Update README.md
Browse files
README.md
CHANGED
|
@@ -1,28 +1,69 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
dtype: string
|
| 12 |
-
- name: Nn
|
| 13 |
-
dtype: string
|
| 14 |
-
- name: Hy
|
| 15 |
-
dtype: string
|
| 16 |
-
splits:
|
| 17 |
-
- name: train
|
| 18 |
-
num_bytes: 28298734
|
| 19 |
-
num_examples: 300132
|
| 20 |
-
- name: test
|
| 21 |
-
num_bytes: 950124
|
| 22 |
-
num_examples: 10080
|
| 23 |
-
download_size: 4739984
|
| 24 |
-
dataset_size: 29248858
|
| 25 |
---
|
| 26 |
-
# Dataset Card for "PLANE-ood"
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: cc-by-2.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- text-classification
|
| 5 |
+
task_ids:
|
| 6 |
+
- natural-language-inference
|
| 7 |
+
language:
|
| 8 |
+
- en
|
| 9 |
+
size_categories:
|
| 10 |
+
- 100K<n<1M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
|
|
|
| 12 |
|
| 13 |
+
Preprocessed from https://huggingface.co/datasets/lorenzoscottb/PLANE-ood/
|
| 14 |
+
|
| 15 |
+
```python
|
| 16 |
+
df=pd.read_json('https://huggingface.co/datasets/lorenzoscottb/PLANE-ood/resolve/main/PLANE_trntst-OoV_inftype-all.json')
|
| 17 |
+
f = lambda df: pd.DataFrame(list(zip(*[df[c] for c in df.index])),columns=df.index)
|
| 18 |
+
ds=DatasetDict()
|
| 19 |
+
for split in ['train','test']:
|
| 20 |
+
dfs=pd.concat([f(df[c]) for c in df.columns if split in c.lower()]).reset_index(drop=True)
|
| 21 |
+
dfs['label']=dfs['label'].map(lambda x:{1:'entailment',0:'not-entailment'}[x])
|
| 22 |
+
ds[split]=Dataset.from_pandas(dfs,preserve_index=False)
|
| 23 |
+
ds.push_to_hub('tasksource/PLANE-ood')
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# PLANE Out-of-Distribution Sets
|
| 28 |
+
|
| 29 |
+
PLANE (phrase-level adjective-noun entailment) is a benchmark to test models on fine-grained compositional inference.
|
| 30 |
+
The current dataset contains five sampled splits, used in the supervised experiments of [Bertolini et al., 22](https://aclanthology.org/2022.coling-1.359/).
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
### Features
|
| 34 |
+
|
| 35 |
+
Each entrance has 6 features: `seq, label, Adj_Class, Adj, Nn, Hy`
|
| 36 |
+
- `seq`:test sequense
|
| 37 |
+
- `label`: ground truth (1:entialment, 0:no-entailment)
|
| 38 |
+
- `Adj_Class`: the class of the sequence adjectives
|
| 39 |
+
- `Adj`: the adjective of the sequence (I: intersective, S: subsective, O: intensional)
|
| 40 |
+
- `N`n: the noun
|
| 41 |
+
- `Hy`: the noun's hypericum
|
| 42 |
+
|
| 43 |
+
Each sample in `seq` can take one of three forms (or inference types, in paper):
|
| 44 |
+
|
| 45 |
+
- An *Adjective-Noun* is a *Noun* (e.g. A red car is a car)
|
| 46 |
+
- An *Adjective-Noun* is a *Hypernym(Noun)* (e.g. A red car is a vehicle)
|
| 47 |
+
- An *Adjective-Noun* is a *Adjective-Hypernym(Noun)* (e.g. A red car is a red vehicle)
|
| 48 |
+
|
| 49 |
+
Please note that, as specified in the paper, the ground truth is automatically assigned based on the linguistic rule that governs the interaction between each adjective class and inference type – see the paper for more detail.
|
| 50 |
+
|
| 51 |
+
### Cite
|
| 52 |
+
|
| 53 |
+
If you use PLANE for your work, please cite the main COLING 2022 paper.
|
| 54 |
+
```
|
| 55 |
+
@inproceedings{bertolini-etal-2022-testing,
|
| 56 |
+
title = "Testing Large Language Models on Compositionality and Inference with Phrase-Level Adjective-Noun Entailment",
|
| 57 |
+
author = "Bertolini, Lorenzo and
|
| 58 |
+
Weeds, Julie and
|
| 59 |
+
Weir, David",
|
| 60 |
+
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
|
| 61 |
+
month = oct,
|
| 62 |
+
year = "2022",
|
| 63 |
+
address = "Gyeongju, Republic of Korea",
|
| 64 |
+
publisher = "International Committee on Computational Linguistics",
|
| 65 |
+
url = "https://aclanthology.org/2022.coling-1.359",
|
| 66 |
+
pages = "4084--4100",
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
```
|