File size: 10,671 Bytes
db57927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import modules.scripts as scripts
import gradio as gr
import os
import math
from modules import images
from modules.processing import process_images, Processed
from modules.shared import opts, cmd_opts, state
from math import floor

class ProcessedImagesWrapper:
    def __init__(self, images, schedule, script_title):
        self.images = images
        self.schedule = schedule
        self.script_title = script_title  # Store the script title

    def js(self):
        flat_images = []
        for item in self.images:
            if isinstance(item, list):
                flat_images.extend([img for img in item if hasattr(img, 'js')])
            elif hasattr(item, 'js'):
                flat_images.append(item)
        return [image.js() for image in flat_images]

    @property
    def info(self):
        info_texts = []
        if isinstance(self.images, list):  # Check if self.images is indeed a list
            for index, image in enumerate(self.images):
                if hasattr(image, 'info'):
                    # Append the schedule type to the existing parameters
                    original_params = image.info.get('parameters', 'Parameter Missing')
                    # Add the schedule type to the existing parameters
                    params_with_schedule = f"{original_params}, Script: {self.script_title}, Schedule: {self.schedule[index]}"
                    info_texts.append(params_with_schedule)
        else:
            return "self.images is not a list"
        return "\n".join(info_texts)

    @property
    def comments(self):
        comments = [image.comments for image in self.images if hasattr(image, 'comments')]
        return "\n".join(comments) if comments else ""

class Script(scripts.Script):
    def title(self):
        return "epiCFG Schedule Type"

    def show(self, is_img2img):
        return not(is_img2img)

    def ui(self, is_img2img):
        schedule_options = [
            'Constant', 'Linear', 'Clamp-Linear (c=4.0)', 'Clamp-Linear (c=2.0)',
            'Clamp-Linear (c=1.0)', 'Inverse-Linear', 'PCS (s=0.01)', 'PCS (s=0.1)',
            'PCS (s=1.0)', 'PCS (s=2.0)', 'PCS (s=4.0)', 'Clamp-Cosine (c=4.0)',
            'Clamp-Cosine (c=2.0)', 'Clamp-Cosine (c=1.0)', 'Cosine', 'Sine',
            'V-Shape', 'A-Shape', 'Interval'
        ]
        schedule_multiselect_dropdown = gr.components.Dropdown(label="Schedule", choices=schedule_options, default="Inverse-Linear", multiselect=True)
        return [schedule_multiselect_dropdown]

    def run(self, p, schedules):
        strength = 1.0  # Fixed strength value
        processed_images = []
        all_processed_images = []
        script_title = self.title()  # Get the title from the title method

        if p.sampler_name in ('Euler a', 'Euler', 'LMS', 'DPM++ 2M', 'DPM fast', 'LMS Karras', 'DPM++ 2M Karras','DPM++ 2M SDE','DPM++ 3M SDE','Restart'):
            max_mul_count = p.steps * p.batch_size
            steps_per_mul = p.batch_size
        elif p.sampler_name in ('Heun', 'DPM2', 'DPM2 a', 'DPM++ 2S a', 'DPM2 Karras', 'DPM2 a Karras', 'DPM++ 2S a Karras', 'DPM++ SDE', 'DPM++ SDE Karras','UniPC'):
            max_mul_count = ((p.steps * 2) - 1) * p.batch_size
            steps_per_mul = 2 * p.batch_size
        elif p.sampler_name == 'DDIM':
            max_mul_count = fix_ddim_step_count(p.steps)
            steps_per_mul = 1
        elif p.sampler_name == 'UniPC':
            max_mul_count = fix_ddim_step_count(p.steps)
            steps_per_mul = 1
        elif p.sampler_name == 'PLMS':
            max_mul_count = fix_ddim_step_count(p.steps) + 1
            steps_per_mul = 1
        else:
            print('!!!warning: unsupported sampler ', p.sampler_name)
            return
        target_value = p.cfg_scale * (1 - strength)
        saved_obj = p.cfg_scale

        for schedule in schedules:
            print('\nepiCFG: ', schedule, end='\n')
            p.cfg_scale = Fake_float(p.cfg_scale, target_value, max_mul_count, steps_per_mul, p.steps, schedule)
            proc = process_images(p)
            processed_images = process_image_to_array(proc)
            all_processed_images.extend(processed_images)
            p.cfg_scale = saved_obj
        return ProcessedImagesWrapper(all_processed_images, schedules, script_title)

class Fake_float(float):
    def __new__(self, orig_value, target_value, max_mul_count, steps_per_mul, max_steps, schedule):
        return float.__new__(self, orig_value)

    def __init__(self, orig_value, target_value, max_mul_count, steps_per_mul, max_steps, schedule):
        float.__init__(orig_value)
        self.orig_value = orig_value
        self.target_value = target_value
        self.max_mul_count = max_mul_count
        self.current_mul = 0
        self.steps_per_mul = steps_per_mul
        self.current_step = 0
        self.max_step_count = (max_mul_count // steps_per_mul) + (max_mul_count % steps_per_mul > 0)
        self.max_steps = max_steps
        self.schedule = schedule

