Commit
·
95f8934
1
Parent(s):
ea0d2ce
Add LightOnOCR fine-tuning script for OCR datasets
Browse files- lightonocr-finetune.py +829 -0
lightonocr-finetune.py
ADDED
|
@@ -0,0 +1,829 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "torch>=2.0.0",
|
| 5 |
+
# "datasets>=2.14.0",
|
| 6 |
+
# "accelerate>=0.24.0",
|
| 7 |
+
# "huggingface-hub",
|
| 8 |
+
# "pillow>=12.0.0",
|
| 9 |
+
# "jiwer>=3.0.0",
|
| 10 |
+
# "tqdm>=4.65.0",
|
| 11 |
+
# "transformers @ git+https://github.com/baptiste-aubertin/transformers.git@main",
|
| 12 |
+
# ]
|
| 13 |
+
# ///
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Fine-tune LightOnOCR on OCR datasets.
|
| 17 |
+
|
| 18 |
+
LightOnOCR is an end-to-end trainable vision-language model specifically designed for OCR tasks.
|
| 19 |
+
This script enables fine-tuning on custom datasets for improved performance on specific domains,
|
| 20 |
+
languages, or document types.
|
| 21 |
+
|
| 22 |
+
Examples:
|
| 23 |
+
# Basic fine-tuning on IAM handwriting dataset
|
| 24 |
+
uv run lightonocr-finetune.py \
|
| 25 |
+
--dataset-id HuggingFaceM4/FineVision \
|
| 26 |
+
--subset iam \
|
| 27 |
+
--output-dir ./lightonocr-iam \
|
| 28 |
+
--epochs 2
|
| 29 |
+
|
| 30 |
+
# Fine-tune with frozen language model to save memory
|
| 31 |
+
uv run lightonocr-finetune.py \
|
| 32 |
+
--dataset-id HuggingFaceM4/FineVision \
|
| 33 |
+
--subset olmOCR-mix-0225-documents \
|
| 34 |
+
--output-dir ./lightonocr-docs \
|
| 35 |
+
--freeze-language \
|
| 36 |
+
--batch-size 8
|
| 37 |
+
|
| 38 |
+
# Push to Hub with evaluation metrics
|
| 39 |
+
uv run lightonocr-finetune.py \
|
| 40 |
+
--dataset-id HuggingFaceM4/FineVision \
|
| 41 |
+
--subset iam \
|
| 42 |
+
--hub-model-id username/lightonocr-iam \
|
| 43 |
+
--push-to-hub \
|
| 44 |
+
--eval-samples 100
|
| 45 |
+
|
| 46 |
+
# Run on HF Jobs with GPU
|
| 47 |
+
hf jobs run --gpu l4x1 \
|
| 48 |
+
uv run lightonocr-finetune.py \
|
| 49 |
+
--dataset-id custom/ocr-dataset \
|
| 50 |
+
--output-dir ./custom-ocr \
|
| 51 |
+
--epochs 3
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
import argparse
|
| 55 |
+
import json
|
| 56 |
+
import logging
|
| 57 |
+
import os
|
| 58 |
+
import sys
|
| 59 |
+
from datetime import datetime
|
| 60 |
+
from pathlib import Path
|
| 61 |
+
from typing import Dict, List, Optional, Tuple
|
| 62 |
+
|
| 63 |
+
import torch
|
| 64 |
+
from datasets import load_dataset, DatasetDict
|
| 65 |
+
from huggingface_hub import HfApi, login
|
| 66 |
+
from jiwer import cer, wer
|
| 67 |
+
from PIL import Image
|
| 68 |
+
from tqdm import tqdm
|
| 69 |
+
from transformers import (
|
| 70 |
+
AutoProcessor,
|
| 71 |
+
LightOnOCRForConditionalGeneration,
|
| 72 |
+
Trainer,
|
| 73 |
+
TrainingArguments,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
logging.basicConfig(
|
| 77 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
| 78 |
+
)
|
| 79 |
+
logger = logging.getLogger(__name__)
|
| 80 |
+
|
| 81 |
+
# Constants for the assistant pattern in chat template
|
| 82 |
+
ASSISTANT_START_PATTERN = [151645, 1699, 151644, 77091, 1699]
|
| 83 |
+
DEFAULT_MAX_LENGTH = 1024
|
| 84 |
+
DEFAULT_LONGEST_EDGE = 700
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class OCRDataCollator:
|
| 88 |
+
"""Data collator for OCR fine-tuning."""
