File size: 16,195 Bytes
f4a41d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import sys, os
import random
import uuid
import re
from datetime import datetime
import time
sys.path.append(os.path.abspath(".."))
from call_txt2img import *
from call_img2img import *
from build_dynamic_prompt import *
from call_extras import *
from model_lists import *
def generateimages(amount = 1, size = "all",model = "currently selected model",samplingsteps = "40",cfg= "7",hiresfix = True,hiressteps ="0",denoisestrength="0.6",samplingmethod="DPM++ SDE Karras", upscaler="R-ESRGAN 4x+", hiresscale="2",apiurl="http://127.0.0.1:7860",qualitygate=False,quality="7.6",runs="5",insanitylevel="5",subject="all", artist="all", imagetype="all",silentmode=False, workprompt="", antistring="",prefixprompt="", suffixprompt="", negativeprompt="",promptcompounderlevel = "1", seperator="comma", img2imgbatch = "1", img2imgsamplingsteps = "20", img2imgcfg = "7", img2imgsamplingmethod = "DPM++ SDE Karras", img2imgupscaler = "R-ESRGAN 4x+", img2imgmodel = "currently selected model", img2imgactivate = False, img2imgscale = "2", img2imgpadding = "64",img2imgdenoisestrength="0.3",ultimatesdupscale=False,usdutilewidth = "512", usdutileheight = "0", usdumaskblur = "8", usduredraw ="Linear", usduSeamsfix = "None", usdusdenoise = "0.35", usduswidth = "64", usduspadding ="32", usdusmaskblur = "8",controlnetenabled=False, controlnetmodel="",img2imgdenoisestrengthmod="-0.05",enableextraupscale = False,controlnetblockymode = False,extrasupscaler1 = "all",extrasupscaler2 ="all",extrasupscaler2visiblity="0.5",extrasupscaler2gfpgan="0",extrasupscaler2codeformer="0.15",extrasupscaler2codeformerweight="0.1",extrasresize="2",onlyupscale="false",givensubject="",smartsubject=True,giventypeofimage="",imagemodechance=20, gender="all", chosensubjectsubtypeobject="all", chosensubjectsubtypehumanoid="all", chosensubjectsubtypeconcept="all", increasestability = False, qualityhiresfix = False, qualitymode = "highest", qualitykeep="keep used", basesize = "512", promptvariantinsanitylevel = 0, givenoutfit = "", autonegativeprompt = True, autonegativepromptstrength = 0, autonegativepromptenhance = False, base_model = "SD1.5", OBP_preset = "", amountoffluff = "none", promptenhancer = "none", presetprefix = "", presetsuffix = ""):
loops = int(amount) # amount of images to generate
steps = 0
upscalefilelist=[]
originalimage = ""
originalpnginfo =""
randomprompt = ""
filename=""
continuewithnextpart = True
randomsubject = ""
originalmodel = model
originalsamplingmethod = samplingmethod
originalnegativeprompt = negativeprompt
originalimg2imgmodel = img2imgmodel
originalimg2imgsamplingmethod = img2imgsamplingmethod
originalimg2imgupscaler = img2imgupscaler
originalupscaler = upscaler
insanitylevel = int(insanitylevel)
originalimg2imgdenoisestrength = img2imgdenoisestrength
originalimg2imgpadding = img2imgpadding
currentlyselectedmodel = ""
modellist=get_models()
samplerlist=get_samplers()
upscalerlist=get_upscalers()
img2imgupscalerlist=get_upscalers_for_img2img()
img2imgsamplerlist=get_samplers_for_img2img()
tempmodel = "v1-5-pruned-emaonly.safetensors [6ce0161689]"
optionsresponse = requests.get(url=f'{apiurl}/sdapi/v1/options')
optionsresponsejson = optionsresponse.json()
currentlyselectedmodelhash = optionsresponsejson["sd_checkpoint_hash"]
sdmodelsrespone = requests.get(url=f'{apiurl}/sdapi/v1/sd-models')
sdmodelsresponsejson = sdmodelsrespone.json()
for item in sdmodelsresponsejson:
if(item['sha256'] == currentlyselectedmodelhash):
currentlyselectedmodel = item['title']
break
# Print the 'title' if found
if currentlyselectedmodel != "":
print("current selected model is:")
print(currentlyselectedmodel)
else:
print("Cannot find current model.")
