|
|
from diffusers import EulerDiscreteScheduler |
|
|
from torch import Tensor |
|
|
import torch |
|
|
from typing import Callable, List, Optional, Tuple, Union, Dict, Any, Literal |
|
|
from diffusers.utils import BaseOutput |
|
|
try: |
|
|
|
|
|
from diffusers.utils import randn_tensor |
|
|
except ImportError: |
|
|
|
|
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
from diffusers.configuration_utils import ConfigMixin |
|
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin |
|
|
class Output(BaseOutput): |
|
|
""" |
|
|
Output class for the scheduler's step function output. |
|
|
|
|
|
Args: |
|
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
|
denoising loop. |
|
|
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
|
The predicted denoised sample (x_{0}) based on the model output from the current timestep. |
|
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
|
""" |
|
|
|
|
|
prev_sample: torch.FloatTensor |
|
|
pred_original_sample: Optional[torch.FloatTensor] = None |
|
|
class Euler(EulerDiscreteScheduler, SchedulerMixin, ConfigMixin): |
|
|
history_d=0 |
|
|
momentum=0.95 |
|
|
momentum_hist=0.75 |
|
|
used_history_d=None |
|
|
def init_hist_d(self,x:Tensor) -> Union[Literal[0], Tensor]: |
|
|
|
|
|
if self.history_d == 0: self.used_history_d = 0 |
|
|
elif self.history_d == 'rand_init': self.used_history_d = x |
|
|
elif self.history_d == 'rand_new': self.used_history_d = torch.randn_like(x) |
|
|
else: raise ValueError(f'unknown momentum_hist_init: {self.history_d}') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def momentum_step(self, x:Tensor, d:Tensor, dt:Tensor): |
|
|
hd=self.used_history_d |
|
|
|
|
|
p = 1.0 - self.momentum |
|
|
self.momentum_d = (1.0 - p) * d + p * hd |
|
|
|
|
|
x = x + self.momentum_d * dt |
|
|
|
|
|
|
|
|
q = 1.0 - self.momentum_hist |
|
|
if (isinstance(hd, int) and hd == 0): |
|
|
hd = self.momentum_d |
|
|
else: |
|
|
hd = (1.0 - q) * hd + q * self.momentum_d |
|
|
self.used_history_d=hd |
|
|
return x |
|
|
def step( |
|
|
self, |
|
|
model_output: torch.FloatTensor, |
|
|
timestep: Union[float, torch.FloatTensor], |
|
|
sample: torch.FloatTensor, |
|
|
s_churn: float = 0.0, |
|
|
s_tmin: float = 0.0, |
|
|
s_tmax: float = float("inf"), |
|
|
s_noise: float = 1.0, |
|
|
generator: Optional[torch.Generator] = None, |
|
|
return_dict: bool = True, |
|
|
): |
|
|
""" |
|
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
|
|
Args: |
|
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
|
timestep (`float`): current timestep in the diffusion chain. |
|
|
sample (`torch.FloatTensor`): |
|
|
current instance of sample being created by diffusion process. |
|
|
s_churn (`float`) |
|
|
s_tmin (`float`) |
|
|
s_tmax (`float`) |
|
|
s_noise (`float`) |
|
|
generator (`torch.Generator`, optional): Random number generator. |
|
|
return_dict (`bool`): option for returning tuple rather than EulerDiscreteSchedulerOutput class |
|
|
|
|
|
Returns: |
|
|
[`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] or `tuple`: |
|
|
[`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a |
|
|
`tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
|
|
""" |
|
|
if not isinstance(self.used_history_d, torch.Tensor) and not isinstance(self.used_history_d, int): |
|
|
self.init_hist_d(sample) |
|
|
if ( |
|
|
isinstance(timestep, int) |
|
|
or isinstance(timestep, torch.IntTensor) |
|
|
or isinstance(timestep, torch.LongTensor) |
|
|
): |
|
|
raise ValueError( |
|
|
( |
|
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
|
" one of the `scheduler.timesteps` as a timestep." |
|
|
), |
|
|
) |
|
|
|
|
|
if not self.is_scale_input_called: |
|
|
logger.warning( |
|
|
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " |
|
|
"See `StableDiffusionPipeline` for a usage example." |
|
|
) |
|
|
|
|
|
if isinstance(timestep, torch.Tensor): |
|
|
timestep = timestep.to(self.timesteps.device) |
|
|
if self.step_index is None: |
|
|
self._init_step_index(timestep) |
|
|
sigma = self.sigmas[self.step_index] |
|
|
|
|
|
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 |
|
|
|
|
|
noise = randn_tensor( |
|
|
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator |
|
|
) |
|
|
|
|
|
eps = noise * s_noise |
|
|
sigma_hat = sigma * (gamma + 1) |
|
|
|
|
|
if gamma > 0: |
|
|
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample": |
|
|
pred_original_sample = model_output |
|
|
elif self.config.prediction_type == "epsilon": |
|
|
pred_original_sample = sample - sigma_hat * model_output |
|
|
elif self.config.prediction_type == "v_prediction": |
|
|
|
|
|
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) |
|
|
else: |
|
|
raise ValueError( |
|
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
|
) |
|
|
|
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma_hat |
|
|
|
|
|
dt = self.sigmas[self.step_index + 1] - sigma_hat |
|
|
|
|
|
prev_sample = self.momentum_step(sample,derivative,dt) |
|
|
|
|
|
self._step_index+=1 |
|
|
if self._step_index==(len(self.sigmas)-1): |
|
|
self.used_history_d=None |
|
|
if not return_dict: |
|
|
return (prev_sample,) |
|
|
|
|
|
return Output( |
|
|
prev_sample=prev_sample, pred_original_sample=pred_original_sample |
|
|
) |