# Copyright 2024 SLAPaper # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import k_diffusion.sampling import torch @torch.no_grad() def sample_dpmpp_2m_alt(model, x, sigmas, extra_args=None, callback=None, disable=None): """DPM-Solver++(2M) alternative sampler Source: https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/8457 """ extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) sigma_fn = lambda t: t.neg().exp() t_fn = lambda sigma: sigma.log().neg() old_denoised = None for i in k_diffusion.sampling.trange(len(sigmas) - 1, disable=disable): denoised = model(x, sigmas[i] * s_in, **extra_args) if callback is not None: callback( { "x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised, } ) t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) h = t_next - t if old_denoised is None or sigmas[i + 1] == 0: x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised else: h_last = t - t_fn(sigmas[i - 1]) r = h_last / h denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d sigma_progress = i / len(sigmas) adjustment_factor = 1 + (0.15 * (sigma_progress * sigma_progress)) old_denoised = denoised * adjustment_factor return x def add_sample_dpmpp_2m_alt_webui() -> None: """Adds DPM-Solver++(2M) alternative sampler to the list of available samplers.""" try: from modules import ( # type: ignore sd_samplers, sd_samplers_common, sd_samplers_kdiffusion, ) except ImportError: return samplers_dpmpp_2m_alt = [ ( "DPM++ 2M alt", sample_dpmpp_2m_alt, ["k_dpmpp_2m_alt"], {"scheduler": "karras"}, ) ] samplers_data_dpmpp_2m_alt = [ sd_samplers_common.SamplerData( label, lambda model, funcname=funcname: sd_samplers_kdiffusion.KDiffusionSampler( funcname, model ), aliases, options, ) for label, funcname, aliases, options in samplers_dpmpp_2m_alt ] sd_samplers.all_samplers.extend(samplers_data_dpmpp_2m_alt) for x in samplers_data_dpmpp_2m_alt: sd_samplers.all_samplers_map[x.name] = x sd_samplers.set_samplers() add_sample_dpmpp_2m_alt_webui()