|
| 89 |
+
|
| 90 |
+
def __init__(
|
| 91 |
+
self,
|
| 92 |
+
processor,
|
| 93 |
+
max_length=DEFAULT_MAX_LENGTH,
|
| 94 |
+
longest_edge=DEFAULT_LONGEST_EDGE,
|
| 95 |
+
):
|
| 96 |
+
self.processor = processor
|
| 97 |
+
self.max_length = max_length
|
| 98 |
+
self.longest_edge = longest_edge
|
| 99 |
+
|
| 100 |
+
def __call__(self, examples):
|
| 101 |
+
batch_messages = []
|
| 102 |
+
batch_images = []
|
| 103 |
+
|
| 104 |
+
for example in examples:
|
| 105 |
+
example_images = example["images"]
|
| 106 |
+
example_texts = example["texts"]
|
| 107 |
+
|
| 108 |
+
# Validate single image/text per example
|
| 109 |
+
if len(example_images) != 1 or len(example_texts) != 1:
|
| 110 |
+
logger.warning(
|
| 111 |
+
f"Skipping example with {len(example_images)} images and {len(example_texts)} texts"
|
| 112 |
+
)
|
| 113 |
+
continue
|
| 114 |
+
|
| 115 |
+
image = example_images[0].convert("RGB")
|
| 116 |
+
batch_images.append(image)
|
| 117 |
+
|
| 118 |
+
# Extract assistant text from conversation
|
| 119 |
+
conversation = example_texts[0]
|
| 120 |
+
assistant_text = conversation.get("assistant", "").strip()
|
| 121 |
+
|
| 122 |
+
messages = [
|
| 123 |
+
{"role": "user", "content": [{"type": "image"}]},
|
| 124 |
+
{
|
| 125 |
+
"role": "assistant",
|
| 126 |
+
"content": [{"type": "text", "text": assistant_text}],
|
| 127 |
+
},
|
| 128 |
+
]
|
| 129 |
+
batch_messages.append(messages)
|
| 130 |
+
|
| 131 |
+
if len(batch_images) == 0:
|
| 132 |
+
return None
|
| 133 |
+
|
| 134 |
+
# Apply chat template
|
| 135 |
+
texts = [
|
| 136 |
+
self.processor.apply_chat_template(
|
| 137 |
+
messages, tokenize=False, add_generation_prompt=False
|
| 138 |
+
)
|
| 139 |
+
for messages in batch_messages
|
| 140 |
+
]
|
| 141 |
+
|
| 142 |
+
# Process inputs
|
| 143 |
+
inputs = self.processor(
|
| 144 |
+
text=texts,
|
| 145 |
+
images=batch_images,
|
| 146 |
+
return_tensors="pt",
|
| 147 |
+
padding=True,
|
| 148 |
+
truncation=True,
|
| 149 |
+
max_length=self.max_length,
|
| 150 |
+
size={"longest_edge": self.longest_edge},
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Create labels (mask prompt, train only on assistant response)
|
| 154 |
+
labels = inputs["input_ids"].clone()
|
| 155 |
+
pad_token_id = self.processor.tokenizer.pad_token_id
|
| 156 |
+
|
| 157 |
+
for i in range(len(labels)):
|
| 158 |
+
full_ids = inputs["input_ids"][i].tolist()
|
| 159 |
+
|
| 160 |
+
# Find where assistant content starts
|
| 161 |
+
assistant_content_start = None
|
| 162 |
+
|
| 163 |
+
# Try the standard pattern: <|im_end|>\n<|im_start|>assistant\n
|
| 164 |
+
for idx in range(len(full_ids) - len(ASSISTANT_START_PATTERN)):
|
| 165 |
+
if (
|
| 166 |
+
full_ids[idx : idx + len(ASSISTANT_START_PATTERN)]
|
| 167 |
+
== ASSISTANT_START_PATTERN
|
| 168 |
+
):
|
| 169 |
+
assistant_content_start = idx + len(ASSISTANT_START_PATTERN)
|
| 170 |
+
break
|
| 171 |
+
|
| 172 |
+
if assistant_content_start is None:
|
| 173 |
+
# Some samples may not have the exact pattern - this is expected
|
| 174 |
+
# The model will train on samples where the pattern is found
|
| 175 |
+
labels[i, :] = -100
|
| 176 |
+
else:
|
| 177 |
+
# Mask everything first
|
| 178 |
+
labels[i, :] = -100
|
| 179 |
+
|
| 180 |
+
# Unmask from assistant content start to end
|
| 181 |
+
for idx in range(assistant_content_start, len(full_ids)):
|
| 182 |
+
if full_ids[idx] == pad_token_id:
|
| 183 |
+
break
|
| 184 |
+
labels[i, idx] = inputs["input_ids"][i, idx]
|
| 185 |
+
|
| 186 |
+
# Mask padding tokens
|
| 187 |
+
labels[i, inputs["input_ids"][i] == pad_token_id] = -100
|
| 188 |
+
|
| 189 |
+
inputs["labels"] = labels
|
| 190 |
+
|
| 191 |
+
# Convert to proper dtype
|
| 192 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
|
| 193 |
+
|
| 194 |
+
return inputs
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def evaluate_model(
|
| 198 |
+
model,
|
| 199 |
+
processor,
|
| 200 |
+
dataset,
|
| 201 |
+
num_samples: int = 50,
|
| 202 |
+
batch_size: int = 8,
|
| 203 |
+
device: str = "cuda",
|
| 204 |
+
description: str = "Model",
|
| 205 |
+
) -> Dict[str, float]:
|
| 206 |
+
"""
|
| 207 |
+
Evaluate model on dataset and compute OCR metrics.
|
| 208 |
+
|
| 209 |
+
Returns:
|
| 210 |
+
Dictionary with CER, WER, and perfect match count
|
| 211 |
+
"""
|
| 212 |
+
model.eval()
|
| 213 |
+
predictions = []
|
| 214 |
+
ground_truths = []
|
| 215 |
+
|
| 216 |
+
logger.info(f"Evaluating {description} on {num_samples} samples...")
