Upload sd-webui-smea using SD-Hub
Browse files- .gitattributes +2 -0
- sd-webui-smea/README.md +54 -0
- sd-webui-smea/__pycache__/sd_webui_smea.cpython-310.pyc +0 -0
- sd-webui-smea/sample.jpg +3 -0
- sd-webui-smea/sample2.jpg +3 -0
- sd-webui-smea/scripts/__pycache__/sd-webui-smea.cpython-310.pyc +0 -0
- sd-webui-smea/scripts/sd-webui-smea.py +1672 -0
- sd-webui-smea/sd-webui-smea (13).py +1657 -0
- sd-webui-smea/sd-webui-smea-chanhe.py +1657 -0
- sd-webui-smea/sd_webui_smea.py +1657 -0
.gitattributes
CHANGED
|
@@ -144,3 +144,5 @@ DWPose/resources/jay_pose.jpg filter=lfs diff=lfs merge=lfs -text
|
|
| 144 |
DWPose/resources/lalaland.gif filter=lfs diff=lfs merge=lfs -text
|
| 145 |
sd-webui-hires-i2i/img/off.jpg filter=lfs diff=lfs merge=lfs -text
|
| 146 |
sd-webui-hires-i2i/img/on.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 144 |
DWPose/resources/lalaland.gif filter=lfs diff=lfs merge=lfs -text
|
| 145 |
sd-webui-hires-i2i/img/off.jpg filter=lfs diff=lfs merge=lfs -text
|
| 146 |
sd-webui-hires-i2i/img/on.jpg filter=lfs diff=lfs merge=lfs -text
|
| 147 |
+
sd-webui-smea/sample.jpg filter=lfs diff=lfs merge=lfs -text
|
| 148 |
+
sd-webui-smea/sample2.jpg filter=lfs diff=lfs merge=lfs -text
|
sd-webui-smea/README.md
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# sd-webui-smea
|
| 2 |
+
smea sampler experiments for a1111 webui
|
| 3 |
+
These sampler has nothing to do with NAI's sampler or Euler sampler, I'm just suck at naming them.
|
| 4 |
+
(smea here stands for "Shovel More Extra Artifacts")
|
| 5 |
+
originally created by [Koishi-Star](https://github.com/Koishi-Star/Euler-Smea-Dyn-Sampler) and [ananosleep](https://github.com/ananosleep/advanced_euler_sampler_extension)
|
| 6 |
+
TCD sampler from [dfl](https://github.com/dfl/comfyui-tcd-scheduler)
|
| 7 |
+
|
| 8 |
+

|
| 9 |
+

|
| 10 |
+
|
| 11 |
+
**RECOMMEND: Use: Smea mbs2 (\#) / Smea mds2 (\#) / h max (#) / Max(2b/3c/4b), they add details (or artifacts) more reliably**
|
| 12 |
+
|
| 13 |
+
Also check [Dynamic Thresholding](https://github.com/mcmonkeyprojects/sd-dynamic-thresholding), you can add more details
|
| 14 |
+
|
| 15 |
+
Euler Dy: og Euler Dy with DPM2 tweak, toggle on/off every step
|
| 16 |
+
Euler Smea: og Euler Smea Dy with DPM2 tweak, use smea sampling only, toggle on/off every step
|
| 17 |
+
Euler Smea Dy: og Euler Smea Dy with DPM2 tweak, loopping scale up > folded to 1/2 size > normal >... every step
|
| 18 |
+
Euler Smea dyn a: Euler Smea with DPM2 tweak (less sigma), toggle on/off (scale up) every step every step
|
| 19 |
+
Euler Smea dyn b: Euler Smea with DPM2 tweak (less sigma), loopping scale down > up > normal >... every step
|
| 20 |
+
Euler Smea dyn c: Euler Smea with DPM2 tweak (less sigma), toggle on/off (scale down) every step every step
|
| 21 |
+
Euler Smea md: Euler Smea with DPM2 tweak (less sigma), start with Smea mc then toggle Smea mb on/off every step, ended with Smea ma
|
| 22 |
+
all sampler above stopped smea / dy sampling at 1/3 total steps
|
| 23 |
+
|
| 24 |
+
Euler Smea Max: Euler Smea with adjusted cosine wave scaling
|
| 25 |
+
Euler Smea Max s: Euler Smea Max with smoothed latent in process
|
| 26 |
+
Euler Smea ma: Euler Smea with DPM2 tweak (less sigma), combine scaled up latent image with normal one
|
| 27 |
+
Euler Smea mb: Euler Smea with DPM2 tweak (less sigma), combine scaled up and scaled down latent image with normal one
|
| 28 |
+
Euler Smea mc: Euler Smea with DPM2 tweak (less sigma), combine scaled down latent image with normal one
|
| 29 |
+
Euler Smea mas: Euler Smea ma tweaked
|
| 30 |
+
Euler Smea mbs: Euler Smea mb tweaked
|
| 31 |
+
Euler Smea mcs: Euler Smea mc tweaked
|
| 32 |
+
Euler Smea mds: Euler Smea md tweaked
|
| 33 |
+
Euler Smea mbs2: Euler Smea mds with tweaked sigma
|
| 34 |
+
Euler Smea mds2: Euler Smea mds with tweaked sigma
|
| 35 |
+
Euler Smea mbs2 s: Euler Smea mbs2 with smoothed latent in process
|
| 36 |
+
Euler Smea mds2 s: Euler Smea mds2 with smoothed latent in process
|
| 37 |
+
Euler Smea mds2 max: Euler Smea mds2 with adjusted cosine wave
|
| 38 |
+
Euler Smea mds2 s max: Euler Smea mds2 s with adjusted cosine wave
|
| 39 |
+
all sampler above stopped smea sampling at 1/6 total steps
|
| 40 |
+
|
| 41 |
+
Euler Max: from ananosleep's repo
|
| 42 |
+
Euler h max (\#): Euler Max with adjusted cosine wave
|
| 43 |
+
Euler Max(#): Euler Max with adjusted cosine wave
|
| 44 |
+
Euler Dy koishi-star: og Euler Dy made by koishi-star
|
| 45 |
+
Euler Smea Dy koishi-star: og Euler Smea Dy made by koishi-star
|
| 46 |
+
TCD / TCD Euler a: from dfl's repo
|
| 47 |
+
|
| 48 |
+
### Explanation:
|
| 49 |
+
The reason of many experiments is due to og sampler tends to blurred the background or overfry the image,
|
| 50 |
+
so I checked DPM2 sampler and experiment if it's worth to tweak it
|
| 51 |
+
What Smea sampling do is scaling latent image > denoise > scale it back to original size
|
| 52 |
+
What dy sampling do is shrinking latent image to 1/2 size > denoise > extend it to original size
|
| 53 |
+
since what they did is bascially just scaling latent image, I use smea sampling only
|
| 54 |
+
What all these samplers do is bascailly trying to combine different scaled latent image to denoise image to generate better details (artifacts)
|
sd-webui-smea/__pycache__/sd_webui_smea.cpython-310.pyc
ADDED
|
Binary file (45.7 kB). View file
|
|
|
sd-webui-smea/sample.jpg
ADDED
|
Git LFS Details
|
sd-webui-smea/sample2.jpg
ADDED
|
Git LFS Details
|
sd-webui-smea/scripts/__pycache__/sd-webui-smea.cpython-310.pyc
ADDED
|
Binary file (46 kB). View file
|
|
|
sd-webui-smea/scripts/sd-webui-smea.py
ADDED
|
@@ -0,0 +1,1672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import math
|
| 3 |
+
import k_diffusion.sampling
|
| 4 |
+
|
| 5 |
+
from k_diffusion.sampling import to_d, BrownianTreeNoiseSampler
|
| 6 |
+
from tqdm.auto import trange
|
| 7 |
+
from modules import scripts
|
| 8 |
+
from modules import sd_samplers_kdiffusion, sd_samplers_common, sd_samplers
|
| 9 |
+
from modules.sd_samplers_kdiffusion import KDiffusionSampler
|
| 10 |
+
|
| 11 |
+
class _Rescaler:
|
| 12 |
+
def __init__(self, model, x, mode, **extra_args):
|
| 13 |
+
self.model = model
|
| 14 |
+
self.x = x
|
| 15 |
+
self.mode = mode
|
| 16 |
+
self.extra_args = extra_args
|
| 17 |
+
self.init_latent, self.mask, self.nmask = model.init_latent, model.mask, model.nmask
|
| 18 |
+
|
| 19 |
+
def __enter__(self):
|
| 20 |
+
if self.init_latent is not None:
|
| 21 |
+
self.model.init_latent = torch.nn.functional.interpolate(input=self.init_latent, size=self.x.shape[2:4], mode=self.mode)
|
| 22 |
+
if self.mask is not None:
|
| 23 |
+
self.model.mask = torch.nn.functional.interpolate(input=self.mask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0)
|
| 24 |
+
if self.nmask is not None:
|
| 25 |
+
self.model.nmask = torch.nn.functional.interpolate(input=self.nmask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0)
|
| 26 |
+
return self
|
| 27 |
+
|
| 28 |
+
def __exit__(self, type, value, traceback):
|
| 29 |
+
del self.model.init_latent, self.model.mask, self.model.nmask
|
| 30 |
+
self.model.init_latent, self.model.mask, self.model.nmask = self.init_latent, self.mask, self.nmask
|
| 31 |
+
|
| 32 |
+
class Smea(scripts.Script):
|
| 33 |
+
|
| 34 |
+
def title(self):
|
| 35 |
+
init() # <- 袩械褉械薪芯褋 褋褞写邪
|
| 36 |
+
return "Euler Smea Dy sampler"
|
| 37 |
+
|
| 38 |
+
def show(self, is_img2img):
|
| 39 |
+
return scripts.AlwaysVisible
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def init():
|
| 43 |
+
for i in sd_samplers.all_samplers:
|
| 44 |
+
if "Euler Max" in i.name:
|
| 45 |
+
return
|
| 46 |
+
|
| 47 |
+
samplers_smea = [
|
| 48 |
+
('Euler Max', sample_euler_max, ['k_euler'], {}),
|
| 49 |
+
('Euler Max1b', sample_euler_max1b, ['k_euler'], {}),
|
| 50 |
+
('Euler Max1c', sample_euler_max1c, ['k_euler'], {}),
|
| 51 |
+
('Euler Max1d', sample_euler_max1d, ['k_euler'], {}),
|
| 52 |
+
('Euler Max2', sample_euler_max2, ['k_euler'], {}),
