Datasets:
Tasks:
Text Classification
Sub-tasks:
fact-checking
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """TabFact: A Large-scale Dataset for Table-based Fact Verification""" | |
| import json | |
| import os | |
| import datasets | |
| _CITATION = """\ | |
| @inproceedings{2019TabFactA, | |
| title={TabFact : A Large-scale Dataset for Table-based Fact Verification}, | |
| author={Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou and William Yang Wang}, | |
| booktitle = {International Conference on Learning Representations (ICLR)}, | |
| address = {Addis Ababa, Ethiopia}, | |
| month = {April}, | |
| year = {2020} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| The problem of verifying whether a textual hypothesis holds the truth based on the given evidence, \ | |
| also known as fact verification, plays an important role in the study of natural language \ | |
| understanding and semantic representation. However, existing studies are restricted to \ | |
| dealing with unstructured textual evidence (e.g., sentences and passages, a pool of passages), \ | |
| while verification using structured forms of evidence, such as tables, graphs, and databases, remains unexplored. \ | |
| TABFACT is large scale dataset with 16k Wikipedia tables as evidence for 118k human annotated statements \ | |
| designed for fact verification with semi-structured evidence. \ | |
| The statements are labeled as either ENTAILED or REFUTED. \ | |
| TABFACT is challenging since it involves both soft linguistic reasoning and hard symbolic reasoning. | |
| """ | |
| _HOMEPAGE = "https://tabfact.github.io/" | |
| _GIT_ARCHIVE_URL = ( | |
| "https://github.com/wenhuchen/Table-Fact-Checking/archive/948b5560e2f7f8c9139bd91c7f093346a2bb56a8.zip" | |
| ) | |
| class TabFact(datasets.GeneratorBasedBuilder): | |
| """TabFact: A Large-scale Dataset for Table-based Fact Verification""" | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig( | |
| name="tab_fact", | |
| version=datasets.Version("1.0.0"), | |
| ), | |
| datasets.BuilderConfig( | |
| name="blind_test", | |
| version=datasets.Version("1.0.0"), | |
| description="Blind test dataset", | |
| ), | |
| ] | |
| def _info(self): | |
| features = { | |
| "id": datasets.Value("int32"), | |
| "table_id": datasets.Value("string"), | |
| "table_text": datasets.Value("string"), | |
| "table_caption": datasets.Value("string"), | |
| "statement": datasets.Value("string"), | |
| } | |
| if self.config.name == "tab_fact": | |
| features["label"] = datasets.ClassLabel(names=["refuted", "entailed"]) | |
| else: | |
| features["test_id"] = datasets.Value("string") | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features(features), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| extracted_path = dl_manager.download_and_extract(_GIT_ARCHIVE_URL) | |
| repo_path = os.path.join(extracted_path, "Table-Fact-Checking-948b5560e2f7f8c9139bd91c7f093346a2bb56a8") | |
| all_csv_path = os.path.join(repo_path, "data", "all_csv") | |
| if self.config.name == "blind_test": | |
| test_file_path = os.path.join(repo_path, "challenge", "blind_test.json") | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"statements_file": test_file_path, "all_csv_path": all_csv_path}, | |
| ), | |
| ] | |
| train_statements_file = os.path.join(repo_path, "tokenized_data", "train_examples.json") | |
| val_statements_file = os.path.join(repo_path, "tokenized_data", "val_examples.json") | |
| test_statements_file = os.path.join(repo_path, "tokenized_data", "test_examples.json") | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"statements_file": train_statements_file, "all_csv_path": all_csv_path}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"statements_file": val_statements_file, "all_csv_path": all_csv_path}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"statements_file": test_statements_file, "all_csv_path": all_csv_path}, | |
| ), | |
| ] | |
| def _generate_examples(self, statements_file, all_csv_path): | |
| with open(statements_file, encoding="utf-8") as f: | |
| examples = json.load(f) | |
| if self.config.name == "blind_test": | |
| test_examples = self._generate_blind_test_examples(examples, all_csv_path) | |
| for idx, example in test_examples: | |
| yield idx, example | |
| else: | |
| for i, (table_id, example) in enumerate(examples.items()): | |
| table_file_path = os.path.join(all_csv_path, table_id) | |
| with open(table_file_path, encoding="utf-8") as f: | |
| tabel_text = f.read() | |
| statements, labels, caption = example | |
| for statement_idx, (statement, label) in enumerate(zip(statements, labels)): | |
| yield f"{i}_{statement_idx}", { | |
| "id": i, | |
| "table_id": table_id, | |
| "table_text": tabel_text, | |
| "table_caption": caption, | |
| "statement": statement, | |
| "label": label, | |
| } | |
| def _generate_blind_test_examples(self, examples, all_csv_path): | |
| for i, (test_id, example) in enumerate(examples.items()): | |
| statement, table_id, caption = example | |
| table_file_path = os.path.join(all_csv_path, table_id) | |
| with open(table_file_path, encoding="utf-8") as f: | |
| tabel_text = f.read() | |
| yield i, { | |
| "id": i, | |
| "test_id": test_id, | |
| "table_id": table_id, | |
| "table_text": tabel_text, | |
| "table_caption": caption, | |
| "statement": statement, | |
| } | |