|
| 217 |
+
|
| 218 |
+
# Process in batches
|
| 219 |
+
for start_idx in tqdm(range(0, min(num_samples, len(dataset)), batch_size)):
|
| 220 |
+
end_idx = min(start_idx + batch_size, num_samples, len(dataset))
|
| 221 |
+
batch_samples = [dataset[i] for i in range(start_idx, end_idx)]
|
| 222 |
+
|
| 223 |
+
batch_images = [[s["images"][0]] for s in batch_samples]
|
| 224 |
+
batch_ground_truths = [
|
| 225 |
+
s["texts"][0]["assistant"].strip() for s in batch_samples
|
| 226 |
+
]
|
| 227 |
+
|
| 228 |
+
# Prepare inputs
|
| 229 |
+
messages = [{"role": "user", "content": [{"type": "image"}]}]
|
| 230 |
+
text = processor.apply_chat_template(
|
| 231 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 232 |
+
)
|
| 233 |
+
texts = [text] * len(batch_images)
|
| 234 |
+
|
| 235 |
+
inputs = processor(
|
| 236 |
+
text=texts,
|
| 237 |
+
images=batch_images,
|
| 238 |
+
return_tensors="pt",
|
| 239 |
+
padding=True,
|
| 240 |
+
truncation=True,
|
| 241 |
+
max_length=DEFAULT_MAX_LENGTH,
|
| 242 |
+
size={"longest_edge": DEFAULT_LONGEST_EDGE},
|
| 243 |
+
).to(device)
|
| 244 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
|
| 245 |
+
|
| 246 |
+
# Generate predictions
|
| 247 |
+
with torch.no_grad():
|
| 248 |
+
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True)
|
| 249 |
+
|
| 250 |
+
input_length = inputs["input_ids"].shape[1]
|
| 251 |
+
generated_ids = outputs[:, input_length:]
|
| 252 |
+
batch_predictions = processor.batch_decode(
|
| 253 |
+
generated_ids, skip_special_tokens=True
|
| 254 |
+
)
|
| 255 |
+
batch_predictions = [p.strip() for p in batch_predictions]
|
| 256 |
+
|
| 257 |
+
predictions.extend(batch_predictions)
|
| 258 |
+
ground_truths.extend(batch_ground_truths)
|
| 259 |
+
|
| 260 |
+
# Compute metrics
|
| 261 |
+
cer_score = cer(ground_truths, predictions) * 100
|
| 262 |
+
wer_score = wer(ground_truths, predictions) * 100
|
| 263 |
+
perfect_matches = sum(
|
| 264 |
+
1 for pred, gt in zip(predictions, ground_truths) if pred == gt
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
logger.info(
|
| 268 |
+
f"CER: {cer_score:.2f}% | WER: {wer_score:.2f}% | Perfect: {perfect_matches}/{num_samples}"
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
# Show a few examples
|
| 272 |
+
for i in range(min(3, len(predictions))):
|
| 273 |
+
match = "✅" if predictions[i] == ground_truths[i] else "❌"
|
| 274 |
+
logger.info(
|
| 275 |
+
f"{match} Sample {i + 1}: '{predictions[i][:50]}...' vs '{ground_truths[i][:50]}...'"
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
return {
|
| 279 |
+
"cer": cer_score,
|
| 280 |
+
"wer": wer_score,
|
| 281 |
+
"perfect_matches": perfect_matches,
|
| 282 |
+
"total_samples": num_samples,
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
def create_model_card_content(
|
| 287 |
+
model_id: str,
|
| 288 |
+
dataset_id: str,
|
| 289 |
+
subset: Optional[str],
|
| 290 |
+
base_metrics: Dict[str, float],
|
| 291 |
+
finetuned_metrics: Dict[str, float],
|
| 292 |
+
training_args: TrainingArguments,
|
| 293 |
+
freeze_config: Dict[str, bool],
|
| 294 |
+
) -> str:
|
| 295 |
+
"""Generate model card content with training details and metrics."""
|
| 296 |
+
|
| 297 |
+
# Calculate improvements
|
| 298 |
+
cer_improvement = base_metrics["cer"] - finetuned_metrics["cer"]
|
| 299 |
+
wer_improvement = base_metrics["wer"] - finetuned_metrics["wer"]
|
| 300 |
+
perfect_improvement = (
|
| 301 |
+
finetuned_metrics["perfect_matches"] - base_metrics["perfect_matches"]
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
# Determine which components were frozen
|
| 305 |
+
frozen_components = [comp for comp, is_frozen in freeze_config.items() if is_frozen]
|
| 306 |
+
frozen_str = (
|
| 307 |
+
", ".join(frozen_components) if frozen_components else "None (full fine-tuning)"
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
dataset_str = f"{dataset_id}/{subset}" if subset else dataset_id
|
| 311 |
+
|
| 312 |
+
content = f"""---
|
| 313 |
+
license: mit
|
| 314 |
+
tags:
|
| 315 |
+
- vision
|
| 316 |
+
- ocr
|
| 317 |
+
- document-understanding
|
| 318 |
+
- transformers
|
| 319 |
+
base_model: lightonai/LightOnOCR-1B-1025
|
| 320 |
+
datasets:
|
| 321 |
+
- {dataset_id}
|
| 322 |
+
metrics:
|
| 323 |
+
- cer
|
| 324 |
+
- wer
|
| 325 |
+
library_name: transformers
|
| 326 |
+
---
|
| 327 |
+
|
| 328 |
+
# {model_id.split("/")[-1]}
|
| 329 |
+
|
| 330 |
+
This model is a fine-tuned version of [LightOnOCR-1B-1025](https://huggingface.co/lightonai/LightOnOCR-1B-1025) on the {dataset_str} dataset.
