general principles and hypotheses on the design of effective couplings.
In this paper, we develop a method for estimating and clustering two-dimensional spectral density functions (2D-SDFs) for spatial data from multiple subregions. We use a common set of adaptive basis functions to explain the similarities among the 2D-SDFs in a low-dimensional space and estimate the basis coefficients by maximizing the Whittle likelihood with two penalties. We apply these penalties to impose the smoothness of the estimated 2D-SDFs and the spatial dependence of the spatially-correlated subregions. The proposed technique provides a score matrix, that is comprised of the estimated coefficients associated with the common set of basis functions representing the 2D-SDFs. {Instead of clustering the estimated SDFs directly, we propose to employ the score matrix for clustering purposes, taking advantage of its low-dimensional property.} In a simulation study, we demonstrate that our proposed method outperforms other competing estimation procedures used for clustering. Finally, to validate the described clustering method, we apply the procedure to soil moisture data from the Mississippi basin to produce homogeneous spatial clusters. We produce animations to dynamically show the estimation procedure, including the estimated 2D-SDFs and the score matrix, which provide an intuitive illustration of the proposed method.
In this paper, we propose a novel asymmetric $\epsilon$-insensitive pinball loss function for quantile estimation. There exists some pinball loss functions which attempt to incorporate the $\epsilon$-insensitive zone approach in it but, they fail to extend the $\epsilon$-insensitive approach for quantile estimation in true sense. The proposed asymmetric $\epsilon$-insensitive pinball loss function can make an asymmetric $\epsilon$- insensitive zone of fixed width around the data and divide it using $\tau$ value for the estimation of the $\tau$th quantile. The use of the proposed asymmetric $\epsilon$-insensitive pinball loss function in Support Vector Quantile Regression (SVQR) model improves its prediction ability significantly. It also brings the sparsity back in SVQR model. Further, the numerical results obtained by several experiments carried on artificial and real world datasets empirically show the efficacy of the proposed `$\epsilon$-Support Vector Quantile Regression' ($\epsilon$-SVQR) model over other existing SVQR models.
Glioblastoma multiforme (GBM) is an aggressive form of human brain cancer that is under active study in the field of cancer biology. Its rapid progression and the relative time cost of obtaining molecular data make other readily-available forms of data, such as images, an important resource for actionable measures in patients. Our goal is to utilize information given by medical images taken from GBM patients in statistical settings. To do this, we design a novel statistic---the smooth Euler characteristic transform (SECT)---that quantifies magnetic resonance images (MRIs) of tumors. Due to its well-defined inner product structure, the SECT can be used in a wider range of functional and nonparametric modeling approaches than other previously proposed topological summary statistics. When applied to a cohort of GBM patients, we find that the SECT is a better predictor of clinical outcomes than both existing tumor shape quantifications and common molecular assays. Specifically, we demonstrate that SECT features alone explain more of the variance in GBM patient survival than gene expression, volumetric features, and morphometric features. The main takeaways from our findings are thus twofold. First, they suggest that images contain valuable information that can play an important role in clinical prognosis and other medical decisions. Second, they show that the SECT is a viable tool for the broader study of medical imaging informatics.
This paper extends Bayesian mortality projection models for multiple populations considering the stochastic structure and the effect of spatial autocorrelation among the observations. We explain high levels of overdispersion according to adjacent locations based on the conditional autoregressive model. In an empirical study, we compare different hierarchical projection models for the analysis of geographical diversity in mortality between the Japanese counties in multiple years, according to age. By a Markov chain Monte Carlo (MCMC) computation, results have demonstrated the flexibility and predictive performance of our proposed model.
We propose a copula-based measure of asymmetry between the lower and upper tail probabilities of bivariate distributions. The proposed measure has a simple form and possesses some desirable properties as a measure of asymmetry. The limit of the proposed measure as the index goes to the boundary of its domain can be expressed in a simple form under certain conditions on copulas. A sample analogue of the proposed measure for a sample from a copula is presented and its weak convergence to a Gaussian process is shown. Another sample analogue of the presented measure, which is based on a sample from a distribution on $\mathbb{R}^2$, is given. Simple methods for interval estimation and nonparametric testing based on the two sample analogues are presented. As an example, the presented measure is applied to daily returns of S&P500 and Nikkei225.