|
| 53 |
+
('Euler Max2b', sample_euler_max2b, ['k_euler'], {}),
|
| 54 |
+
('Euler Max2c', sample_euler_max2c, ['k_euler'], {}),
|
| 55 |
+
('Euler Max2d', sample_euler_max2d, ['k_euler'], {}),
|
| 56 |
+
('Euler Max3', sample_euler_max3, ['k_euler'], {}),
|
| 57 |
+
('Euler Max3b', sample_euler_max3b, ['k_euler'], {}),
|
| 58 |
+
('Euler Max3c', sample_euler_max3c, ['k_euler'], {}),
|
| 59 |
+
('Euler Max4', sample_euler_max4, ['k_euler'], {}),
|
| 60 |
+
('Euler Max4b', sample_euler_max4b, ['k_euler'], {}),
|
| 61 |
+
('Euler Max4c', sample_euler_max4c, ['k_euler'], {}),
|
| 62 |
+
('Euler Max4d', sample_euler_max4d, ['k_euler'], {}),
|
| 63 |
+
('Euler Max4e', sample_euler_max4e, ['k_euler'], {}),
|
| 64 |
+
('Euler Max4f', sample_euler_max4f, ['k_euler'], {}),
|
| 65 |
+
('Euler Dy', sample_euler_dy, ['k_euler'], {}),
|
| 66 |
+
('Euler Smea', sample_euler_smea, ['k_euler'], {}),
|
| 67 |
+
('Euler Smea Dy', sample_euler_smea_dy, ['k_euler'], {}),
|
| 68 |
+
('Euler Smea Max', sample_euler_smea_max, ['k_euler'], {}),
|
| 69 |
+
('Euler Smea Max s', sample_euler_smea_max_s, ['k_euler'], {}),
|
| 70 |
+
('Euler Smea dyn a', sample_euler_smea_dyn_a, ['k_euler'], {}),
|
| 71 |
+
('Euler Smea dyn b', sample_euler_smea_dyn_b, ['k_euler'], {}),
|
| 72 |
+
('Euler Smea dyn c', sample_euler_smea_dyn_c, ['k_euler'], {}),
|
| 73 |
+
('Euler Smea ma', sample_euler_smea_multi_a, ['k_euler'], {}),
|
| 74 |
+
('Euler Smea mb', sample_euler_smea_multi_b, ['k_euler'], {}),
|
| 75 |
+
('Euler Smea mc', sample_euler_smea_multi_c, ['k_euler'], {}),
|
| 76 |
+
('Euler Smea md', sample_euler_smea_multi_d, ['k_euler'], {}),
|
| 77 |
+
('Euler Smea mas', sample_euler_smea_multi_as, ['k_euler'], {}),
|
| 78 |
+
('Euler Smea mbs', sample_euler_smea_multi_bs, ['k_euler'], {}),
|
| 79 |
+
('Euler Smea mcs', sample_euler_smea_multi_cs, ['k_euler'], {}),
|
| 80 |
+
('Euler Smea mds', sample_euler_smea_multi_ds, ['k_euler'], {}),
|
| 81 |
+
('Euler Smea mbs2', sample_euler_smea_multi_bs2, ['k_euler'], {}),
|
| 82 |
+
('Euler Smea mds2', sample_euler_smea_multi_ds2, ['k_euler'], {}),
|
| 83 |
+
('Euler Smea mds2 max', sample_euler_smea_multi_ds2_m, ['k_euler'], {}),
|
| 84 |
+
('Euler Smea mds2 s max', sample_euler_smea_multi_ds2_s_m, ['k_euler'], {}),
|
| 85 |
+
('Euler Smea mbs2 s', sample_euler_smea_multi_bs2_s, ['k_euler'], {}),
|
| 86 |
+
('Euler Smea mds2 s', sample_euler_smea_multi_ds2_s, ['k_euler'], {}),
|
| 87 |
+
('Euler h max', sample_euler_h_m, ['k_euler'], {"brownian_noise": True}),
|
| 88 |
+
('Euler h max b', sample_euler_h_m_b, ['k_euler'], {"brownian_noise": True}),
|
| 89 |
+
('Euler h max c', sample_euler_h_m_c, ['k_euler'], {"brownian_noise": True}),
|
| 90 |
+
('Euler h max d', sample_euler_h_m_d, ['k_euler'], {"brownian_noise": True}),
|
| 91 |
+
('Euler h max e', sample_euler_h_m_e, ['k_euler'], {"brownian_noise": True}),
|
| 92 |
+
('Euler h max f', sample_euler_h_m_f, ['k_euler'], {"brownian_noise": True}),
|
| 93 |
+
('Euler h max g', sample_euler_h_m_g, ['k_euler'], {"brownian_noise": True}),
|
| 94 |
+
('Euler h max b c', sample_euler_h_m_b_c, ['k_euler'], {"brownian_noise": True}),
|
| 95 |
+
('Euler h max b c CFG++', sample_euler_h_m_b_c_pp, ['k_euler'], {"brownian_noise": True, "cfgpp": True}),
|
| 96 |
+
('Euler Dy koishi-star', sample_euler_dy_og, ['k_euler'], {}),
|
| 97 |
+
('Euler Smea Dy koishi-star', sample_euler_smea_dy_og, ['k_euler'], {}),
|
| 98 |
+
('TCD Euler a', sample_tcd_euler_a, ['tcd_euler_a'], {}),
|
| 99 |
+
('TCD', sample_tcd, ['tcd'], {}),
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
samplers_data_smea = [
|
| 103 |
+
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
|
| 104 |
+
for label, funcname, aliases, options in samplers_smea
|
| 105 |
+
if callable(funcname)
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
sampler_exparams_smea = {
|
| 109 |
+
sample_euler_max: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 110 |
+
sample_euler_max1b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 111 |
+
sample_euler_max1c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 112 |
+
sample_euler_max1d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 113 |
+
sample_euler_max2: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 114 |
+
sample_euler_max2b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 115 |
+
sample_euler_max2c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 116 |
+
sample_euler_max2d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 117 |
+
sample_euler_max3: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 118 |
+
sample_euler_max3b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 119 |
+
sample_euler_max3c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 120 |
+
sample_euler_max4: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 121 |
+
sample_euler_max4b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 122 |
+
sample_euler_max4c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 123 |
+
sample_euler_max4d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 124 |
+
sample_euler_max4e: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 125 |
+
sample_euler_max4f: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 126 |
+
sample_euler_dy: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 127 |
+
sample_euler_smea: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 128 |
+
sample_euler_smea_dy: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 129 |
+
sample_euler_smea_max: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 130 |
+
sample_euler_smea_max_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 131 |
+
sample_euler_smea_dyn_a: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 132 |
+
sample_euler_smea_dyn_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 133 |
+
sample_euler_smea_dyn_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 134 |
+
sample_euler_smea_multi_a: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 135 |
+
sample_euler_smea_multi_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 136 |
+
sample_euler_smea_multi_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 137 |
+
sample_euler_smea_multi_d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 138 |
+
sample_euler_smea_multi_as: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 139 |
+
sample_euler_smea_multi_bs: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 140 |
+
sample_euler_smea_multi_cs: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 141 |
+
sample_euler_smea_multi_ds: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 142 |
+
sample_euler_smea_multi_bs2: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 143 |
+
sample_euler_smea_multi_ds2: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 144 |
+
sample_euler_smea_multi_ds2_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 145 |
+
sample_euler_smea_multi_ds2_s_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 146 |
+
sample_euler_smea_multi_bs2_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 147 |
+
sample_euler_smea_multi_ds2_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 148 |
+
sample_euler_h_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 149 |
+
sample_euler_h_m_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 150 |
+
sample_euler_h_m_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 151 |
+
sample_euler_h_m_d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 152 |
+
sample_euler_h_m_e: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 153 |
+
sample_euler_h_m_f: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 154 |
+
sample_euler_h_m_g: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 155 |
+
sample_euler_h_m_b_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 156 |
+
sample_euler_h_m_b_c_pp: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 157 |
+
sample_euler_dy_og: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 158 |
+