|
| 331 |
+
|
| 332 |
+
## Model Description
|
| 333 |
+
|
| 334 |
+
LightOnOCR is an end-to-end trainable vision-language model specifically designed for OCR tasks. This fine-tuned version has been optimized for improved performance on the target dataset.
|
| 335 |
+
|
| 336 |
+
## Training Details
|
| 337 |
+
|
| 338 |
+
### Dataset
|
| 339 |
+
- **Source**: {dataset_str}
|
| 340 |
+
- **Training samples**: {training_args.num_train_epochs * (training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps)}
|
| 341 |
+
- **Validation samples**: Used for model selection
|
| 342 |
+
|
| 343 |
+
### Training Configuration
|
| 344 |
+
- **Epochs**: {training_args.num_train_epochs}
|
| 345 |
+
- **Batch size**: {training_args.per_device_train_batch_size} (effective: {training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps})
|
| 346 |
+
- **Learning rate**: {training_args.learning_rate}
|
| 347 |
+
- **Frozen components**: {frozen_str}
|
| 348 |
+
- **Hardware**: GPU with mixed precision (bf16)
|
| 349 |
+
|
| 350 |
+
## Evaluation Results
|
| 351 |
+
|
| 352 |
+
### Performance Comparison
|
| 353 |
+
|
| 354 |
+
| Metric | Base Model | Fine-tuned | Improvement |
|
| 355 |
+
|--------|------------|------------|-------------|
|
| 356 |
+
| **CER (%)** | {base_metrics["cer"]:.2f} | {finetuned_metrics["cer"]:.2f} | {cer_improvement:+.2f} |
|
| 357 |
+
| **WER (%)** | {base_metrics["wer"]:.2f} | {finetuned_metrics["wer"]:.2f} | {wer_improvement:+.2f} |
|
| 358 |
+
| **Perfect Matches** | {base_metrics["perfect_matches"]}/{base_metrics["total_samples"]} | {finetuned_metrics["perfect_matches"]}/{finetuned_metrics["total_samples"]} | {perfect_improvement:+d} |
|
| 359 |
+
|
| 360 |
+
*Lower is better for CER and WER. Evaluation performed on {finetuned_metrics["total_samples"]} test samples.*
|
| 361 |
+
|
| 362 |
+
## Usage
|
| 363 |
+
|
| 364 |
+
```python
|
| 365 |
+
from transformers import AutoProcessor, LightOnOCRForConditionalGeneration
|
| 366 |
+
from PIL import Image
|
| 367 |
+
import torch
|
| 368 |
+
|
| 369 |
+
# Load model and processor
|
| 370 |
+
model = LightOnOCRForConditionalGeneration.from_pretrained(
|
| 371 |
+
"{model_id}",
|
| 372 |
+
torch_dtype=torch.bfloat16,
|
| 373 |
+
device_map="auto"
|
| 374 |
+
)
|
| 375 |
+
processor = AutoProcessor.from_pretrained("{model_id}")
|
| 376 |
+
|
| 377 |
+
# Prepare image
|
| 378 |
+
image = Image.open("your_image.jpg").convert("RGB")
|
| 379 |
+
|
| 380 |
+
# Create prompt
|
| 381 |
+
messages = [
|
| 382 |
+
{{"role": "user", "content": [{{"type": "image"}}]}}
|
| 383 |
+
]
|
| 384 |
+
|
| 385 |
+
# Process and generate
|
| 386 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 387 |
+
inputs = processor(
|
| 388 |
+
text=[text],
|
| 389 |
+
images=[[image]],
|
| 390 |
+
return_tensors="pt",
|
| 391 |
+
max_length=1024
|
| 392 |
+
).to(model.device)
|
| 393 |
+
|
| 394 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
| 395 |
+
generated_text = processor.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
| 396 |
+
print(generated_text)
|
| 397 |
+
```
|
| 398 |
+
|
| 399 |
+
## Training Script
|
| 400 |
+
|
| 401 |
+
This model was trained using the UV Scripts training pipeline. To reproduce or further fine-tune:
|
| 402 |
+
|
| 403 |
+
```bash
|
| 404 |
+
uv run https://huggingface.co/datasets/uv-scripts/transformers-training/raw/main/lightonocr-finetune.py \\
|
| 405 |
+
--dataset-id {dataset_id} \\
|
| 406 |
+
{"--subset " + subset if subset else ""} \\
|
| 407 |
+
--output-dir ./model \\
|
| 408 |
+
--epochs {training_args.num_train_epochs}
|
| 409 |
+
```
|
| 410 |
+
|
| 411 |
+
## Citation
|
| 412 |
+
|
| 413 |
+
If you use this model, please cite:
|
| 414 |
+
|
| 415 |
+
```bibtex
|
| 416 |
+
@misc{{lightonocr2024,
|
| 417 |
+
title={{LightOnOCR: End-to-End Trainable OCR Model}},
|
| 418 |
+
author={{LightOn AI}},
|
| 419 |
+
year={{2024}},
|
| 420 |
+
url={{https://huggingface.co/blog/lightonai/lightonocr}}
|
| 421 |
+
}}
|
| 422 |
+
```
|
| 423 |
+
|
| 424 |
+
## License
|
| 425 |
+
|
| 426 |
+
This model is released under the MIT license.
