File size: 10,671 Bytes
db57927 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import modules.scripts as scripts
import gradio as gr
import os
import math
from modules import images
from modules.processing import process_images, Processed
from modules.shared import opts, cmd_opts, state
from math import floor
class ProcessedImagesWrapper:
def __init__(self, images, schedule, script_title):
self.images = images
self.schedule = schedule
self.script_title = script_title # Store the script title
def js(self):
flat_images = []
for item in self.images:
if isinstance(item, list):
flat_images.extend([img for img in item if hasattr(img, 'js')])
elif hasattr(item, 'js'):
flat_images.append(item)
return [image.js() for image in flat_images]
@property
def info(self):
info_texts = []
if isinstance(self.images, list): # Check if self.images is indeed a list
for index, image in enumerate(self.images):
if hasattr(image, 'info'):
# Append the schedule type to the existing parameters
original_params = image.info.get('parameters', 'Parameter Missing')
# Add the schedule type to the existing parameters
params_with_schedule = f"{original_params}, Script: {self.script_title}, Schedule: {self.schedule[index]}"
info_texts.append(params_with_schedule)
else:
return "self.images is not a list"
return "\n".join(info_texts)
@property
def comments(self):
comments = [image.comments for image in self.images if hasattr(image, 'comments')]
return "\n".join(comments) if comments else ""
class Script(scripts.Script):
def title(self):
return "epiCFG Schedule Type"
def show(self, is_img2img):
return not(is_img2img)
def ui(self, is_img2img):
schedule_options = [
'Constant', 'Linear', 'Clamp-Linear (c=4.0)', 'Clamp-Linear (c=2.0)',
'Clamp-Linear (c=1.0)', 'Inverse-Linear', 'PCS (s=0.01)', 'PCS (s=0.1)',
'PCS (s=1.0)', 'PCS (s=2.0)', 'PCS (s=4.0)', 'Clamp-Cosine (c=4.0)',
'Clamp-Cosine (c=2.0)', 'Clamp-Cosine (c=1.0)', 'Cosine', 'Sine',
'V-Shape', 'A-Shape', 'Interval'
]
schedule_multiselect_dropdown = gr.components.Dropdown(label="Schedule", choices=schedule_options, default="Inverse-Linear", multiselect=True)
return [schedule_multiselect_dropdown]
def run(self, p, schedules):
strength = 1.0 # Fixed strength value
processed_images = []
all_processed_images = []
script_title = self.title() # Get the title from the title method
if p.sampler_name in ('Euler a', 'Euler', 'LMS', 'DPM++ 2M', 'DPM fast', 'LMS Karras', 'DPM++ 2M Karras','DPM++ 2M SDE','DPM++ 3M SDE','Restart'):
max_mul_count = p.steps * p.batch_size
steps_per_mul = p.batch_size
elif p.sampler_name in ('Heun', 'DPM2', 'DPM2 a', 'DPM++ 2S a', 'DPM2 Karras', 'DPM2 a Karras', 'DPM++ 2S a Karras', 'DPM++ SDE', 'DPM++ SDE Karras','UniPC'):
max_mul_count = ((p.steps * 2) - 1) * p.batch_size
steps_per_mul = 2 * p.batch_size
elif p.sampler_name == 'DDIM':
max_mul_count = fix_ddim_step_count(p.steps)
steps_per_mul = 1
elif p.sampler_name == 'UniPC':
max_mul_count = fix_ddim_step_count(p.steps)
steps_per_mul = 1
elif p.sampler_name == 'PLMS':
max_mul_count = fix_ddim_step_count(p.steps) + 1
steps_per_mul = 1
else:
print('!!!warning: unsupported sampler ', p.sampler_name)
return
target_value = p.cfg_scale * (1 - strength)
saved_obj = p.cfg_scale
for schedule in schedules:
print('\nepiCFG: ', schedule, end='\n')
p.cfg_scale = Fake_float(p.cfg_scale, target_value, max_mul_count, steps_per_mul, p.steps, schedule)
proc = process_images(p)
processed_images = process_image_to_array(proc)
all_processed_images.extend(processed_images)
p.cfg_scale = saved_obj
return ProcessedImagesWrapper(all_processed_images, schedules, script_title)
class Fake_float(float):
def __new__(self, orig_value, target_value, max_mul_count, steps_per_mul, max_steps, schedule):
return float.__new__(self, orig_value)
def __init__(self, orig_value, target_value, max_mul_count, steps_per_mul, max_steps, schedule):
float.__init__(orig_value)
self.orig_value = orig_value
self.target_value = target_value
self.max_mul_count = max_mul_count
self.current_mul = 0
self.steps_per_mul = steps_per_mul
self.current_step = 0
self.max_step_count = (max_mul_count // steps_per_mul) + (max_mul_count % steps_per_mul > 0)
self.max_steps = max_steps
self.schedule = schedule
def __mul__(self,other):
return self.fake_mul(other)
def __rmul__(self,other):
return self.fake_mul(other)
def fake_mul(self,other):
if (self.max_step_count==1):