sample_euler_smea_dy_og: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 159 |
+
}
|
| 160 |
+
sd_samplers_kdiffusion.sampler_extra_params = {**sd_samplers_kdiffusion.sampler_extra_params, **sampler_exparams_smea}
|
| 161 |
+
|
| 162 |
+
samplers_map_smea = {x.name: x for x in samplers_data_smea}
|
| 163 |
+
sd_samplers_kdiffusion.k_diffusion_samplers_map = {**sd_samplers_kdiffusion.k_diffusion_samplers_map, **samplers_map_smea}
|
| 164 |
+
|
| 165 |
+
for i, item in enumerate(sd_samplers.all_samplers):
|
| 166 |
+
if "Euler" in item.name:
|
| 167 |
+
sd_samplers.all_samplers = sd_samplers.all_samplers[:i + 1] + [*samplers_data_smea] + sd_samplers.all_samplers[i + 1:]
|
| 168 |
+
break
|
| 169 |
+
sd_samplers.all_samplers_map = {x.name: x for x in sd_samplers.all_samplers}
|
| 170 |
+
sd_samplers.set_samplers()
|
| 171 |
+
|
| 172 |
+
return
|
| 173 |
+
|
| 174 |
+
def default_noise_sampler(x):
|
| 175 |
+
return lambda sigma, sigma_next: k_diffusion.sampling.torch.randn_like(x)
|
| 176 |
+
|
| 177 |
+
@torch.no_grad()
|
| 178 |
+
def dy_sampling_step(x, model, dt, sigma_hat, **extra_args):
|
| 179 |
+
original_shape = x.shape
|
| 180 |
+
batch_size, channels, m, n = original_shape[0], original_shape[1], original_shape[2] // 2, original_shape[3] // 2
|
| 181 |
+
extra_row = x.shape[2] % 2 == 1
|
| 182 |
+
extra_col = x.shape[3] % 2 == 1
|
| 183 |
+
|
| 184 |
+
if extra_row:
|
| 185 |
+
extra_row_content = x[:, :, -1:, :]
|
| 186 |
+
x = x[:, :, :-1, :]
|
| 187 |
+
if extra_col:
|
| 188 |
+
extra_col_content = x[:, :, :, -1:]
|
| 189 |
+
x = x[:, :, :, :-1]
|
| 190 |
+
|
| 191 |
+
a_list = x.unfold(2, 2, 2).unfold(3, 2, 2).contiguous().view(batch_size, channels, m * n, 2, 2)
|
| 192 |
+
c = a_list[:, :, :, 1, 1].view(batch_size, channels, m, n)
|
| 193 |
+
|
| 194 |
+
with _Rescaler(model, c, 'nearest-exact', **extra_args) as rescaler:
|
| 195 |
+
denoised = model(c, sigma_hat * c.new_ones([c.shape[0]]), **rescaler.extra_args)
|
| 196 |
+
d = to_d(c, sigma_hat, denoised)
|
| 197 |
+
c = c + d * dt
|
| 198 |
+
|
| 199 |
+
d_list = c.view(batch_size, channels, m * n, 1, 1)
|
| 200 |
+
a_list[:, :, :, 1, 1] = d_list[:, :, :, 0, 0]
|
| 201 |
+
x = a_list.view(batch_size, channels, m, n, 2, 2).permute(0, 1, 2, 4, 3, 5).reshape(batch_size, channels, 2 * m, 2 * n)
|
| 202 |
+
|
| 203 |
+
if extra_row or extra_col:
|
| 204 |
+
x_expanded = torch.zeros(original_shape, dtype=x.dtype, device=x.device)
|
| 205 |
+
x_expanded[:, :, :2 * m, :2 * n] = x
|
| 206 |
+
if extra_row:
|
| 207 |
+
x_expanded[:, :, -1:, :2 * n + 1] = extra_row_content
|
| 208 |
+
if extra_col:
|
| 209 |
+
x_expanded[:, :, :2 * m, -1:] = extra_col_content
|
| 210 |
+
if extra_row and extra_col:
|
| 211 |
+
x_expanded[:, :, -1:, -1:] = extra_col_content[:, :, -1:, :]
|
| 212 |
+
x = x_expanded
|
| 213 |
+
|
| 214 |
+
return x
|
| 215 |
+
|
| 216 |
+
@torch.no_grad()
|
| 217 |
+
def smea_sampling_step(x, model, dt, sigma_hat, **extra_args):
|
| 218 |
+
m, n = x.shape[2], x.shape[3]
|
| 219 |
+
x = torch.nn.functional.interpolate(input=x, size=None, scale_factor=(1.25, 1.25), mode='nearest-exact', align_corners=None, recompute_scale_factor=None)
|
| 220 |
+
with _Rescaler(model, x, 'nearest-exact', **extra_args) as rescaler:
|
| 221 |
+
denoised = model(x, sigma_hat * x.new_ones([x.shape[0]]), **rescaler.extra_args)
|
| 222 |
+
d = to_d(x, sigma_hat, denoised)
|
| 223 |
+
x = x + d * dt
|
| 224 |
+
x = torch.nn.functional.interpolate(input=x, size=(m,n), scale_factor=None, mode='nearest-exact', align_corners=None, recompute_scale_factor=None)
|
| 225 |
+
return x
|
| 226 |
+
|
| 227 |
+
@torch.no_grad()
|
| 228 |
+
def smea_sampling_step_denoised(x, model, sigma_hat, scale=1.25, smooth=False, **extra_args):
|
| 229 |
+
m, n = x.shape[2], x.shape[3]
|
| 230 |
+
filter = 'nearest-exact' if not smooth else 'bilinear'
|
| 231 |
+
x = torch.nn.functional.interpolate(input=x, scale_factor=(scale, scale), mode=filter)
|
| 232 |
+
with _Rescaler(model, x, filter, **extra_args) as rescaler:
|
| 233 |
+
denoised = model(x, sigma_hat * x.new_ones([x.shape[0]]), **rescaler.extra_args)
|
| 234 |
+
x = denoised
|
| 235 |
+
x = torch.nn.functional.interpolate(input=x, size=(m,n), mode='nearest-exact')
|
| 236 |
+
return x
|
| 237 |
+
|
| 238 |
+
@torch.no_grad()
|
| 239 |
+
def sample_euler_max(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 240 |
+
extra_args = {} if extra_args is None else extra_args
|
| 241 |
+
s_in = x.new_ones([x.shape[0]])
|
| 242 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 243 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 244 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 245 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 246 |
+
if gamma > 0:
|
| 247 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 248 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 249 |
+
d = to_d(x, sigma_hat, denoised)
|
| 250 |
+
if callback is not None:
|
| 251 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 252 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 253 |
+
# Euler method
|
| 254 |
+
x = x + (math.cos(i + 1)/(i + 1) + 1) * d * dt
|
| 255 |
+
return x
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
@torch.no_grad()
|
| 259 |
+
def sample_euler_max1b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 260 |
+
extra_args = {} if extra_args is None else extra_args
|
| 261 |
+
s_in = x.new_ones([x.shape[0]])
|
| 262 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 263 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 264 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 265 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 266 |
+
if gamma > 0:
|
| 267 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 268 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 269 |
+
d = to_d(x, sigma_hat, denoised)
|
| 270 |
+
if callback is not None:
|
| 271 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 272 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 273 |
+
# Euler method
|
| 274 |
+
x = x + (math.cos(1.05 * i + 1)/(1.1 * i + 1.5) + 1) * d * dt
|
| 275 |
+
return x
|
| 276 |
+
|
| 277 |
+
@torch.no_grad()
|
| 278 |
+
def sample_euler_max1c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 279 |
+
extra_args = {} if extra_args is None else extra_args
|
| 280 |
+
s_in = x.new_ones([x.shape[0]])
|
| 281 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 282 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 283 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 284 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 285 |
+
if gamma > 0:
|
| 286 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 287 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 288 |
+
d = to_d(x, sigma_hat, denoised)
|
| 289 |
+
if callback is not None:
|
| 290 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 291 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 292 |
+
# Euler method
|
| 293 |
+
x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d * dt
|
| 294 |
+
return x
|
| 295 |
+
|
| 296 |
+
@torch.no_grad()
|
| 297 |
+
def sample_euler_max1d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 298 |
+
extra_args = {} if extra_args is None else extra_args
|
| 299 |
+
s_in = x.new_ones([x.shape[0]])
|
| 300 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 301 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 302 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 303 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 304 |
+
if gamma > 0:
|
| 305 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 306 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 307 |
+
d = to_d(x, sigma_hat, denoised)
|
| 308 |
+
if callback is not None:
|
| 309 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 310 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 311 |
+
# Euler method
|
| 312 |
+
x = x + (math.cos(math.pi * 0.333 * i + 0.9)/(0.5 * i + 1.5) + 1) * d * dt
|
| 313 |
+
return x
|
| 314 |
+
|
| 315 |
+
@torch.no_grad()
|