|
| 427 |
+
|
| 428 |
+
---
|
| 429 |
+
|
| 430 |
+
*Generated on {datetime.now().strftime("%Y-%m-%d")} using [UV Scripts](https://huggingface.co/uv-scripts)*
|
| 431 |
+
"""
|
| 432 |
+
|
| 433 |
+
return content
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
def main():
|
| 437 |
+
parser = argparse.ArgumentParser(
|
| 438 |
+
description="Fine-tune LightOnOCR on OCR datasets",
|
| 439 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
# Dataset arguments
|
| 443 |
+
parser.add_argument(
|
| 444 |
+
"--dataset-id",
|
| 445 |
+
type=str,
|
| 446 |
+
default="HuggingFaceM4/FineVision",
|
| 447 |
+
help="HuggingFace dataset ID",
|
| 448 |
+
)
|
| 449 |
+
parser.add_argument(
|
| 450 |
+
"--subset",
|
| 451 |
+
type=str,
|
| 452 |
+
default="iam",
|
| 453 |
+
choices=["iam", "olmOCR-mix-0225-books", "olmOCR-mix-0225-documents"],
|
| 454 |
+
help="Dataset subset to use (for FineVision)",
|
| 455 |
+
)
|
| 456 |
+
parser.add_argument(
|
| 457 |
+
"--train-split",
|
| 458 |
+
type=str,
|
| 459 |
+
default="train[:85%]",
|
| 460 |
+
help="Training split specification",
|
| 461 |
+
)
|
| 462 |
+
parser.add_argument(
|
| 463 |
+
"--val-split",
|
| 464 |
+
type=str,
|
| 465 |
+
default="train[85%:95%]",
|
| 466 |
+
help="Validation split specification",
|
| 467 |
+
)
|
| 468 |
+
parser.add_argument(
|
| 469 |
+
"--test-split", type=str, default="train[95%:]", help="Test split specification"
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
# Model arguments
|
| 473 |
+
parser.add_argument(
|
| 474 |
+
"--model-id",
|
| 475 |
+
type=str,
|
| 476 |
+
default="lightonai/LightOnOCR-1B-1025",
|
| 477 |
+
help="Base model ID",
|
| 478 |
+
)
|
| 479 |
+
parser.add_argument(
|
| 480 |
+
"--freeze-vision", action="store_true", help="Freeze vision encoder"
|
| 481 |
+
)
|
| 482 |
+
parser.add_argument(
|
| 483 |
+
"--freeze-language", action="store_true", help="Freeze language model"
|
| 484 |
+
)
|
| 485 |
+
parser.add_argument(
|
| 486 |
+
"--freeze-projection",
|
| 487 |
+
action="store_true",
|
| 488 |
+
help="Freeze vision projection layer",
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
# Training arguments
|
| 492 |
+
parser.add_argument(
|
| 493 |
+
"--output-dir", type=str, required=True, help="Directory to save the model"
|
| 494 |
+
)
|
| 495 |
+
parser.add_argument(
|
| 496 |
+
"--epochs", type=int, default=2, help="Number of training epochs"
|
| 497 |
+
)
|
| 498 |
+
parser.add_argument(
|
| 499 |
+
"--batch-size", type=int, default=4, help="Training batch size per device"
|
| 500 |
+
)
|
| 501 |
+
parser.add_argument(
|
| 502 |
+
"--gradient-accumulation",
|
| 503 |
+
type=int,
|
| 504 |
+
default=4,
|
| 505 |
+
help="Gradient accumulation steps",
|
| 506 |
+
)
|
| 507 |
+
parser.add_argument(
|
| 508 |
+
"--learning-rate", type=float, default=6e-5, help="Learning rate"
|
| 509 |
+
)
|
| 510 |
+
parser.add_argument(
|
| 511 |
+
"--warmup-steps", type=int, default=10, help="Number of warmup steps"
|
| 512 |
+
)
|
| 513 |
+
parser.add_argument(
|
| 514 |
+
"--eval-steps", type=int, default=50, help="Evaluation interval (in steps)"
|
| 515 |
+
)
|
| 516 |
+
parser.add_argument(
|
| 517 |
+
"--save-steps",
|
| 518 |
+
type=int,
|
| 519 |
+
default=500,
|
| 520 |
+
help="Save checkpoint interval (in steps)",
|
| 521 |
+
)
|
| 522 |
+
parser.add_argument(
|
| 523 |
+
"--max-length", type=int, default=1024, help="Maximum sequence length"
|
| 524 |
+
)
|
| 525 |
+
parser.add_argument(
|
| 526 |
+
"--longest-edge", type=int, default=700, help="Longest edge for image resizing"
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
# Evaluation arguments
|
| 530 |
+
parser.add_argument(
|
| 531 |
+
"--eval-samples", type=int, default=100, help="Number of samples for evaluation"
|
| 532 |
+
)
|
| 533 |
+
parser.add_argument(
|
| 534 |
+
"--eval-batch-size", type=int, default=8, help="Batch size for evaluation"
