xuemduan commited on
Commit
17e6f0b
·
verified ·
1 Parent(s): 7964537

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -30
README.md CHANGED
@@ -2,13 +2,14 @@
2
 
3
  ## Overview
4
 
5
- This is an image-text pair dataset constructed within the REEVLAUATE project, built upon the **REEVLAUATE KG ArtKB**. The dataset is designed for developing and evaluating information retrieval systems within the REEVLAUATE framework.
 
6
 
7
  ## Data Source
8
 
9
  The ArtKB knowledge base combines data from two primary sources:
10
- - **Wikidata**: Structured information from the Wikidata knowledge base
11
- - **Partner Collaborations**: Domain-specific data contributed by project partners
12
 
13
  ## Dataset Structure
14
 
@@ -56,15 +57,11 @@ Each sample in the Parquet files contains the following columns:
56
  |--------|------|-------------|
57
  | `image` | string | Relative path to the image file |
58
  | `uuid` | string | Unique identifier for the artwork |
59
- | `object_type` | string | Type of the cultural object (e.g., "Painting", "Sculpture") |
60
- | `content` | list[string] | 5 content descriptions generated by BLIP2 |
61
- | `metadata` | list[string] | 5 metadata descriptions constructed from KG fields |
62
- | `hybrid_o1` | list[string] | 5 descriptions combining metadata + content |
63
- | `hybrid_o2` | list[string] | 5 descriptions combining content + metadata |
64
-
65
  ## Text Generation Methods
66
 
67
- ### 1. Metadata Descriptions
68
  The **metadata** descriptions are constructed by combining multiple metadata fields from the ArtKB knowledge base using different templates. Each template produces a different textual representation of the same metadata information. This results in 5 distinct variants that capture the same facts in different phrasings.
69
 
70
  **Example fields used:**
@@ -74,30 +71,20 @@ The **metadata** descriptions are constructed by combining multiple metadata fie
74
  - Dimensions
75
  - Current location/Museum
76
  - Object type and classification
 
77
 
78
- ### 2. Content Descriptions
79
  The **content** descriptions are generated automatically using the **Salesforce/BLIP2-OPT-2.7B** vision-language model. These descriptions capture visual characteristics of the artwork observed directly from the image, such as composition, colors, subjects, and visual elements.
80
 
81
  **Model**: `Salesforce/blip2-opt-2.7b`
82
 
83
- ### 3. Hybrid Descriptions (Order 1 - hybrid_o1)
84
- The **hybrid_o1** descriptions are created by concatenating metadata descriptions with content descriptions:
85
 
86
  ```
87
- [Metadata Description] + [Content Description]
88
  ```
89
 
90
- This approach creates a unified description that combines structured knowledge (metadata) with visual observations (content), resulting in 5 variants.
91
-
92
- ### 4. Hybrid Descriptions (Order 2 - hybrid_o2)
93
- The **hybrid_o2** descriptions follow the reverse concatenation order:
94
-
95
- ```
96
- [Content Description] + [Metadata Description]
97
- ```
98
-
99
- This alternative ordering explores how different sequencing of information affects downstream information retrieval tasks.
100
-
101
  ## Usage
102
 
103
  The dataset can be loaded and used with the Hugging Face `datasets` library:
@@ -117,10 +104,8 @@ test_set = load_dataset('xuemduan/reevaluate-image-text-pairs', split='test')
117
  for sample in train_set:
118
  image_path = sample['image']
119
  uuid = sample['uuid']
120
- content_variants = sample['content'] # 5 variants
121
- metadata_variants = sample['metadata'] # 5 variants
122
- hybrid_o1_variants = sample['hybrid_o1'] # 5 variants
123
- hybrid_o2_variants = sample['hybrid_o2'] # 5 variants
124
  ```
125
 
126
  ## Citation
@@ -129,7 +114,7 @@ If you use this dataset in your research, please cite this dataset.
129
 
130
  ## License
131
 
132
- TBD
133
 
134
  ## Contact
135
 
 
2
 
3
  ## Overview
4
 
5
+ This is an image-text pair dataset constructed for the **Knowledge-Enhanced Multimodal Retrieval System**, built upon the **REEVLAUATE KG ArtKB**.
6
+ The dataset is designed for training and evaluating the CLIP model for the retrieval system.
7
 
8
  ## Data Source
9
 
10
  The ArtKB knowledge base combines data from two primary sources:
11
+ - **Wikidata**
12
+ - **Pilot Museums**
13
 
14
  ## Dataset Structure
15
 
 
57
  |--------|------|-------------|
58
  | `image` | string | Relative path to the image file |
59
  | `uuid` | string | Unique identifier for the artwork |
60
+ | `query_text` | string | User query-like text |
61
+ | `target_text` | list[string] | Description text corresponding to the specific image including visual content and metadata information |
 
 
 
 
62
  ## Text Generation Methods
63
 
64
+ ### 1. Metadata Portion
65
  The **metadata** descriptions are constructed by combining multiple metadata fields from the ArtKB knowledge base using different templates. Each template produces a different textual representation of the same metadata information. This results in 5 distinct variants that capture the same facts in different phrasings.
66
 
67
  **Example fields used:**
 
71
  - Dimensions
72
  - Current location/Museum
73
  - Object type and classification
74
+ - ...
75
 
76
+ ### 2. Content Portion
77
  The **content** descriptions are generated automatically using the **Salesforce/BLIP2-OPT-2.7B** vision-language model. These descriptions capture visual characteristics of the artwork observed directly from the image, such as composition, colors, subjects, and visual elements.
78
 
79
  **Model**: `Salesforce/blip2-opt-2.7b`
80
 
81
+ ### 3. Description Texts
82
+ The **description text** descriptions are created by concatenating content portion with metadata protion:
83
 
84
  ```
85
+ [Content Portion] + [Metadata Portion]
86
  ```
87
 
 
 
 
 
 
 
 
 
 
 
 
88
  ## Usage
89
 
90
  The dataset can be loaded and used with the Hugging Face `datasets` library:
 
104
  for sample in train_set:
105
  image_path = sample['image']
106
  uuid = sample['uuid']
107
+ query_texts = sample['query_text']
108
+ description_text = sample['target_txt']
 
 
109
  ```
110
 
111
  ## Citation
 
114
 
115
  ## License
116
 
117
+ MIT
118
 
119
  ## Contact
120