sileod commited on
Commit
1706e81
·
1 Parent(s): 5ba6079

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -25
README.md CHANGED
@@ -1,28 +1,69 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: seq
5
- dtype: string
6
- - name: label
7
- dtype: string
8
- - name: Adj_Class
9
- dtype: string
10
- - name: Adj
11
- dtype: string
12
- - name: Nn
13
- dtype: string
14
- - name: Hy
15
- dtype: string
16
- splits:
17
- - name: train
18
- num_bytes: 28298734
19
- num_examples: 300132
20
- - name: test
21
- num_bytes: 950124
22
- num_examples: 10080
23
- download_size: 4739984
24
- dataset_size: 29248858
25
  ---
26
- # Dataset Card for "PLANE-ood"
27
 
28
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-2.0
3
+ task_categories:
4
+ - text-classification
5
+ task_ids:
6
+ - natural-language-inference
7
+ language:
8
+ - en
9
+ size_categories:
10
+ - 100K<n<1M
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
 
12
 
13
+ Preprocessed from https://huggingface.co/datasets/lorenzoscottb/PLANE-ood/
14
+
15
+ ```python
16
+ df=pd.read_json('https://huggingface.co/datasets/lorenzoscottb/PLANE-ood/resolve/main/PLANE_trntst-OoV_inftype-all.json')
17
+ f = lambda df: pd.DataFrame(list(zip(*[df[c] for c in df.index])),columns=df.index)
18
+ ds=DatasetDict()
19
+ for split in ['train','test']:
20
+ dfs=pd.concat([f(df[c]) for c in df.columns if split in c.lower()]).reset_index(drop=True)
21
+ dfs['label']=dfs['label'].map(lambda x:{1:'entailment',0:'not-entailment'}[x])
22
+ ds[split]=Dataset.from_pandas(dfs,preserve_index=False)
23
+ ds.push_to_hub('tasksource/PLANE-ood')
24
+ ```
25
+
26
+
27
+ # PLANE Out-of-Distribution Sets
28
+
29
+ PLANE (phrase-level adjective-noun entailment) is a benchmark to test models on fine-grained compositional inference.
30
+ The current dataset contains five sampled splits, used in the supervised experiments of [Bertolini et al., 22](https://aclanthology.org/2022.coling-1.359/).
31
+
32
+
33
+ ### Features
34
+
35
+ Each entrance has 6 features: `seq, label, Adj_Class, Adj, Nn, Hy`
36
+ - `seq`:test sequense
37
+ - `label`: ground truth (1:entialment, 0:no-entailment)
38
+ - `Adj_Class`: the class of the sequence adjectives
39
+ - `Adj`: the adjective of the sequence (I: intersective, S: subsective, O: intensional)
40
+ - `N`n: the noun
41
+ - `Hy`: the noun's hypericum
42
+
43
+ Each sample in `seq` can take one of three forms (or inference types, in paper):
44
+
45
+ - An *Adjective-Noun* is a *Noun* (e.g. A red car is a car)
46
+ - An *Adjective-Noun* is a *Hypernym(Noun)* (e.g. A red car is a vehicle)
47
+ - An *Adjective-Noun* is a *Adjective-Hypernym(Noun)* (e.g. A red car is a red vehicle)
48
+
49
+ Please note that, as specified in the paper, the ground truth is automatically assigned based on the linguistic rule that governs the interaction between each adjective class and inference type – see the paper for more detail.
50
+
51
+ ### Cite
52
+
53
+ If you use PLANE for your work, please cite the main COLING 2022 paper.
54
+ ```
55
+ @inproceedings{bertolini-etal-2022-testing,
56
+ title = "Testing Large Language Models on Compositionality and Inference with Phrase-Level Adjective-Noun Entailment",
57
+ author = "Bertolini, Lorenzo and
58
+ Weeds, Julie and
59
+ Weir, David",
60
+ booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
61
+ month = oct,
62
+ year = "2022",
63
+ address = "Gyeongju, Republic of Korea",
64
+ publisher = "International Committee on Computational Linguistics",
65
+ url = "https://aclanthology.org/2022.coling-1.359",
66
+ pages = "4084--4100",
67
+ }
68
+
69
+ ```