|
| 535 |
+
)
|
| 536 |
+
parser.add_argument(
|
| 537 |
+
"--skip-base-eval", action="store_true", help="Skip base model evaluation"
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
# Hub arguments
|
| 541 |
+
parser.add_argument(
|
| 542 |
+
"--hub-model-id", type=str, help="HuggingFace Hub model ID for pushing"
|
| 543 |
+
)
|
| 544 |
+
parser.add_argument(
|
| 545 |
+
"--push-to-hub", action="store_true", help="Push model to HuggingFace Hub"
|
| 546 |
+
)
|
| 547 |
+
parser.add_argument("--hf-token", type=str, help="HuggingFace API token")
|
| 548 |
+
parser.add_argument(
|
| 549 |
+
"--private", action="store_true", help="Make the model private on Hub"
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
# Other arguments
|
| 553 |
+
parser.add_argument(
|
| 554 |
+
"--max-samples", type=int, help="Limit number of training samples (for testing)"
|
| 555 |
+
)
|
| 556 |
+
parser.add_argument("--seed", type=int, default=42, help="Random seed")
|
| 557 |
+
|
| 558 |
+
args = parser.parse_args()
|
| 559 |
+
|
| 560 |
+
# Check GPU availability
|
| 561 |
+
if not torch.cuda.is_available():
|
| 562 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
| 563 |
+
logger.info("To run on HF Jobs with GPU:")
|
| 564 |
+
logger.info(
|
| 565 |
+
f"hf jobs run --gpu l4x1 uv run {__file__} --dataset-id {args.dataset_id} --output-dir {args.output_dir}"
|
| 566 |
+
)
|
| 567 |
+
sys.exit(1)
|
| 568 |
+
|
| 569 |
+
device = "cuda"
|
| 570 |
+
logger.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
| 571 |
+
|
| 572 |
+
# Set environment variables for better performance
|
| 573 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 574 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 575 |
+
torch.set_float32_matmul_precision("high")
|
| 576 |
+
|
| 577 |
+
# Login to HuggingFace if needed
|
| 578 |
+
if args.push_to_hub:
|
| 579 |
+
token = args.hf_token or os.environ.get("HF_TOKEN")
|
| 580 |
+
if token:
|
| 581 |
+
login(token=token)
|
| 582 |
+
else:
|
| 583 |
+
logger.error("HF_TOKEN required for push_to_hub")
|
| 584 |
+
sys.exit(1)
|
| 585 |
+
|
| 586 |
+
# Load dataset
|
| 587 |
+
logger.info(f"Loading dataset: {args.dataset_id}/{args.subset}")
|
| 588 |
+
train_ds = load_dataset(args.dataset_id, args.subset, split=args.train_split)
|
| 589 |
+
val_ds = load_dataset(args.dataset_id, args.subset, split=args.val_split)
|
| 590 |
+
test_ds = load_dataset(args.dataset_id, args.subset, split=args.test_split)
|
| 591 |
+
|
| 592 |
+
# Limit samples if requested
|
| 593 |
+
if args.max_samples:
|
| 594 |
+
train_ds = train_ds.select(range(min(args.max_samples, len(train_ds))))
|
| 595 |
+
logger.info(f"Limited training to {len(train_ds)} samples")
|
| 596 |
+
|
| 597 |
+
logger.info(
|
| 598 |
+
f"Dataset sizes - Train: {len(train_ds)}, Val: {len(val_ds)}, Test: {len(test_ds)}"
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
# Load processor
|
| 602 |
+
logger.info(f"Loading processor from {args.model_id}")
|
| 603 |
+
processor = AutoProcessor.from_pretrained(args.model_id)
|
| 604 |
+
processor.tokenizer.padding_side = "left"
|
| 605 |
+
|
| 606 |
+
# Load model
|
| 607 |
+
logger.info(f"Loading model from {args.model_id}")
|
| 608 |
+
model = LightOnOCRForConditionalGeneration.from_pretrained(
|
| 609 |
+
args.model_id,
|
| 610 |
+
torch_dtype=torch.bfloat16,
|
| 611 |
+
attn_implementation="sdpa",
|
| 612 |
+
device_map="auto",
|
| 613 |
+
).to(device)
|
| 614 |
+
|
| 615 |
+
# Freeze components as requested
|
| 616 |
+
freeze_config = {
|
| 617 |
+
"vision_encoder": args.freeze_vision,
|
| 618 |
+
"language_model": args.freeze_language,
|
| 619 |
+
"vision_projection": args.freeze_projection,
|
| 620 |
+
}
|
| 621 |
+
|
| 622 |
+
if args.freeze_vision:
|
| 623 |
+
for param in model.model.vision_encoder.parameters():
|
| 624 |
+
param.requires_grad = False
|
| 625 |
+