    def __mul__(self,other):
        return self.fake_mul(other)

    def __rmul__(self,other):
        return self.fake_mul(other)

    def fake_mul(self,other):
        if (self.max_step_count==1):
            fake_value= self.orig_value
        else:
            if self.schedule == 'Constant':
                fake_value = constant_schedule(self.current_step, self.max_steps, self.orig_value)
            elif self.schedule == 'Linear':
                fake_value = linear_schedule(self.current_step, self.max_steps, self.orig_value)
            elif self.schedule == 'Clamp-Linear (c=4.0)':
                fake_value = clamp_linear_schedule(self.current_step, self.max_steps, self.orig_value, 4.0)
            elif self.schedule == 'Clamp-Linear (c=2.0)':
                fake_value = clamp_linear_schedule(self.current_step, self.max_steps, self.orig_value, 2.0)
            elif self.schedule == 'Clamp-Linear (c=1.0)':
                fake_value = clamp_linear_schedule(self.current_step, self.max_steps, self.orig_value, 1.0)
            elif self.schedule == 'Inverse-Linear':
                fake_value = invlinear_schedule(self.current_step, self.max_steps, self.orig_value)
            elif self.schedule == 'PCS (s=0.01)':
                fake_value = powered_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 0.01)
            elif self.schedule == 'PCS (s=0.1)':
                fake_value = powered_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 0.1)
            elif self.schedule == 'PCS (s=1.0)':
                fake_value = powered_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 1.0)
            elif self.schedule == 'PCS (s=2.0)':
                fake_value = powered_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 2.0)
            elif self.schedule == 'PCS (s=4.0)':
                fake_value = powered_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 4.0)
            elif self.schedule == 'Clamp-Cosine (c=4.0)':
                fake_value = clamp_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 4.0)
            elif self.schedule == 'Clamp-Cosine (c=2.0)':
                fake_value = clamp_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 2.0)
            elif self.schedule == 'Clamp-Cosine (c=1.0)':
                fake_value = clamp_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 1.0)
            elif self.schedule == 'Cosine':
                fake_value = cosine_schedule(self.current_step, self.max_steps, self.orig_value)
            elif self.schedule == 'Sine':
                fake_value = sine_schedule(self.current_step, self.max_steps, self.orig_value)
            elif self.schedule == 'V-Shape':
                fake_value = v_shape_schedule(self.current_step, self.max_steps, self.orig_value)
            elif self.schedule == 'A-Shape':
                fake_value = a_shape_schedule(self.current_step, self.max_steps, self.orig_value)
            elif self.schedule == 'Interval':
                fake_value = interval_schedule(self.current_step, self.max_steps, self.orig_value, 0.25, 5.42)
            else:
                print(f"Invalid CFG schedule: {self.schedule}")
                fake_value = self.orig_value
        self.current_mul = (self.current_mul+1) % self.max_mul_count
        self.current_step = (self.current_mul) // self.steps_per_mul
        return fake_value * other

def process_image_to_array(processed):
    if hasattr(processed, 'images') and isinstance(processed.images, list):
        return processed.images
    else:
        print("Processed object does not contain an iterable list of images.")
        return []

def fix_ddim_step_count(steps):
    valid_step = 999 / (1000 // steps)
    if valid_step == floor(valid_step): steps=int(valid_step)+1
    if ((1000 % steps)!=0): steps +=1
    return steps

def constant_schedule(step: int, max_steps: int, w0: float):
    return w0

def linear_schedule(step: int, max_steps: int, w0: float):
    return w0 * 2 * (1 - step / max_steps)

def clamp_linear_schedule(step: int, max_steps: int, w0: float, c: float):
    return max(c, linear_schedule(step, max_steps, w0))

def clamp_cosine_schedule(step: int, max_steps: int, w0: float, c: float):
    return max(c, cosine_schedule(step, max_steps, w0))

def invlinear_schedule(step: int, max_steps: int, w0: float):
    return w0 * 2 * (step / max_steps)

def powered_cosine_schedule(step: int, max_steps: int, w0: float, s: float):
    return w0 * ((1 - math.cos(math.pi * ((max_steps - step) / max_steps)**s))/2.0)

def cosine_schedule(step: int, max_steps: int, w0: float):
    return w0 * (1 + math.cos(math.pi * step / max_steps))

def sine_schedule(step: int, max_steps: int, w0: float):
    return w0 * (math.sin((math.pi * step / max_steps) - (math.pi / 2)) + 1) 

def v_shape_schedule(step: int, max_steps: int, w0: float):
    if step < max_steps / 2:
        return invlinear_schedule(step, max_steps, w0)
    return linear_schedule(step, max_steps, w0)

def a_shape_schedule(step: int, max_steps: int, w0: float):
    if step < max_steps / 2:
        return linear_schedule(step, max_steps, w0)
    return invlinear_schedule(step, max_steps, w0)

def interval_schedule(step: int, max_steps: int, w0: float, low: float, high: float):
    if low <= step <= high:
        return w0
    return 1.0