Update handler.py
Browse files- handler.py +90 -2
handler.py
CHANGED
|
@@ -22,10 +22,22 @@ class EndpointHandler:
|
|
| 22 |
self.classifier.bias.data = torch.tensor(head["scorer_bias"]).to(self.device)
|
| 23 |
|
| 24 |
self.model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 27 |
payload = data.get("inputs", data)
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
query = payload["query"]
|
| 30 |
candidates = payload["candidates"]
|
| 31 |
results = []
|
|
@@ -38,7 +50,7 @@ class EndpointHandler:
|
|
| 38 |
return_tensors="pt",
|
| 39 |
padding="max_length",
|
| 40 |
truncation=True,
|
| 41 |
-
max_length=
|
| 42 |
).to(self.device)
|
| 43 |
|
| 44 |
out = self.model(**tokens)
|
|
@@ -51,3 +63,79 @@ class EndpointHandler:
|
|
| 51 |
})
|
| 52 |
|
| 53 |
return sorted(results, key=lambda x: x["score"], reverse=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
self.classifier.bias.data = torch.tensor(head["scorer_bias"]).to(self.device)
|
| 23 |
|
| 24 |
self.model.eval()
|
| 25 |
+
|
| 26 |
+
# Batch processing configuration
|
| 27 |
+
self.max_batch_size = 128 # Adjust based on GPU memory
|
| 28 |
+
self.max_length = 64
|
| 29 |
|
| 30 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 31 |
payload = data.get("inputs", data)
|
| 32 |
+
|
| 33 |
+
# Check if this is batch processing (multiple queries) or single query
|
| 34 |
+
if "queries" in payload:
|
| 35 |
+
return self._process_batch(payload)
|
| 36 |
+
else:
|
| 37 |
+
return self._process_single(payload)
|
| 38 |
+
|
| 39 |
+
def _process_single(self, payload: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 40 |
+
"""Original single query processing for backward compatibility"""
|
| 41 |
query = payload["query"]
|
| 42 |
candidates = payload["candidates"]
|
| 43 |
results = []
|
|
|
|
| 50 |
return_tensors="pt",
|
| 51 |
padding="max_length",
|
| 52 |
truncation=True,
|
| 53 |
+
max_length=self.max_length
|
| 54 |
).to(self.device)
|
| 55 |
|
| 56 |
out = self.model(**tokens)
|
|
|
|
| 63 |
})
|
| 64 |
|
| 65 |
return sorted(results, key=lambda x: x["score"], reverse=True)
|
| 66 |
+
|
| 67 |
+
def _process_batch(self, payload: Dict[str, Any]) -> List[List[Dict[str, Any]]]:
|
| 68 |
+
"""True batch processing for multiple queries"""
|
| 69 |
+
queries = payload["queries"]
|
| 70 |
+
candidates = payload["candidates"]
|
| 71 |
+
|
| 72 |
+
# Create all query-candidate combinations
|
| 73 |
+
all_texts = []
|
| 74 |
+
query_indices = []
|
| 75 |
+
candidate_indices = []
|
| 76 |
+
|
| 77 |
+
for q_idx, query in enumerate(queries):
|
| 78 |
+
for c_idx, candidate in enumerate(candidates):
|
| 79 |
+
text = f"[QUERY] {query} [LABEL_NAME] {candidate['label']} [LABEL_DESCRIPTION] {candidate['description']}"
|
| 80 |
+
all_texts.append(text)
|
| 81 |
+
query_indices.append(q_idx)
|
| 82 |
+
candidate_indices.append(c_idx)
|
| 83 |
+
|
| 84 |
+
# Process in batches to avoid memory issues
|
| 85 |
+
all_scores = []
|
| 86 |
+
total_combinations = len(all_texts)
|
| 87 |
+
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
for i in range(0, total_combinations, self.max_batch_size):
|
| 90 |
+
batch_texts = all_texts[i:i + self.max_batch_size]
|
| 91 |
+
|
| 92 |
+
# Tokenize batch
|
| 93 |
+
tokens = self.tokenizer(
|
| 94 |
+
batch_texts,
|
| 95 |
+
return_tensors="pt",
|
| 96 |
+
padding="max_length",
|
| 97 |
+
truncation=True,
|
| 98 |
+
max_length=self.max_length
|
| 99 |
+
).to(self.device)
|
| 100 |
+
|
| 101 |
+
# Single forward pass for entire batch
|
| 102 |
+
out = self.model(**tokens)
|
| 103 |
+
cls = out.last_hidden_state[:, 0, :]
|
| 104 |
+
scores = torch.sigmoid(self.classifier(cls)).squeeze()
|
| 105 |
+
|
| 106 |
+
# Handle single item case
|
| 107 |
+
if scores.dim() == 0:
|
| 108 |
+
scores = scores.unsqueeze(0)
|
| 109 |
+
|
| 110 |
+
all_scores.extend(scores.cpu().tolist())
|
| 111 |
+
|
| 112 |
+
# Reshape results back to query structure
|
| 113 |
+
results = []
|
| 114 |
+
for q_idx in range(len(queries)):
|
| 115 |
+
query_results = []
|
| 116 |
+
for c_idx, candidate in enumerate(candidates):
|
| 117 |
+
# Find the score for this query-candidate combination
|
| 118 |
+
combination_idx = q_idx * len(candidates) + c_idx
|
| 119 |
+
score = all_scores[combination_idx]
|
| 120 |
+
|
| 121 |
+
query_results.append({
|
| 122 |
+
"label": candidate["label"],
|
| 123 |
+
"description": candidate["description"],
|
| 124 |
+
"score": round(score, 4)
|
| 125 |
+
})
|
| 126 |
+
|
| 127 |
+
# Sort by score for this query
|
| 128 |
+
query_results.sort(key=lambda x: x["score"], reverse=True)
|
| 129 |
+
results.append(query_results)
|
| 130 |
+
|
| 131 |
+
return results
|
| 132 |
+
|
| 133 |
+
def get_batch_stats(self) -> Dict[str, Any]:
|
| 134 |
+
"""Return batch processing statistics"""
|
| 135 |
+
return {
|
| 136 |
+
"max_batch_size": self.max_batch_size,
|
| 137 |
+
"max_length": self.max_length,
|
| 138 |
+
"device": str(self.device),
|
| 139 |
+
"model_name": self.model.config.name_or_path if hasattr(self.model.config, 'name_or_path') else "unknown"
|
| 140 |
+
}
|
| 141 |
+
|