Upload denoise.py with huggingface_hub
Browse files- denoise.py +217 -0
denoise.py
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
+
TODO: need to implement temporal reasoning:
|
| 18 |
+
https://huggingface.co/spaces/nvidia/ChronoEdit/blob/main/chronoedit_diffusers/pipeline_chronoedit.py
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
from diffusers.modular_pipelines import (
|
| 22 |
+
ModularPipelineBlocks,
|
| 23 |
+
ComponentSpec,
|
| 24 |
+
BlockState,
|
| 25 |
+
PipelineState,
|
| 26 |
+
ModularPipeline,
|
| 27 |
+
InputParam,
|
| 28 |
+
LoopSequentialPipelineBlocks,
|
| 29 |
+
)
|
| 30 |
+
from diffusers.configuration_utils import FrozenDict
|
| 31 |
+
from diffusers.guiders import ClassifierFreeGuidance
|
| 32 |
+
from typing import List
|
| 33 |
+
from diffusers import AutoModel, UniPCMultistepScheduler
|
| 34 |
+
import torch
|
| 35 |
+
from diffusers.modular_pipelines.wan.denoise import WanLoopAfterDenoiser, WanDenoiseLoopWrapper
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class ChronoEditLoopBeforeDenoiser(ModularPipelineBlocks):
|
| 39 |
+
model_name = "chronoedit"
|
| 40 |
+
|
| 41 |
+
@property
|
| 42 |
+
def inputs(self) -> List[InputParam]:
|
| 43 |
+
return [
|
| 44 |
+
InputParam(
|
| 45 |
+
"latents",
|
| 46 |
+
required=True,
|
| 47 |
+
type_hint=torch.Tensor,
|
| 48 |
+
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
|
| 49 |
+
),
|
| 50 |
+
InputParam(
|
| 51 |
+
"condition",
|
| 52 |
+
required=True,
|
| 53 |
+
type_hint=torch.Tensor,
|
| 54 |
+
description="The conditioning latents to use for the denoising process. Can be generated in prepare_latent step.",
|
| 55 |
+
),
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
@torch.no_grad()
|
| 59 |
+
def __call__(self, components: ModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
|
| 60 |
+
latent_model_input = torch.cat([block_state.latents, block_state.condition], dim=1)
|
| 61 |
+
block_state.latent_model_input = latent_model_input.to(block_state.latents.dtype)
|
| 62 |
+
block_state.timestep = t.expand(block_state.latents.shape[0])
|
| 63 |
+
return components, block_state
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class ChronoEditLoopDenoiser(ModularPipelineBlocks):
|
| 67 |
+
model_name = "chronoedit"
|
| 68 |
+
|
| 69 |
+
@property
|
| 70 |
+
def expected_components(self) -> List[ComponentSpec]:
|
| 71 |
+
return [
|
| 72 |
+
ComponentSpec(
|
| 73 |
+
"guider",
|
| 74 |
+
ClassifierFreeGuidance,
|
| 75 |
+
config=FrozenDict({"guidance_scale": 1.0}),
|
| 76 |
+
default_creation_method="from_config",
|
| 77 |
+
),
|
| 78 |
+
ComponentSpec("transformer", AutoModel),
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
@property
|
| 82 |
+
def inputs(self) -> List[InputParam]:
|
| 83 |
+
return [
|
| 84 |
+
InputParam("attention_kwargs"),
|
| 85 |
+
InputParam(
|
| 86 |
+
"latents",
|
| 87 |
+
required=True,
|
| 88 |
+
type_hint=torch.Tensor,
|
| 89 |
+
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
|
| 90 |
+
),
|
| 91 |
+
InputParam(
|
| 92 |
+
"condition",
|
| 93 |
+
required=True,
|
| 94 |
+
type_hint=torch.Tensor,
|
| 95 |
+
description="The conditioning latents to use for the denoising process. Can be generated in prepare_latent step.",
|
| 96 |
+
),
|
| 97 |
+
InputParam(
|
| 98 |
+
"image_embeds",
|
| 99 |
+
required=True,
|
| 100 |
+
type_hint=torch.Tensor,
|
| 101 |
+
description="The conditioning image embeddings to use for the denoising process. Can be generated in prepare_latent step.",
|
| 102 |
+
),
|
| 103 |
+
InputParam(
|
| 104 |
+
"num_inference_steps",
|
| 105 |
+
required=True,
|
| 106 |
+
type_hint=int,
|
| 107 |
+
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
|
| 108 |
+
),
|
| 109 |
+
InputParam(
|
| 110 |
+
kwargs_type="denoiser_input_fields",
|
| 111 |
+
description=(
|
| 112 |
+
"All conditional model inputs that need to be prepared with guider. "
|
| 113 |
+
"It should contain prompt_embeds/negative_prompt_embeds. "
|
| 114 |
+
"Please add `kwargs_type=denoiser_input_fields` to their parameter spec (`OutputParam`) when they are created and added to the pipeline state"
|
| 115 |
+
),
|
| 116 |
+
),
|
| 117 |
+
]
|
| 118 |
+
|
| 119 |
+
@torch.no_grad()
|
| 120 |
+
def __call__(self, components: ModularPipeline, block_state: BlockState, i: int, t: torch.Tensor) -> PipelineState:
|
| 121 |
+
# Map the keys we'll see on each `guider_state_batch` (e.g. guider_state_batch.prompt_embeds)
|
| 122 |
+
# to the corresponding (cond, uncond) fields on block_state. (e.g. block_state.prompt_embeds, block_state.negative_prompt_embeds)
|
| 123 |
+
guider_inputs = {
|
| 124 |
+
"prompt_embeds": (
|
| 125 |
+
getattr(block_state, "prompt_embeds", None),
|
| 126 |
+
getattr(block_state, "negative_prompt_embeds", None),
|
| 127 |
+
),
|
| 128 |
+
}
|
| 129 |
+
components.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)
|
| 130 |
+
|
| 131 |
+
guider_state = components.guider.prepare_inputs(guider_inputs)
|
| 132 |
+
|
| 133 |
+
# run the denoiser for each guidance batch
|
| 134 |
+
for guider_state_batch in guider_state:
|
| 135 |
+
components.guider.prepare_models(components.transformer)
|
| 136 |
+
cond_kwargs = {input_name: getattr(guider_state_batch, input_name) for input_name in guider_inputs.keys()}
|
| 137 |
+
prompt_embeds = cond_kwargs.pop("prompt_embeds")
|
| 138 |
+
|
| 139 |
+
# Predict the noise residual
|
| 140 |
+
# store the noise_pred in guider_state_batch so that we can apply guidance across all batches
|
| 141 |
+
guider_state_batch.noise_pred = components.transformer(
|
| 142 |
+
hidden_states=block_state.latent_model_input,
|
| 143 |
+
timestep=block_state.timestep,
|
| 144 |
+
encoder_hidden_states=prompt_embeds,
|
| 145 |
+
encoder_hidden_states_image=block_state.image_embeds,
|
| 146 |
+
attention_kwargs=block_state.attention_kwargs,
|
| 147 |
+
return_dict=False,
|
| 148 |
+
)[0]
|
| 149 |
+
components.guider.cleanup_models(components.transformer)
|
| 150 |
+
|
| 151 |
+
# Perform guidance
|
| 152 |
+
block_state.noise_pred = components.guider(guider_state)[0]
|
| 153 |
+
|
| 154 |
+
return components, block_state
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class ChronoEditDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
|
| 158 |
+
model_name = "chronoedit"
|
| 159 |
+
|
| 160 |
+
@property
|
| 161 |
+
def loop_expected_components(self) -> List[ComponentSpec]:
|
| 162 |
+
return [
|
| 163 |
+
ComponentSpec(
|
| 164 |
+
"guider",
|
| 165 |
+
ClassifierFreeGuidance,
|
| 166 |
+
config=FrozenDict({"guidance_scale": 1.0}),
|
| 167 |
+
default_creation_method="from_config",
|
| 168 |
+
),
|
| 169 |
+
ComponentSpec("scheduler", UniPCMultistepScheduler),
|
| 170 |
+
ComponentSpec("transformer", AutoModel),
|
| 171 |
+
]
|
| 172 |
+
|
| 173 |
+
@property
|
| 174 |
+
def loop_inputs(self) -> List[InputParam]:
|
| 175 |
+
return [
|
| 176 |
+
InputParam(
|
| 177 |
+
"timesteps",
|
| 178 |
+
required=True,
|
| 179 |
+
type_hint=torch.Tensor,
|
| 180 |
+
description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
|
| 181 |
+
),
|
| 182 |
+
InputParam(
|
| 183 |
+
"num_inference_steps",
|
| 184 |
+
required=True,
|
| 185 |
+
type_hint=int,
|
| 186 |
+
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
|
| 187 |
+
),
|
| 188 |
+
]
|
| 189 |
+
|
| 190 |
+
@torch.no_grad()
|
| 191 |
+
def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
|
| 192 |
+
block_state = self.get_block_state(state)
|
| 193 |
+
|
| 194 |
+
block_state.num_warmup_steps = max(
|
| 195 |
+
len(block_state.timesteps) - block_state.num_inference_steps * components.scheduler.order, 0
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
with self.progress_bar(total=block_state.num_inference_steps) as progress_bar:
|
| 199 |
+
for i, t in enumerate(block_state.timesteps):
|
| 200 |
+
components, block_state = self.loop_step(components, block_state, i=i, t=t)
|
| 201 |
+
if i == len(block_state.timesteps) - 1 or (
|
| 202 |
+
(i + 1) > block_state.num_warmup_steps and (i + 1) % components.scheduler.order == 0
|
| 203 |
+
):
|
| 204 |
+
progress_bar.update()
|
| 205 |
+
|
| 206 |
+
self.set_block_state(state, block_state)
|
| 207 |
+
|
| 208 |
+
return components, state
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class ChronoEditLoopAfterDenoiser(WanLoopAfterDenoiser):
|
| 212 |
+
model_name = "chronoedit"
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
class ChronoEditDenoiseStep(ChronoEditDenoiseLoopWrapper):
|
| 216 |
+
block_classes = [ChronoEditLoopBeforeDenoiser, ChronoEditLoopDenoiser, ChronoEditLoopAfterDenoiser]
|
| 217 |
+
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
|