import os import torch import gradio as gr import modules.scripts as scripts import modules.shared as shared from modules.script_callbacks import on_cfg_denoiser, remove_current_script_callbacks from modules.prompt_parser import SdConditioning class Script(scripts.Script): def title(self): return "Negative Prompt Weight Extention" def show(self, is_img2img): return scripts.AlwaysVisible def ui(self, is_img2img): with gr.Accordion("Negative Prompt Weight", open=True, elem_id="npw"): with gr.Row(equal_height=True): with gr.Column(scale=100): weight_input_slider = gr.Slider(minimum=0.00, maximum=2.00, step=.05, value=1.00, label="Weight", interactive=True, elem_id="npw-slider") with gr.Column(scale=1, min_width=120): with gr.Row(): weight_input = gr.Number(value=1.00, precision=4, label="Negative Prompt Weight", show_label=False, elem_id="npw-number") reset_but = gr.Button(value='✕', elem_id='npw-x', size='sm') js = """(v) => { ['#tab_txt2img #npw-x', '#tab_img2img #npw-x'].forEach((selector, index) => { const element = document.querySelector(selector); if (document.querySelector(`#tab_${index ? 'img2img' : 'txt2img'}`).style.display === 'block') { element.style.cssText += `outline:4px solid rgba(255,186,0,${Math.sqrt(Math.abs(v-1))}); border-radius: 0.4em !important;`; } }); return v; }""" weight_input.change(None, [weight_input], weight_input_slider, _js=js) weight_input_slider.change(None, weight_input_slider, weight_input, _js="(x) => x") reset_but.click(None, [], [weight_input,weight_input_slider], _js="(x) => [1,1]") self.infotext_fields = [] self.infotext_fields.extend([ (weight_input, "NPW_weight"), ]) self.paste_field_names = [] for _, field_name in self.infotext_fields: self.paste_field_names.append(field_name) return [weight_input] def process(self, p, weight): weight = getattr(p, 'NPW_weight', weight) if weight != 1 : self.print_warning(weight) self.width = p.width self.height = p.height self.weight = weight self.empty_uncond = None if hasattr(self, 'callbacks_added'): remove_current_script_callbacks() delattr(self, 'callbacks_added') # print('NPW callback removed') if self.weight != 1.0: self.empty_uncond = self.make_empty_uncond(self.width, self.height) on_cfg_denoiser(self.denoiser_callback) # print('NPW callback added') self.callbacks_added = True p.extra_generation_params.update({ "NPW_weight": self.weight, }) return def postprocess(self, p, processed, *args): if hasattr(self, 'callbacks_added'): remove_current_script_callbacks() delattr(self, 'callbacks_added') # print('NPW callback removed in post') def denoiser_callback(self, params): def concat_and_lerp(empty, tensor, weight): if empty.shape[0] != tensor.shape[0]: empty = empty.expand(tensor.shape[0], *empty.shape[1:]) if tensor.shape[1] > empty.shape[1]: num_concatenations = tensor.shape[1] // empty.shape[1] empty_concat = torch.cat([empty] * num_concatenations, dim=1) if tensor.shape[1] == empty_concat.shape[1] + 1: # assuming it's controlnet's marks(?) empty_concat = torch.cat([tensor[:, :1, :], empty_concat], dim=1) new_tensor = torch.lerp(empty_concat, tensor, weight) else: new_tensor = torch.lerp(empty, tensor, weight) return new_tensor uncond = params.text_uncond is_dict = isinstance(uncond, dict) if type(self.empty_uncond) != type(uncond): self.empty_uncond = self.make_empty_uncond(self.width, self.height) empty_uncond = self.empty_uncond if is_dict: uncond, cross = uncond['vector'], uncond['crossattn'] empty_uncond, empty_cross = empty_uncond['vector'], empty_uncond['crossattn'] params.text_uncond['vector'] = concat_and_lerp(empty_uncond, uncond, self.weight) params.text_uncond['crossattn'] = concat_and_lerp(empty_cross, cross, self.weight) else: params.text_uncond = concat_and_lerp(empty_uncond, uncond, self.weight) def make_empty_uncond(self, w, h): prompt = SdConditioning([""], is_negative_prompt=True, width=w, height=h) empty_uncond = shared.sd_model.get_learned_conditioning(prompt) return empty_uncond def print_warning(self, value): if value == 1: return color_code = '\033[33m' if value < 0.5 or value > 1.5: color_code = '\033[93m' print(f"\n{color_code}ATTENTION: Negative prompt weight is set to {value}\033[0m") def xyz_support(): for scriptDataTuple in scripts.scripts_data: if os.path.basename(scriptDataTuple.path) == 'xyz_grid.py': xy_grid = scriptDataTuple.module npw_weight = xy_grid.AxisOption( '[NPW] Weight', float, xy_grid.apply_field('NPW_weight') ) xy_grid.axis_options.extend([ npw_weight ]) try: xyz_support() except Exception as e: print(f'Error trying to add XYZ plot options for NPW', e)