| 316 |
+
def sample_euler_max2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 317 |
+
extra_args = {} if extra_args is None else extra_args
|
| 318 |
+
s_in = x.new_ones([x.shape[0]])
|
| 319 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 320 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 321 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 322 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 323 |
+
if gamma > 0:
|
| 324 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 325 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 326 |
+
d = to_d(x, sigma_hat, denoised)
|
| 327 |
+
if callback is not None:
|
| 328 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 329 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 330 |
+
# Euler method
|
| 331 |
+
x = x + (math.cos(math.pi * 0.333 * i - 0.1)/(0.5 * i + 1.5) + 1) * d * dt
|
| 332 |
+
return x
|
| 333 |
+
|
| 334 |
+
@torch.no_grad()
|
| 335 |
+
def sample_euler_max2b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 336 |
+
extra_args = {} if extra_args is None else extra_args
|
| 337 |
+
s_in = x.new_ones([x.shape[0]])
|
| 338 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 339 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 340 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 341 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 342 |
+
if gamma > 0:
|
| 343 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 344 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 345 |
+
d = to_d(x, sigma_hat, denoised)
|
| 346 |
+
if callback is not None:
|
| 347 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 348 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 349 |
+
# Euler method
|
| 350 |
+
x = x + (math.cos(math.pi * 0.5 * i - 0.0)/(0.5 * i + 1.5) + 1) * d * dt
|
| 351 |
+
return x
|
| 352 |
+
|
| 353 |
+
@torch.no_grad()
|
| 354 |
+
def sample_euler_max2c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 355 |
+
extra_args = {} if extra_args is None else extra_args
|
| 356 |
+
s_in = x.new_ones([x.shape[0]])
|
| 357 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 358 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 359 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 360 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 361 |
+
if gamma > 0:
|
| 362 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 363 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 364 |
+
d = to_d(x, sigma_hat, denoised)
|
| 365 |
+
if callback is not None:
|
| 366 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 367 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 368 |
+
# Euler method
|
| 369 |
+
x = x + (math.cos(math.pi * 0.5 * i)/(i + 2) + 1) * d * dt
|
| 370 |
+
return x
|
| 371 |
+
|
| 372 |
+
@torch.no_grad()
|
| 373 |
+
def sample_euler_max2d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 374 |
+
extra_args = {} if extra_args is None else extra_args
|
| 375 |
+
s_in = x.new_ones([x.shape[0]])
|
| 376 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 377 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 378 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 379 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 380 |
+
if gamma > 0:
|
| 381 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 382 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 383 |
+
d = to_d(x, sigma_hat, denoised)
|
| 384 |
+
if callback is not None:
|
| 385 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 386 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 387 |
+
# Euler method
|
| 388 |
+
x = x + (math.cos(math.pi * 0.5 * i)/(0.75 * i + 1.75) + 1) * d * dt
|
| 389 |
+
return x
|
| 390 |
+
|
| 391 |
+
@torch.no_grad()
|
| 392 |
+
def sample_euler_max3b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 393 |
+
extra_args = {} if extra_args is None else extra_args
|
| 394 |
+
s_in = x.new_ones([x.shape[0]])
|
| 395 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 396 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 397 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 398 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 399 |
+
if gamma > 0:
|
| 400 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 401 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 402 |
+
d = to_d(x, sigma_hat, denoised)
|
| 403 |
+
if callback is not None:
|
| 404 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 405 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 406 |
+
# Euler method
|
| 407 |
+
x = x + (math.cos(2 * i + 0.5)/(2 * i + 1.5) + 1) * d * dt
|
| 408 |
+
return x
|
| 409 |
+
|
| 410 |
+
@torch.no_grad()
|
| 411 |
+
def sample_euler_max3c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 412 |
+
extra_args = {} if extra_args is None else extra_args
|
| 413 |
+
s_in = x.new_ones([x.shape[0]])
|
| 414 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 415 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 416 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 417 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 418 |
+
if gamma > 0:
|
| 419 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 420 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 421 |
+
d = to_d(x, sigma_hat, denoised)
|
| 422 |
+
if callback is not None:
|
| 423 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 424 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 425 |
+
# Euler method
|
| 426 |
+
x = x + (math.cos(2 * i + 0.5)/(1.5 * i + 2.7) + 1) * d * dt
|
| 427 |
+
return x
|
| 428 |
+
|
| 429 |
+
@torch.no_grad()
|
| 430 |
+
def sample_euler_max3(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 431 |
+
extra_args = {} if extra_args is None else extra_args
|
| 432 |
+
s_in = x.new_ones([x.shape[0]])
|
| 433 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 434 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 435 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 436 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 437 |
+
if gamma > 0:
|
| 438 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 439 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 440 |
+
d = to_d(x, sigma_hat, denoised)
|
| 441 |
+
if callback is not None:
|
| 442 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 443 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 444 |
+
# Euler method
|
| 445 |
+
x = x + (math.cos(2 * i + 1)/(2 * i + 1) + 1) * d * dt
|
| 446 |
+
return x
|
| 447 |
+
|
| 448 |
+
@torch.no_grad()
|
| 449 |
+
def sample_euler_max4b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 450 |
+
extra_args = {} if extra_args is None else extra_args
|
| 451 |
+
s_in = x.new_ones([x.shape[0]])
|
| 452 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 453 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 454 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 455 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 456 |
+
if gamma > 0:
|
| 457 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 458 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 459 |
+
d = to_d(x, sigma_hat, denoised)
|
| 460 |
+
if callback is not None:
|
| 461 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 462 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 463 |
+
# Euler method
|
| 464 |
+
x = x + (math.cos(math.pi * i - 0.1)/(2 * i + 2) + 1) * d * dt
|
| 465 |
+
return x
|
| 466 |
+
|
| 467 |
+
@torch.no_grad()
|
| 468 |
+
def sample_euler_max4c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 469 |
+
extra_args = {} if extra_args is None else extra_args
|
| 470 |
+
s_in = x.new_ones([x.shape[0]])
|
| 471 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 472 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 473 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 474 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 475 |
+
if gamma > 0:
|
| 476 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 477 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 478 |