fake_value= self.orig_value
else:
if self.schedule == 'Constant':
fake_value = constant_schedule(self.current_step, self.max_steps, self.orig_value)
elif self.schedule == 'Linear':
fake_value = linear_schedule(self.current_step, self.max_steps, self.orig_value)
elif self.schedule == 'Clamp-Linear (c=4.0)':
fake_value = clamp_linear_schedule(self.current_step, self.max_steps, self.orig_value, 4.0)
elif self.schedule == 'Clamp-Linear (c=2.0)':
fake_value = clamp_linear_schedule(self.current_step, self.max_steps, self.orig_value, 2.0)
elif self.schedule == 'Clamp-Linear (c=1.0)':
fake_value = clamp_linear_schedule(self.current_step, self.max_steps, self.orig_value, 1.0)
elif self.schedule == 'Inverse-Linear':
fake_value = invlinear_schedule(self.current_step, self.max_steps, self.orig_value)
elif self.schedule == 'PCS (s=0.01)':
fake_value = powered_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 0.01)
elif self.schedule == 'PCS (s=0.1)':
fake_value = powered_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 0.1)
elif self.schedule == 'PCS (s=1.0)':
fake_value = powered_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 1.0)
elif self.schedule == 'PCS (s=2.0)':
fake_value = powered_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 2.0)
elif self.schedule == 'PCS (s=4.0)':
fake_value = powered_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 4.0)
elif self.schedule == 'Clamp-Cosine (c=4.0)':
fake_value = clamp_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 4.0)
elif self.schedule == 'Clamp-Cosine (c=2.0)':
fake_value = clamp_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 2.0)
elif self.schedule == 'Clamp-Cosine (c=1.0)':
fake_value = clamp_cosine_schedule(self.current_step, self.max_steps, self.orig_value, 1.0)
elif self.schedule == 'Cosine':
fake_value = cosine_schedule(self.current_step, self.max_steps, self.orig_value)
elif self.schedule == 'Sine':
fake_value = sine_schedule(self.current_step, self.max_steps, self.orig_value)
elif self.schedule == 'V-Shape':
fake_value = v_shape_schedule(self.current_step, self.max_steps, self.orig_value)
elif self.schedule == 'A-Shape':
fake_value = a_shape_schedule(self.current_step, self.max_steps, self.orig_value)
elif self.schedule == 'Interval':
fake_value = interval_schedule(self.current_step, self.max_steps, self.orig_value, 0.25, 5.42)
else:
print(f"Invalid CFG schedule: {self.schedule}")
fake_value = self.orig_value
self.current_mul = (self.current_mul+1) % self.max_mul_count
self.current_step = (self.current_mul) // self.steps_per_mul
return fake_value * other
def process_image_to_array(processed):
if hasattr(processed, 'images') and isinstance(processed.images, list):
return processed.images
else:
print("Processed object does not contain an iterable list of images.")
return []
def fix_ddim_step_count(steps):
valid_step = 999 / (1000 // steps)
if valid_step == floor(valid_step): steps=int(valid_step)+1
if ((1000 % steps)!=0): steps +=1
return steps
def constant_schedule(step: int, max_steps: int, w0: float):
return w0
def linear_schedule(step: int, max_steps: int, w0: float):
return w0 * 2 * (1 - step / max_steps)
def clamp_linear_schedule(step: int, max_steps: int, w0: float, c: float):
return max(c, linear_schedule(step, max_steps, w0))
def clamp_cosine_schedule(step: int, max_steps: int, w0: float, c: float):
return max(c, cosine_schedule(step, max_steps, w0))
def invlinear_schedule(step: int, max_steps: int, w0: float):
return w0 * 2 * (step / max_steps)
def powered_cosine_schedule(step: int, max_steps: int, w0: float, s: float):
return w0 * ((1 - math.cos(math.pi * ((max_steps - step) / max_steps)**s))/2.0)
def cosine_schedule(step: int, max_steps: int, w0: float):
return w0 * (1 + math.cos(math.pi * step / max_steps))
def sine_schedule(step: int, max_steps: int, w0: float):
return w0 * (math.sin((math.pi * step / max_steps) - (math.pi / 2)) + 1)
def v_shape_schedule(step: int, max_steps: int, w0: float):
if step < max_steps / 2:
return invlinear_schedule(step, max_steps, w0)
return linear_schedule(step, max_steps, w0)
def a_shape_schedule(step: int, max_steps: int, w0: float):
if step < max_steps / 2:
return linear_schedule(step, max_steps, w0)
return invlinear_schedule(step, max_steps, w0)
def interval_schedule(step: int, max_steps: int, w0: float, low: float, high: float):
if low <= step <= high:
return w0
return 1.0
|