logger.info("Vision encoder frozen")
|
| 626 |
+
|
| 627 |
+
if args.freeze_language:
|
| 628 |
+
for param in model.model.language_model.parameters():
|
| 629 |
+
param.requires_grad = False
|
| 630 |
+
logger.info("Language model frozen")
|
| 631 |
+
|
| 632 |
+
if args.freeze_projection:
|
| 633 |
+
for param in model.model.vision_projection.parameters():
|
| 634 |
+
param.requires_grad = False
|
| 635 |
+
logger.info("Vision projection frozen")
|
| 636 |
+
|
| 637 |
+
# Count trainable parameters
|
| 638 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 639 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 640 |
+
logger.info(f"Total parameters: {total_params:,}")
|
| 641 |
+
logger.info(
|
| 642 |
+
f"Trainable parameters: {trainable_params:,} ({100 * trainable_params / total_params:.2f}%)"
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
# Evaluate base model
|
| 646 |
+
base_metrics = {
|
| 647 |
+
"cer": 0.0,
|
| 648 |
+
"wer": 0.0,
|
| 649 |
+
"perfect_matches": 0,
|
| 650 |
+
"total_samples": args.eval_samples,
|
| 651 |
+
}
|
| 652 |
+
if not args.skip_base_eval:
|
| 653 |
+
logger.info("\n" + "=" * 80)
|
| 654 |
+
logger.info("EVALUATING BASE MODEL")
|
| 655 |
+
logger.info("=" * 80)
|
| 656 |
+
base_metrics = evaluate_model(
|
| 657 |
+
model,
|
| 658 |
+
processor,
|
| 659 |
+
test_ds,
|
| 660 |
+
num_samples=args.eval_samples,
|
| 661 |
+
batch_size=args.eval_batch_size,
|
| 662 |
+
device=device,
|
| 663 |
+
description="Base model",
|
| 664 |
+
)
|
| 665 |
+
torch.cuda.empty_cache()
|
| 666 |
+
|
| 667 |
+
# Prepare data collator
|
| 668 |
+
data_collator = OCRDataCollator(
|
| 669 |
+
processor, max_length=args.max_length, longest_edge=args.longest_edge
|
| 670 |
+
)
|
| 671 |
+
|
| 672 |
+
# Setup training arguments
|
| 673 |
+
training_args = TrainingArguments(
|
| 674 |
+
output_dir=args.output_dir,
|
| 675 |
+
num_train_epochs=args.epochs,
|
| 676 |
+
per_device_train_batch_size=args.batch_size,
|
| 677 |
+
per_device_eval_batch_size=args.eval_batch_size,
|
| 678 |
+
gradient_accumulation_steps=args.gradient_accumulation,
|
| 679 |
+
learning_rate=args.learning_rate,
|
| 680 |
+
weight_decay=0.0,
|
| 681 |
+
logging_steps=50,
|
| 682 |
+
eval_strategy="steps",
|
| 683 |
+
eval_steps=args.eval_steps,
|
| 684 |
+
save_strategy="steps",
|
| 685 |
+
save_steps=args.save_steps,
|
| 686 |
+
save_total_limit=2,
|
| 687 |
+
load_best_model_at_end=True,
|
| 688 |
+
metric_for_best_model="eval_loss",
|
| 689 |
+
bf16=True,
|
| 690 |
+
fp16=False,
|
| 691 |
+
remove_unused_columns=False,
|
| 692 |
+
dataloader_pin_memory=False,
|
| 693 |
+
gradient_checkpointing=True,
|
| 694 |
+
optim="adamw_torch_fused" if torch.cuda.is_available() else "adamw_torch",
|
| 695 |
+
warmup_steps=args.warmup_steps,
|
| 696 |
+
lr_scheduler_type="linear",
|
| 697 |
+
push_to_hub=args.push_to_hub,
|
| 698 |
+
hub_model_id=args.hub_model_id,
|
| 699 |
+
hub_private_repo=args.private,
|
| 700 |
+
)
|
| 701 |
+
|
| 702 |
+
# Use smaller validation set for faster evaluation
|
| 703 |
+
val_ds_small = val_ds.select(range(min(100, len(val_ds))))
|
| 704 |
+
|
| 705 |
+
# Create trainer
|
| 706 |
+
trainer = Trainer(
|
| 707 |
+
model=model,
|
| 708 |
+
args=training_args,
|
| 709 |
+
train_dataset=train_ds,
|
| 710 |
+
eval_dataset=val_ds_small,
|
| 711 |
+
data_collator=data_collator,
|
| 712 |
+
)
|
| 713 |
+
|
| 714 |
+
# Train
|
| 715 |
+
logger.info("\n" + "=" * 80)
|
| 716 |
+
logger.info("STARTING TRAINING")
|
| 717 |
+
logger.info("=" * 80)
|
| 718 |
+
logger.info(f"Training samples: {len(train_ds)}")
|
| 719 |
+
logger.info(f"Validation samples: {len(val_ds_small)}")
|
| 720 |
+
logger.info(f"Effective batch size: {args.batch_size * args.gradient_accumulation}")
|
| 721 |
+
|
| 722 |
+
trainer.train()
|
| 723 |
+
|
| 724 |
+
# Save model
|
| 725 |
+
logger.info("Saving model and processor...")