+
d = to_d(x, sigma_hat, denoised)
|
| 479 |
+
if callback is not None:
|
| 480 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 481 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 482 |
+
# Euler method
|
| 483 |
+
x = x + (math.cos(math.pi * i - 0.1)/(2 * i + 1.5) + 1) * d * dt
|
| 484 |
+
return x
|
| 485 |
+
|
| 486 |
+
@torch.no_grad()
|
| 487 |
+
def sample_euler_max4d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 488 |
+
extra_args = {} if extra_args is None else extra_args
|
| 489 |
+
s_in = x.new_ones([x.shape[0]])
|
| 490 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 491 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 492 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 493 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 494 |
+
if gamma > 0:
|
| 495 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 496 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 497 |
+
d = to_d(x, sigma_hat, denoised)
|
| 498 |
+
if callback is not None:
|
| 499 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 500 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 501 |
+
# Euler method
|
| 502 |
+
x = x + (math.cos(math.pi * i - 0.1)/(i + 1.5) + 1) * d * dt
|
| 503 |
+
return x
|
| 504 |
+
|
| 505 |
+
@torch.no_grad()
|
| 506 |
+
def sample_euler_max4e(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 507 |
+
extra_args = {} if extra_args is None else extra_args
|
| 508 |
+
s_in = x.new_ones([x.shape[0]])
|
| 509 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 510 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 511 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 512 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 513 |
+
if gamma > 0:
|
| 514 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 515 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 516 |
+
d = to_d(x, sigma_hat, denoised)
|
| 517 |
+
if callback is not None:
|
| 518 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 519 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 520 |
+
# Euler method
|
| 521 |
+
x = x + (math.cos(math.pi * i - 0.1)/(i + 1) + 1) * d * dt
|
| 522 |
+
return x
|
| 523 |
+
|
| 524 |
+
@torch.no_grad()
|
| 525 |
+
def sample_euler_max4f(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 526 |
+
extra_args = {} if extra_args is None else extra_args
|
| 527 |
+
s_in = x.new_ones([x.shape[0]])
|
| 528 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 529 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 530 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 531 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 532 |
+
if gamma > 0:
|
| 533 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 534 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 535 |
+
d = to_d(x, sigma_hat, denoised)
|
| 536 |
+
if callback is not None:
|
| 537 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 538 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 539 |
+
# Euler method
|
| 540 |
+
x = x + (math.cos(math.pi * i - 0.1)/(i + 2) + 1) * d * dt
|
| 541 |
+
return x
|
| 542 |
+
|
| 543 |
+
@torch.no_grad()
|
| 544 |
+
def sample_euler_max4(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 545 |
+
extra_args = {} if extra_args is None else extra_args
|
| 546 |
+
s_in = x.new_ones([x.shape[0]])
|
| 547 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 548 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 549 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 550 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 551 |
+
if gamma > 0:
|
| 552 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 553 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 554 |
+
d = to_d(x, sigma_hat, denoised)
|
| 555 |
+
if callback is not None:
|
| 556 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 557 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 558 |
+
# Euler method
|
| 559 |
+
x = x + (math.cos(math.pi * i - 0.1)/(math.pi * 0.5 * i + math.pi * 0.5) + 1) * d * dt
|
| 560 |
+
return x
|
| 561 |
+
|
| 562 |
+
@torch.no_grad()
|
| 563 |
+
def sample_euler_dy(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 564 |
+
extra_args = {} if extra_args is None else extra_args
|
| 565 |
+
s_in = x.new_ones([x.shape[0]])
|
| 566 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 567 |
+
# print(i)
|
| 568 |
+
# i绗竴姝ヤ负0
|
| 569 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 570 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 571 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 572 |
+
# print(sigma_hat)
|
| 573 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 574 |
+
if gamma > 0:
|
| 575 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 576 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 577 |
+
d = to_d(x, sigma_hat, denoised)
|
| 578 |
+
if callback is not None:
|
| 579 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 580 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 and i % 2 == 0:
|
| 581 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 582 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 583 |
+
dt_2 = sigmas[i + 1] - sigmas[i]
|
| 584 |
+
x_2 = x + d * dt_1
|
| 585 |
+
x_temp = dy_sampling_step(x_2, model, dt_2, sigma_mid, **extra_args)
|
| 586 |
+
x = x_temp - d * dt_1
|
| 587 |
+
# Euler method
|
| 588 |
+
x = x + d * dt
|
| 589 |
+
return x
|
| 590 |
+
|
| 591 |
+
@torch.no_grad()
|
| 592 |
+
def sample_euler_smea_dyn_a(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 593 |
+
extra_args = {} if extra_args is None else extra_args
|
| 594 |
+
s_in = x.new_ones([x.shape[0]])
|
| 595 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 596 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 597 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 598 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 599 |
+
if gamma > 0:
|
| 600 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 601 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 602 |
+
d = to_d(x, sigma_hat, denoised)
|
| 603 |
+
if callback is not None:
|
| 604 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 605 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2:
|
| 606 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 607 |
+
dt_1 = sigma_mid - sigma_hat
|
| 608 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 609 |
+
x_2 = x + d * dt_1
|
| 610 |
+
#scale = (sigma_mid / sigmas[0]) * 0.25
|
| 611 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.15
|
| 612 |
+
#scale = scale.item()
|
| 613 |
+
if i % 2 == 0:
|
| 614 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale, **extra_args)
|
| 615 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args)
|
| 616 |
+
else:
|
| 617 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 618 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 619 |
+
x = x + d_2 * dt_2
|
| 620 |
+
else:
|
| 621 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 622 |
+
# Euler method
|
| 623 |
+
x = x + d * dt
|
| 624 |
+
return x
|
| 625 |
+
|
| 626 |
+
@torch.no_grad()
|
| 627 |
+
def sample_euler_smea_dyn_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 628 |
+
extra_args = {} if extra_args is None else extra_args
|
| 629 |
+
s_in = x.new_ones([x.shape[0]])
|
| 630 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 631 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 632 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 633 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 634 |
+
if gamma > 0:
|
| 635 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 636 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 637 |
+
d = to_d(x, sigma_hat, denoised)
|
| 638 |
+
if callback is not None:
|
| 639 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 640 |
+
if sigmas[i + 1] > 0 and (i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 3 or i < 3):
|
| 641 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 642 |
+