Accurately predicting patients' risk of 30-day hospital readmission would enable hospitals to efficiently allocate resource-intensive interventions. We develop a new method, Categorical Co-Frequency Analysis (CoFA), for clustering diagnosis codes from the International Classification of Diseases (ICD) according to the similarity in relationships between covariates and readmission risk. CoFA measures the similarity between diagnoses by the frequency with which two diagnoses are split in the same direction versus split apart in random forests to predict readmission risk. Applying CoFA to de-identified data from Berkshire Medical Center, we identified three groups of diagnoses that vary in readmission risk. To evaluate CoFA, we compared readmission risk models using ICD majors and CoFA groups to a baseline model without diagnosis variables. We found substituting ICD majors for the CoFA-identified clusters simplified the model without compromising the accuracy of predictions. Fitting separate models for each ICD major and CoFA group did not improve predictions, suggesting that readmission risk may be more homogeneous that heterogeneous across diagnosis groups.
We consider the quasi-stationary distribution of the classical Shiryaev diffusion restricted to the interval $[0,A]$ with absorption at a fixed $A>0$. We derive analytically a closed-form formula for the distribution's fractional moment of an {\em arbitrary} given order $s\in\mathbb{R}$; the formula is consistent with that previously found by Polunchenko and Pepelyshev (2018) for the case of $s\in\mathbb{N}$. We also show by virtue of the formula that, if $s<1$, then the $s$-th fractional moment of the quasi-stationary distribution becomes that of the exponential distribution (with mean $1/2$) in the limit as $A\to+\infty$; the limiting exponential distribution is the stationary distribution of the reciprocal of the Shiryaev diffusion.
DNA segments and sequences have been studied thoroughly during the past decades. One of the main problems in computational biology is the identification of exon-intron structures inside genes using mathematical techniques. Previous studies have used different methods, such as Fourier analysis and hidden-Markov models, in order to be able to predict which parts of a gene correspond to a protein encoding area. In this paper, a semi-Markov model is applied to 3-base periodic sequences, which characterize the protein-coding regions of the gene. Analytic forms of the related probabilities and the corresponding indexes are provided, which yield a description of the underlying periodic pattern. Last, the previous theoretical results are illustrated with DNA sequences of synthetic and real data.
Quantitative characterization of disease progression using longitudinal data can provide long-term predictions for the pathological stages of individuals. This work studies the robust modeling of Alzheimer's disease progression using parametric methods. The proposed method linearly maps the individual's age to a disease progression score (DPS) and jointly fits constrained generalized logistic functions to the longitudinal dynamics of biomarkers as functions of the DPS using M-estimation. Robustness of the estimates is quantified using bootstrapping via Monte Carlo resampling, and the estimated inflection points of the fitted functions are used to temporally order the modeled biomarkers in the disease course. Kernel density estimation is applied to the obtained DPSs for clinical status classification using a Bayesian classifier. Different M-estimators and logistic functions, including a novel type proposed in this study, called modified Stannard, are evaluated on the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) for robust modeling of volumetric MRI and PET biomarkers, CSF measurements, as well as cognitive tests. The results show that the modified Stannard function fitted using the logistic loss achieves the best modeling performance with an average normalized MAE of 0.991 across all biomarkers and bootstraps. Applied to the ADNI test set, this model achieves a multiclass AUC of 0.934 in clinical status classification. The obtained results for the proposed model outperform almost all state-of-the-art results in predicting biomarker values and classifying clinical status. Finally, the experiments show that the proposed model, trained using abundant ADNI data, generalizes well to data from the National Alzheimer's Coordinating Center (NACC) with an average normalized MAE of 1.182 and a multiclass AUC of 0.929.
Governments issue "stay at home" orders to reduce the spread of contagious diseases, but the magnitude of such orders' effectiveness is uncertain. In the United States these orders were not coordinated at the national level during the coronavirus disease 2019 (COVID-19) pandemic, which creates an opportunity to use spatial and temporal variation to measure the policies' effect with greater accuracy. Here, we combine data on the timing of stay-at-home orders with daily confirmed COVID-19 cases and fatalities at the county level in the United States. We estimate the effect of stay-at-home orders using a difference-in-differences design that accounts for unmeasured local variation in factors like health systems and demographics and for unmeasured temporal variation in factors like national mitigation actions and access to tests. Compared to counties that did not implement stay-at-home orders, the results show that the orders are associated with a 30.2 percent (11.0 to 45.2) reduction in weekly cases after one week, a 40.0 percent (23.4 to 53.0) reduction after two weeks, and a 48.6 percent (31.1 to 61.7) reduction after three weeks. Stay-at-home orders are also associated with a 59.8 percent (18.3 to 80.2) reduction in weekly fatalities after three weeks. These results suggest that stay-at-home orders reduced confirmed cases by 390,000 (170,000 to 680,000) and fatalities by 41,000 (27,000 to 59,000) within the first three weeks in localities where they were implemented.