|
| 726 |
+
trainer.save_model(args.output_dir)
|
| 727 |
+
processor.save_pretrained(args.output_dir)
|
| 728 |
+
|
| 729 |
+
# Evaluate fine-tuned model
|
| 730 |
+
logger.info("\n" + "=" * 80)
|
| 731 |
+
logger.info("EVALUATING FINE-TUNED MODEL")
|
| 732 |
+
logger.info("=" * 80)
|
| 733 |
+
finetuned_metrics = evaluate_model(
|
| 734 |
+
model,
|
| 735 |
+
processor,
|
| 736 |
+
test_ds,
|
| 737 |
+
num_samples=args.eval_samples,
|
| 738 |
+
batch_size=args.eval_batch_size,
|
| 739 |
+
device=device,
|
| 740 |
+
description="Fine-tuned model",
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
# Show comparison
|
| 744 |
+
if not args.skip_base_eval:
|
| 745 |
+
logger.info("\n" + "=" * 80)
|
| 746 |
+
logger.info("PERFORMANCE COMPARISON")
|
| 747 |
+
logger.info("=" * 80)
|
| 748 |
+
logger.info(
|
| 749 |
+
f"{'Metric':<20} {'Base':<12} {'Fine-tuned':<12} {'Improvement':<12}"
|
| 750 |
+
)
|
| 751 |
+
logger.info("-" * 56)
|
| 752 |
+
logger.info(
|
| 753 |
+
f"{'CER (%)':<20} {base_metrics['cer']:<12.2f} {finetuned_metrics['cer']:<12.2f} {base_metrics['cer'] - finetuned_metrics['cer']:+.2f}"
|
| 754 |
+
)
|
| 755 |
+
logger.info(
|
| 756 |
+
f"{'WER (%)':<20} {base_metrics['wer']:<12.2f} {finetuned_metrics['wer']:<12.2f} {base_metrics['wer'] - finetuned_metrics['wer']:+.2f}"
|
| 757 |
+
)
|
| 758 |
+
logger.info(
|
| 759 |
+
f"{'Perfect Matches':<20} {base_metrics['perfect_matches']:<12} {finetuned_metrics['perfect_matches']:<12} {finetuned_metrics['perfect_matches'] - base_metrics['perfect_matches']:+d}"
|
| 760 |
+
)
|
| 761 |
+
logger.info("=" * 80)
|
| 762 |
+
|
| 763 |
+
# Create and save model card
|
| 764 |
+
if args.hub_model_id or args.push_to_hub:
|
| 765 |
+
model_id = args.hub_model_id or f"{args.output_dir.split('/')[-1]}"
|
| 766 |
+
logger.info("Creating model card with metrics...")
|
| 767 |
+
|
| 768 |
+
model_card_content = create_model_card_content(
|
| 769 |
+
model_id=model_id,
|
| 770 |
+
dataset_id=args.dataset_id,
|
| 771 |
+
subset=args.subset,
|
| 772 |
+
base_metrics=base_metrics,
|
| 773 |
+
finetuned_metrics=finetuned_metrics,
|
| 774 |
+
training_args=training_args,
|
| 775 |
+
freeze_config=freeze_config,
|
| 776 |
+
)
|
| 777 |
+
|
| 778 |
+
# Save model card
|
| 779 |
+
model_card_path = Path(args.output_dir) / "README.md"
|
| 780 |
+
model_card_path.write_text(model_card_content)
|
| 781 |
+
logger.info(f"Model card saved to {model_card_path}")
|
| 782 |
+
|
| 783 |
+
if args.push_to_hub:
|
| 784 |
+
logger.info(f"Pushing model to Hub: {args.hub_model_id}")
|
| 785 |
+
trainer.push_to_hub()
|
| 786 |
+
logger.info(
|
| 787 |
+
f"✅ Model available at: https://huggingface.co/{args.hub_model_id}"
|
| 788 |
+
)
|
| 789 |
+
|
| 790 |
+
logger.info("\n✅ Training complete!")
|
| 791 |
+
logger.info(f"Model saved to: {args.output_dir}")
|
| 792 |
+
|
| 793 |
+
# Print example command for inference
|
| 794 |
+
logger.info("\n" + "=" * 80)
|
| 795 |
+
logger.info("To use the fine-tuned model:")
|
| 796 |
+
logger.info("=" * 80)
|
| 797 |
+
logger.info(f"""
|
| 798 |
+
from transformers import AutoProcessor, LightOnOCRForConditionalGeneration
|
| 799 |
+
from PIL import Image
|
| 800 |
+
|
| 801 |
+
model = LightOnOCRForConditionalGeneration.from_pretrained("{args.output_dir}")
|
| 802 |
+
processor = AutoProcessor.from_pretrained("{args.output_dir}")
|
| 803 |
+
# ... rest of inference code
|
| 804 |
+
""")
|
| 805 |
+
|
| 806 |
+
|
| 807 |
+
if __name__ == "__main__":
|
| 808 |
+
if len(sys.argv) == 1:
|
| 809 |
+
print("LightOnOCR Fine-tuning Script\n")
|
| 810 |
+
print("Examples:")
|
| 811 |
+
print(" # Basic fine-tuning:")
|
| 812 |
+
print(
|
| 813 |
+
" uv run lightonocr-finetune.py --dataset-id HuggingFaceM4/FineVision --subset iam --output-dir ./model\n"
|
| 814 |
+
)
|
| 815 |
+
print(" # With frozen components:")
|
| 816 |
+
print(
|
| 817 |
+
" uv run lightonocr-finetune.py --freeze-language --output-dir ./model\n"
|
| 818 |
+
)
|
| 819 |
+
print(" # Push to Hub:")
|
| 820 |
+
print(
|
| 821 |
+
" uv run lightonocr-finetune.py --hub-model-id username/model --push-to-hub\n"
|
| 822 |
+
)
|
| 823 |
+
print(" # Run on HF Jobs:")
|
| 824 |
+
print(
|
| 825 |
+
" hf jobs run --gpu l4x1 uv run lightonocr-finetune.py --output-dir ./model"
|
| 826 |
+
)
|
| 827 |
+
sys.exit(0)
|
| 828 |
+
|
| 829 |
+
main()
|