dt_1 = sigma_mid - sigma_hat
|
| 643 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 644 |
+
x_2 = x + d * dt_1
|
| 645 |
+
#scale = (sigma_mid / sigmas[0]) * 0.25
|
| 646 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.2
|
| 647 |
+
#scale = scale.item()
|
| 648 |
+
if i % 4 == 0:
|
| 649 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale, **extra_args)
|
| 650 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - sigma_mid.item() * 0.01, **extra_args)
|
| 651 |
+
elif i % 4 == 2:
|
| 652 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale, **extra_args)
|
| 653 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args)
|
| 654 |
+
else:
|
| 655 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 656 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 657 |
+
x = x + d_2 * dt_2
|
| 658 |
+
else:
|
| 659 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 660 |
+
# Euler method
|
| 661 |
+
x = x + d * dt
|
| 662 |
+
return x
|
| 663 |
+
|
| 664 |
+
@torch.no_grad()
|
| 665 |
+
def sample_euler_smea_dyn_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 666 |
+
extra_args = {} if extra_args is None else extra_args
|
| 667 |
+
s_in = x.new_ones([x.shape[0]])
|
| 668 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 669 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 670 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 671 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 672 |
+
if gamma > 0:
|
| 673 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 674 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 675 |
+
d = to_d(x, sigma_hat, denoised)
|
| 676 |
+
if callback is not None:
|
| 677 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 678 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2:
|
| 679 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 680 |
+
dt_1 = sigma_mid - sigma_hat
|
| 681 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 682 |
+
x_2 = x + d * dt_1
|
| 683 |
+
#scale = (sigma_mid / sigmas[0]) * 0.25
|
| 684 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.25
|
| 685 |
+
#scale = scale.item()
|
| 686 |
+
if i % 2 == 0:
|
| 687 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale, **extra_args)
|
| 688 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args)
|
| 689 |
+
else:
|
| 690 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 691 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 692 |
+
x = x + d_2 * dt_2
|
| 693 |
+
else:
|
| 694 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 695 |
+
# Euler method
|
| 696 |
+
x = x + d * dt
|
| 697 |
+
return x
|
| 698 |
+
|
| 699 |
+
@torch.no_grad()
|
| 700 |
+
def sample_euler_smea(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 701 |
+
extra_args = {} if extra_args is None else extra_args
|
| 702 |
+
s_in = x.new_ones([x.shape[0]])
|
| 703 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 704 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 705 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 706 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 707 |
+
if gamma > 0:
|
| 708 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 709 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 710 |
+
d = to_d(x, sigma_hat, denoised)
|
| 711 |
+
if callback is not None:
|
| 712 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 713 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 714 |
+
# Euler method
|
| 715 |
+
x = x + d * dt
|
| 716 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 and i % 2 == 0:
|
| 717 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 718 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 719 |
+
dt_2 = sigmas[i + 1] - sigmas[i]
|
| 720 |
+
#print(dt_1, "#", dt_2, "#", dt_3, "#", dt_4)
|
| 721 |
+
x_2 = x + d * dt_1
|
| 722 |
+
x_temp = smea_sampling_step(x, model, dt_2, sigma_mid, **extra_args)
|
| 723 |
+
x = x_temp - d * dt_1
|
| 724 |
+
return x
|
| 725 |
+
|
| 726 |
+
@torch.no_grad()
|
| 727 |
+
def sample_euler_smea_dy(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 728 |
+
extra_args = {} if extra_args is None else extra_args
|
| 729 |
+
s_in = x.new_ones([x.shape[0]])
|
| 730 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 731 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 732 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 733 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 734 |
+
if gamma > 0:
|
| 735 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 736 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 737 |
+
d = to_d(x, sigma_hat, denoised)
|
| 738 |
+
if callback is not None:
|
| 739 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 740 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 741 |
+
# Euler method
|
| 742 |
+
x = x + d * dt
|
| 743 |
+
if sigmas[i + 1] > 0 and (i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 or i < 3) and i % 3 != 2:
|
| 744 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 745 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 746 |
+
dt_2 = sigmas[i + 1] - sigmas[i]
|
| 747 |
+
#print(dt_1, "#", dt_2, "#", dt_3, "#", dt_4)
|
| 748 |
+
x_2 = x + d * dt_1
|
| 749 |
+
if i % 3 == 1:
|
| 750 |
+
x_temp = dy_sampling_step(x, model, dt_2, sigma_mid, **extra_args)
|
| 751 |
+
elif i % 3 == 0:
|
| 752 |
+
x_temp = smea_sampling_step(x, model, dt_2, sigma_mid, **extra_args)
|
| 753 |
+
x = x_temp - d * dt_1
|
| 754 |
+
return x
|
| 755 |
+
|
| 756 |
+
@torch.no_grad()
|
| 757 |
+
def sample_euler_smea_multi_d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 758 |
+
extra_args = {} if extra_args is None else extra_args
|
| 759 |
+
s_in = x.new_ones([x.shape[0]])
|
| 760 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 761 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 762 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 763 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 764 |
+
if gamma > 0:
|
| 765 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 766 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 767 |
+
d = to_d(x, sigma_hat, denoised)
|
| 768 |
+
if callback is not None:
|
| 769 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 770 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 + 2 and i % 2 == 0:
|
| 771 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 772 |
+
dt_1 = sigma_mid - sigma_hat
|
| 773 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 774 |
+
x_2 = x + d * dt_1
|
| 775 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 776 |
+
if i == 0:
|
| 777 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.15, **extra_args)
|
| 778 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 779 |
+
denoised_2 = (denoised_2a + denoised_2c) / 2
|
| 780 |
+
elif i < len(sigmas) * 0.334:
|
| 781 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args)
|
| 782 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args)
|
| 783 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 784 |
+
denoised_2 = (denoised_2a + denoised_2b + denoised_2c) / 3
|
| 785 |
+
else:
|
| 786 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.03, True, **extra_args)
|
| 787 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 788 |
+
denoised_2 = (denoised_2b + denoised_2c) / 2
|
| 789 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 790 |
+
x = x + d_2 * dt_2
|
| 791 |
+
else:
|
| 792 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 793 |
+
# Euler method
|
| 794 |
+
x = x + d * dt
|
| 795 |
+
return x
|
| 796 |
+
|
| 797 |
+
@torch.no_grad()
|
| 798 |
+
def sample_euler_smea_multi_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 799 |
+
extra_args = {} if extra_args is None else extra_args
|
| 800 |
+
s_in = x.new_ones([x.shape[0]])
|
| 801 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 802 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 803 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 804 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 805 |
+
if gamma > 0:
|