currentlyselectedmodel = tempmodel
while(currentlyselectedmodel == tempmodel or tempmodel not in modellist):
tempmodel = random.choice(modellist)
if(onlyupscale==True):
script_dir = os.path.dirname(os.path.abspath(__file__)) # Script directory
inputupscalemefolder = os.path.join(script_dir, "./automated_outputs/upscale_me/" )
for upscalefilename in os.listdir(inputupscalemefolder):
f = os.path.join(inputupscalemefolder, upscalefilename)
# checking if it is a file
if os.path.isfile(f):
if(f[-3:]!="txt"):
upscalefilelist.append(f)
loops = len(upscalefilelist)
if(loops==0):
print('No files to upscale found! Please place images in //upscale_me// folder')
else:
print("")
print("Found and upscaling files")
print("")
if(ultimatesdupscale==False):
upscalescript="SD upscale"
else:
upscalescript="Ultimate SD upscale"
while steps < loops:
# load the base model as a workaround
if(steps > 0 and increasestability == True):
print("")
print("Increase Stability has been turned on.")
print("To prevent a memory issue, we are going to unload and then load the checkpoint back in.")
print("This helps with a memory leak issue. However A1111 is bad with memory management.")
print("")
response = requests.post(url=f'{apiurl}/sdapi/v1/unload-checkpoint')
print("model unloaded")
response = requests.post(url=f'{apiurl}/sdapi/v1/reload-checkpoint')
print("model reloaded")
# build prompt
if(silentmode==True and workprompt == ""):
print("Trying to use provided workflow prompt, but is empty. Generating a random prompt instead.")
if(onlyupscale==False): # only do txt2img when onlyupscale is False
if(silentmode==True and workprompt != ""):
randomprompt = createpromptvariant(workprompt, promptvariantinsanitylevel)
print("Using provided workflow prompt")
print(randomprompt)
else:
randompromptlist = build_dynamic_prompt(insanitylevel,subject,artist,imagetype, False,antistring,prefixprompt,suffixprompt,promptcompounderlevel, seperator,givensubject,smartsubject,giventypeofimage,imagemodechance, gender, chosensubjectsubtypeobject, chosensubjectsubtypehumanoid, chosensubjectsubtypeconcept,True,False,-1,givenoutfit, prompt_g_and_l=True, base_model=base_model, OBP_preset=OBP_preset, prompt_enhancer=promptenhancer, preset_prefix=presetprefix, preset_suffix=presetsuffix)
randomprompt = randompromptlist[0]
randomsubject = randompromptlist[1]
if(autonegativeprompt):
negativeprompt = build_dynamic_negative(positive_prompt=randomprompt, insanitylevel=autonegativepromptstrength,enhance=autonegativepromptenhance, existing_negative_prompt=originalnegativeprompt, base_model=base_model)
randomprompt = flufferizer(prompt=randomprompt, amountoffluff=amountoffluff)
if(randomsubject == ""):
# make the filename, from from a to the first comma
# find the index of the first comma after "of a" or end of the prompt
if(randomprompt.find("of a ") != -1):
start_index = randomprompt.find("of a ") + len("of a ")
end_index = randomprompt.find(",", start_index)
if(end_index == -1):
end_index=len(randomprompt)
else:
start_index = 0
end_index = 128
# extract the desired substring using slicing
filename = randomprompt[start_index:end_index]
else:
filename = randomsubject[0:128] # Fix for too long filenames
# cleanup some unsafe things in the filename
filename = filename.replace("\"", "")
filename = filename.replace("[", "")
filename = filename.replace("|", "")
filename = filename.replace("]", "")
filename = filename.replace("<", "")
filename = filename.replace(">", "")
filename = filename.replace(":", "_")
filename = filename.replace(".", "")
filename = re.sub(r'[0-9]+', '', filename)
safe_characters = set("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_.")
# Use regular expression to filter out any characters not in the whitelist
filename = re.sub(r"[^{}]+".format(re.escape(''.join(safe_characters))), '', filename)
if(filename==""):
filename = str(uuid.uuid4())
# create a datetime object for the current date and time
now = datetime.now()
filenamecomplete = now.strftime("%Y%m%d%H%M%S") + "_" + filename.replace(" ", "_").strip()
#Check if there is any random value we have to choose or not
if(originalmodel=="all"):
model = random.choice(modellist)
#lets not do inpainting models
while "inpaint" in model:
model = random.choice(modellist)
print("Going to run with model " + model)
if(originalmodel=="currently selected model"):
model = currentlyselectedmodel
# set the model here
#if(originalmodel!="currently selected model"):
option_payload = {
"sd_model_checkpoint": model
}
response = requests.post(url=f'{apiurl}/sdapi/v1/options', json=option_payload)
if(originalsamplingmethod=="all"):
samplingmethod = random.choice(samplerlist)
