Datasets:
Upload README.md
Browse files
README.md
CHANGED
|
@@ -2,13 +2,14 @@
|
|
| 2 |
|
| 3 |
## Overview
|
| 4 |
|
| 5 |
-
This is an image-text pair dataset constructed
|
|
|
|
| 6 |
|
| 7 |
## Data Source
|
| 8 |
|
| 9 |
The ArtKB knowledge base combines data from two primary sources:
|
| 10 |
-
- **Wikidata
|
| 11 |
-
- **
|
| 12 |
|
| 13 |
## Dataset Structure
|
| 14 |
|
|
@@ -56,15 +57,11 @@ Each sample in the Parquet files contains the following columns:
|
|
| 56 |
|--------|------|-------------|
|
| 57 |
| `image` | string | Relative path to the image file |
|
| 58 |
| `uuid` | string | Unique identifier for the artwork |
|
| 59 |
-
| `
|
| 60 |
-
| `
|
| 61 |
-
| `metadata` | list[string] | 5 metadata descriptions constructed from KG fields |
|
| 62 |
-
| `hybrid_o1` | list[string] | 5 descriptions combining metadata + content |
|
| 63 |
-
| `hybrid_o2` | list[string] | 5 descriptions combining content + metadata |
|
| 64 |
-
|
| 65 |
## Text Generation Methods
|
| 66 |
|
| 67 |
-
### 1. Metadata
|
| 68 |
The **metadata** descriptions are constructed by combining multiple metadata fields from the ArtKB knowledge base using different templates. Each template produces a different textual representation of the same metadata information. This results in 5 distinct variants that capture the same facts in different phrasings.
|
| 69 |
|
| 70 |
**Example fields used:**
|
|
@@ -74,30 +71,20 @@ The **metadata** descriptions are constructed by combining multiple metadata fie
|
|
| 74 |
- Dimensions
|
| 75 |
- Current location/Museum
|
| 76 |
- Object type and classification
|
|
|
|
| 77 |
|
| 78 |
-
### 2. Content
|
| 79 |
The **content** descriptions are generated automatically using the **Salesforce/BLIP2-OPT-2.7B** vision-language model. These descriptions capture visual characteristics of the artwork observed directly from the image, such as composition, colors, subjects, and visual elements.
|
| 80 |
|
| 81 |
**Model**: `Salesforce/blip2-opt-2.7b`
|
| 82 |
|
| 83 |
-
### 3.
|
| 84 |
-
The **
|
| 85 |
|
| 86 |
```
|
| 87 |
-
[
|
| 88 |
```
|
| 89 |
|
| 90 |
-
This approach creates a unified description that combines structured knowledge (metadata) with visual observations (content), resulting in 5 variants.
|
| 91 |
-
|
| 92 |
-
### 4. Hybrid Descriptions (Order 2 - hybrid_o2)
|
| 93 |
-
The **hybrid_o2** descriptions follow the reverse concatenation order:
|
| 94 |
-
|
| 95 |
-
```
|
| 96 |
-
[Content Description] + [Metadata Description]
|
| 97 |
-
```
|
| 98 |
-
|
| 99 |
-
This alternative ordering explores how different sequencing of information affects downstream information retrieval tasks.
|
| 100 |
-
|
| 101 |
## Usage
|
| 102 |
|
| 103 |
The dataset can be loaded and used with the Hugging Face `datasets` library:
|
|
@@ -117,10 +104,8 @@ test_set = load_dataset('xuemduan/reevaluate-image-text-pairs', split='test')
|
|
| 117 |
for sample in train_set:
|
| 118 |
image_path = sample['image']
|
| 119 |
uuid = sample['uuid']
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
hybrid_o1_variants = sample['hybrid_o1'] # 5 variants
|
| 123 |
-
hybrid_o2_variants = sample['hybrid_o2'] # 5 variants
|
| 124 |
```
|
| 125 |
|
| 126 |
## Citation
|
|
@@ -129,7 +114,7 @@ If you use this dataset in your research, please cite this dataset.
|
|
| 129 |
|
| 130 |
## License
|
| 131 |
|
| 132 |
-
|
| 133 |
|
| 134 |
## Contact
|
| 135 |
|
|
|
|
| 2 |
|
| 3 |
## Overview
|
| 4 |
|
| 5 |
+
This is an image-text pair dataset constructed for the **Knowledge-Enhanced Multimodal Retrieval System**, built upon the **REEVLAUATE KG ArtKB**.
|
| 6 |
+
The dataset is designed for training and evaluating the CLIP model for the retrieval system.
|
| 7 |
|
| 8 |
## Data Source
|
| 9 |
|
| 10 |
The ArtKB knowledge base combines data from two primary sources:
|
| 11 |
+
- **Wikidata**
|
| 12 |
+
- **Pilot Museums**
|
| 13 |
|
| 14 |
## Dataset Structure
|
| 15 |
|
|
|
|
| 57 |
|--------|------|-------------|
|
| 58 |
| `image` | string | Relative path to the image file |
|
| 59 |
| `uuid` | string | Unique identifier for the artwork |
|
| 60 |
+
| `query_text` | string | User query-like text |
|
| 61 |
+
| `target_text` | list[string] | Description text corresponding to the specific image including visual content and metadata information |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
## Text Generation Methods
|
| 63 |
|
| 64 |
+
### 1. Metadata Portion
|
| 65 |
The **metadata** descriptions are constructed by combining multiple metadata fields from the ArtKB knowledge base using different templates. Each template produces a different textual representation of the same metadata information. This results in 5 distinct variants that capture the same facts in different phrasings.
|
| 66 |
|
| 67 |
**Example fields used:**
|
|
|
|
| 71 |
- Dimensions
|
| 72 |
- Current location/Museum
|
| 73 |
- Object type and classification
|
| 74 |
+
- ...
|
| 75 |
|
| 76 |
+
### 2. Content Portion
|
| 77 |
The **content** descriptions are generated automatically using the **Salesforce/BLIP2-OPT-2.7B** vision-language model. These descriptions capture visual characteristics of the artwork observed directly from the image, such as composition, colors, subjects, and visual elements.
|
| 78 |
|
| 79 |
**Model**: `Salesforce/blip2-opt-2.7b`
|
| 80 |
|
| 81 |
+
### 3. Description Texts
|
| 82 |
+
The **description text** descriptions are created by concatenating content portion with metadata protion:
|
| 83 |
|
| 84 |
```
|
| 85 |
+
[Content Portion] + [Metadata Portion]
|
| 86 |
```
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
## Usage
|
| 89 |
|
| 90 |
The dataset can be loaded and used with the Hugging Face `datasets` library:
|
|
|
|
| 104 |
for sample in train_set:
|
| 105 |
image_path = sample['image']
|
| 106 |
uuid = sample['uuid']
|
| 107 |
+
query_texts = sample['query_text']
|
| 108 |
+
description_text = sample['target_txt']
|
|
|
|
|
|
|
| 109 |
```
|
| 110 |
|
| 111 |
## Citation
|
|
|
|
| 114 |
|
| 115 |
## License
|
| 116 |
|
| 117 |
+
MIT
|
| 118 |
|
| 119 |
## Contact
|
| 120 |
|