| 806 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 807 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 808 |
+
d = to_d(x, sigma_hat, denoised)
|
| 809 |
+
if callback is not None:
|
| 810 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 811 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 812 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 813 |
+
dt_1 = sigma_mid - sigma_hat
|
| 814 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 815 |
+
x_2 = x + d * dt_1
|
| 816 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 817 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args)
|
| 818 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args)
|
| 819 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 820 |
+
denoised_2 = (denoised_2a + denoised_2b + denoised_2c) / 3
|
| 821 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 822 |
+
x = x + d_2 * dt_2
|
| 823 |
+
else:
|
| 824 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 825 |
+
# Euler method
|
| 826 |
+
x = x + d * dt
|
| 827 |
+
return x
|
| 828 |
+
|
| 829 |
+
@torch.no_grad()
|
| 830 |
+
def sample_euler_smea_multi_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 831 |
+
extra_args = {} if extra_args is None else extra_args
|
| 832 |
+
s_in = x.new_ones([x.shape[0]])
|
| 833 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 834 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 835 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 836 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 837 |
+
if gamma > 0:
|
| 838 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 839 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 840 |
+
d = to_d(x, sigma_hat, denoised)
|
| 841 |
+
if callback is not None:
|
| 842 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 843 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 844 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 845 |
+
dt_1 = sigma_mid - sigma_hat
|
| 846 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 847 |
+
x_2 = x + d * dt_1
|
| 848 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 849 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args)
|
| 850 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 851 |
+
denoised_2 = (denoised_2a + denoised_2c) / 2
|
| 852 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 853 |
+
x = x + d_2 * dt_2
|
| 854 |
+
else:
|
| 855 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 856 |
+
# Euler method
|
| 857 |
+
x = x + d * dt
|
| 858 |
+
return x
|
| 859 |
+
|
| 860 |
+
@torch.no_grad()
|
| 861 |
+
def sample_euler_smea_multi_a(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 862 |
+
extra_args = {} if extra_args is None else extra_args
|
| 863 |
+
s_in = x.new_ones([x.shape[0]])
|
| 864 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 865 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 866 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 867 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 868 |
+
if gamma > 0:
|
| 869 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 870 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 871 |
+
d = to_d(x, sigma_hat, denoised)
|
| 872 |
+
if callback is not None:
|
| 873 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 874 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 875 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 876 |
+
dt_1 = sigma_mid - sigma_hat
|
| 877 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 878 |
+
x_2 = x + d * dt_1
|
| 879 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 880 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args)
|
| 881 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 882 |
+
denoised_2 = (denoised_2b + denoised_2c) / 2
|
| 883 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 884 |
+
x = x + d_2 * dt_2
|
| 885 |
+
else:
|
| 886 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 887 |
+
# Euler method
|
| 888 |
+
x = x + d * dt
|
| 889 |
+
return x
|
| 890 |
+
|
| 891 |
+
|
| 892 |
+
@torch.no_grad()
|
| 893 |
+
def sample_euler_smea_multi_ds(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 894 |
+
extra_args = {} if extra_args is None else extra_args
|
| 895 |
+
s_in = x.new_ones([x.shape[0]])
|
| 896 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 897 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 898 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 899 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 900 |
+
if gamma > 0:
|
| 901 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 902 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 903 |
+
d = to_d(x, sigma_hat, denoised)
|
| 904 |
+
if callback is not None:
|
| 905 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 906 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 907 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 908 |
+
dt_1 = sigma_mid - sigma_hat
|
| 909 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 910 |
+
x_2 = x + d * dt_1
|
| 911 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 912 |
+
if i == 0:
|
| 913 |
+
sa = 1 - scale * 0.15
|
| 914 |
+
sb = 1 + scale * 0.09
|
| 915 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 916 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, **extra_args)
|
| 917 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375) / (0.97**2)
|
| 918 |
+
elif i < len(sigmas) * 0.167:
|
| 919 |
+
sa = 1 - scale * 0.25
|
| 920 |
+
sb = 1 + scale * 0.15
|
| 921 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 922 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb , **extra_args)
|
| 923 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375) / (0.95**2)
|
| 924 |
+
else:
|
| 925 |
+
sb = 1 + scale * 0.06
|
| 926 |
+
sc = 1 - scale * 0.1
|
| 927 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, True, **extra_args)
|
| 928 |
+
denoised_2c = smea_sampling_step_denoised(x_2, model, sigma_mid, sc, **extra_args)
|
| 929 |
+
denoised_2 = (denoised_2b * (sb ** 2) * 0.375 + denoised_2c * (sc ** 2) * 0.625) / (0.98**2)
|
| 930 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 931 |
+
x = x + d_2 * dt_2
|
| 932 |
+
else:
|
| 933 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 934 |
+
# Euler method
|
| 935 |
+
x = x + d * dt
|
| 936 |
+
return x
|
| 937 |
+
|
| 938 |
+
@torch.no_grad()
|
| 939 |
+
def sample_euler_smea_multi_ds2_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 940 |
+
sample = sample_euler_smea_multi_ds2(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 941 |
+
return sample
|
| 942 |
+
|
| 943 |
+
@torch.no_grad()
|
| 944 |
+
def sample_euler_smea_multi_ds2_s_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 945 |
+
sample = sample_euler_smea_multi_ds2_m(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 946 |
+
return sample
|
| 947 |
+
|
| 948 |
+
@torch.no_grad()
|
| 949 |
+
def sample_euler_smea_multi_ds2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 950 |
+
extra_args = {} if extra_args is None else extra_args
|
| 951 |
+
s_in = x.new_ones([x.shape[0]])
|
| 952 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 953 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 954 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 955 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 956 |
+
if gamma > 0:
|
| 957 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 958 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 959 |
+
d = to_d(x, sigma_hat, denoised)
|
| 960 |
+
if callback is not None:
|
| 961 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 962 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 963 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 964 |
+
dt_1 = sigma_mid - sigma_hat
|
| 965 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 966 |
+
x_2 = x + d * dt_1
|
| 967 |
+
scale = (sigmas[i] / sigmas[0]) ** 2
|
| 968 |
+
scale = scale.item()
|
| 969 |
+
if i == 0:
|
| 970 |
+
sa = 1 - scale * 0.15