print ("Going to run with sampling method " + samplingmethod)
if(originalupscaler=="all" and hiresfix == True):
upscaler = random.choice(upscalerlist)
print ("Going to run with upscaler " + upscaler)
# WebUI fix for PLMS and UniPC and hiresfix
if(samplingmethod in ['PLMS', 'UniPC']): # PLMS/UniPC do not support hirefix so we just silently switch to DDIM
samplingmethod = 'DDIM'
txt2img = call_txt2img(randomprompt, size ,hiresfix, 0, filenamecomplete,model ,samplingsteps,cfg, hiressteps, denoisestrength,samplingmethod, upscaler,hiresscale,apiurl,qualitygate,quality,runs,negativeprompt, qualityhiresfix, qualitymode, qualitykeep, basesize)
originalimage = txt2img[0] #Set this for later use
originalpnginfo = txt2img[1] #Sort of hacky way of bringing this forward. But if it works, it works
continuewithnextpart = txt2img[2]
image = txt2img[0]
else:
if(filename==""):
filename = str(uuid.uuid4())
# create a datetime object for the current date and time
now = datetime.now()
filenamecomplete = now.strftime("%Y%m%d%H%M%S") + "_" + filename.replace(" ", "_").strip()
image = upscalefilelist[steps] # else we get the image from the upscale file list
originalimage = image # this is also the original image file
# upscale via img2img
img2imgloops = int(img2imgbatch)
if(img2imgactivate == False or continuewithnextpart == False): # If we dont want to run, turn it off
img2imgloops = 0
else:
#Check if there is any random value we have to choose or not
if(originalimg2imgmodel=="all"):
img2imgmodel = random.choice(modellist)
#lets not do inpainting models
while "inpaint" in model:
img2imgmodel = random.choice(modellist)
print("Going to upscale with model " + img2imgmodel)
if(originalimg2imgmodel=="currently selected model"):
img2imgmodel = currentlyselectedmodel
# set the model here
#if(originalimg2imgmodel!="currently selected model"):
option_payload = {
"sd_model_checkpoint": img2imgmodel
}
response = requests.post(url=f'{apiurl}/sdapi/v1/options', json=option_payload)
if(originalimg2imgsamplingmethod=="all"):
img2imgsamplingmethod = random.choice(img2imgsamplerlist)
print ("Going to upscale with sampling method " + img2imgsamplingmethod)
if(originalimg2imgupscaler=="all"):
img2imgupscaler = random.choice(img2imgupscalerlist)
print ("Going to run with upscaler " + img2imgupscaler)
# WebUI fix for PLMS and UniPC and img2img
if(img2imgsamplingmethod in ['PLMS', 'UniPC']): # PLMS/UniPC do not support img2img so we just silently switch to DDIM
img2imgsamplingmethod = 'DDIM'
img2imgsteps = 0
# start the batching!
img2imgdenoisestrength = originalimg2imgdenoisestrength
img2imgpadding = originalimg2imgpadding
while img2imgsteps < img2imgloops:
#filenamecomplete = originalfilenamecomplete + "_" + str(img2imgsteps)
#print(filenamecomplete)
img2img = call_img2img(image, originalimage, originalpnginfo, apiurl, filenamecomplete, randomprompt,negativeprompt,img2imgsamplingsteps, img2imgcfg, img2imgsamplingmethod, img2imgupscaler, img2imgmodel, img2imgdenoisestrength, img2imgscale, img2imgpadding,upscalescript,usdutilewidth, usdutileheight, usdumaskblur, usduredraw, usduSeamsfix, usdusdenoise, usduswidth, usduspadding, usdusmaskblur,controlnetenabled, controlnetmodel,controlnetblockymode)
image = img2img[0]
if(originalpnginfo==""):
originalpnginfo = img2img[1]
img2imgdenoisestrength = str(round(float(img2imgdenoisestrength) + float(img2imgdenoisestrengthmod),2)) # lower or increase the denoise strength for each batch
img2imgpadding = str(int(int(img2imgpadding) * float(img2imgscale))) # also increase padding by scale
if(int(img2imgpadding)>256): # but not overdo it :D
img2imgpadding="256"
# Sometimes, we are too quick to do another call, causing memory issues. So we wait a bit to let the system settle done a bit.
# Its stupid but it works. Sometimes....
time.sleep(5)
img2imgsteps += 1
# upscale via extras upscaler next
if(enableextraupscale==True and continuewithnextpart == True):
if(extrasupscaler1=="all"):
extrasupscaler1 = random.choice(img2imgupscalerlist)
print ("Going to upscale with upscaler 1 " + extrasupscaler1)
if(extrasupscaler2=="all"):
extrasupscaler2 = random.choice(img2imgupscalerlist)
print ("Going to upscale with upscaler 2 " + extrasupscaler2)
image = call_extras(image, originalimage, originalpnginfo, apiurl, filenamecomplete,extrasupscaler1,extrasupscaler2 ,extrasupscaler2visiblity,extrasupscaler2gfpgan,extrasupscaler2codeformer,extrasupscaler2codeformerweight,extrasresize)
if(continuewithnextpart == True):
# only count images we actually fully processed
steps += 1
print("")
print("All done!")
def tryinterrupt(apiurl="http://127.0.0.1:7860"):
response = requests.post(url=f'{apiurl}/sdapi/v1/interrupt')
|