|
| 971 |
+
sb = 1 + scale * 0.09
|
| 972 |
+
sigA = sigma_mid / (sa ** 2)
|
| 973 |
+
sigB = sigma_mid / (sb ** 2)
|
| 974 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 975 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 976 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.97**2) # 1 - (sa * sb ) / 2 + 1
|
| 977 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 978 |
+
elif i < len(sigmas) * 0.167:
|
| 979 |
+
sa = 1 - scale * 0.25
|
| 980 |
+
sb = 1 + scale * 0.15
|
| 981 |
+
sigA = sigma_mid / (sa ** 2)
|
| 982 |
+
sigB = sigma_mid / (sb ** 2)
|
| 983 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 984 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 985 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.95**2)
|
| 986 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 987 |
+
else:
|
| 988 |
+
sb = 1 + scale * 0.06
|
| 989 |
+
sc = 1 - scale * 0.1
|
| 990 |
+
sigB = sigma_mid / (sb ** 2)
|
| 991 |
+
sigC = sigma_mid / (sc ** 2)
|
| 992 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 993 |
+
denoised_2c = smea_sampling_step_denoised(x_2, model, sigC, sc, smooth, **extra_args)
|
| 994 |
+
denoised_2 = (denoised_2b * (sb ** 2) * 0.5 * sc ** 2 + denoised_2c * (sc ** 2) * 0.5 * sb ** 2) #/ (0.98**2)
|
| 995 |
+
d_2 = to_d(x_2, sigB * 0.5 * sc ** 2 + sigC * 0.5 * sb ** 2, denoised_2)
|
| 996 |
+
x = x + d_2 * dt_2
|
| 997 |
+
else:
|
| 998 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 999 |
+
# Euler method
|
| 1000 |
+
x = x + d * dt
|
| 1001 |
+
return x
|
| 1002 |
+
|
| 1003 |
+
@torch.no_grad()
|
| 1004 |
+
def sample_euler_smea_multi_ds2_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 1005 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1006 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1007 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1008 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1009 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1010 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1011 |
+
if gamma > 0:
|
| 1012 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1013 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1014 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1015 |
+
if callback is not None:
|
| 1016 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1017 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 1018 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1019 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1020 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1021 |
+
x_2 = x + d * dt_1
|
| 1022 |
+
scale = (sigmas[i] / sigmas[0]) ** 2
|
| 1023 |
+
#scale = dt_1 ** 2 * 0.01
|
| 1024 |
+
scale = scale.item()
|
| 1025 |
+
if i == 0:
|
| 1026 |
+
sa = 1 - scale * 0.15 #15
|
| 1027 |
+
sb = 1 + scale * 0.09 #09
|
| 1028 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1029 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1030 |
+
#delta = sa * sb
|
| 1031 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1032 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1033 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.97**2) # 1 - (sa * sb ) / 2 + 1
|
| 1034 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 1035 |
+
elif i < len(sigmas) * 0.167:
|
| 1036 |
+
sa = 1 - scale * 0.25 #25
|
| 1037 |
+
sb = 1 + scale * 0.15 #15
|
| 1038 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1039 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1040 |
+
#delta = sa * sb
|
| 1041 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1042 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1043 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.95**2)
|
| 1044 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 1045 |
+
else:
|
| 1046 |
+
sb = 1 + scale * 0.06
|
| 1047 |
+
sc = 1 - scale * 0.1
|
| 1048 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1049 |
+
sigC = sigma_mid / (sc ** 2)
|
| 1050 |
+
#delta = sb * sc
|
| 1051 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1052 |
+
denoised_2c = smea_sampling_step_denoised(x_2, model, sigC, sc, smooth, **extra_args)
|
| 1053 |
+
denoised_2 = (denoised_2b * (sb ** 2) * 0.5 * sc ** 2+ denoised_2c * (sc ** 2) * 0.5 * sb ** 2) #/ (0.98**2)
|
| 1054 |
+
d_2 = to_d(x_2, sigB * 0.5 * sc ** 2 + sigC * 0.5 * sb ** 2, denoised_2)
|
| 1055 |
+
x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d_2 * dt_2
|
| 1056 |
+
else:
|
| 1057 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1058 |
+
# Euler method
|
| 1059 |
+
x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d * dt
|
| 1060 |
+
return x
|
| 1061 |
+
|
| 1062 |
+
@torch.no_grad()
|
| 1063 |
+
def sample_euler_h_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1064 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1065 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1066 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1067 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1068 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1069 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1070 |
+
gamma = min((2 ** 0.5 - 1) - wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1071 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler == None else noise_sampler
|
| 1072 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1073 |
+
if gamma > 0:
|
| 1074 |
+
x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1075 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1076 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1077 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1078 |
+
if callback is not None:
|
| 1079 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1080 |
+
if sigmas[i + 1] > 0:
|
| 1081 |
+
x_2 = x + d * dt
|
| 1082 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1083 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1084 |
+
x = x + d_prime * dt
|
| 1085 |
+
else:
|
| 1086 |
+
# Euler method
|
| 1087 |
+
x = x + d * dt
|
| 1088 |
+
return x
|
| 1089 |
+
|
| 1090 |
+
@torch.no_grad()
|
| 1091 |
+
def sample_euler_h_m_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1092 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1093 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1094 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1095 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1096 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1097 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1098 |
+
gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1099 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1100 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1101 |
+
if gamma > 0:
|
| 1102 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1103 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1104 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1105 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1106 |
+
if callback is not None:
|
| 1107 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1108 |
+
if sigmas[i + 1] > 0:
|
| 1109 |
+
x_2 = x + d * dt
|
| 1110 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1111 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1112 |
+
x = x + d_prime * dt
|
| 1113 |
+
else:
|
| 1114 |
+
# Euler method
|
| 1115 |
+
x = x + d * dt
|
| 1116 |
+
return x
|
| 1117 |
+
|
| 1118 |
+
@torch.no_grad()
|
| 1119 |
+
def sample_euler_h_m_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1120 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1121 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1122 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1123 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1124 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1125 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1126 |
+
gamma = max((2 ** 0.5 - 1) + wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1127 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1128 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1129 |
+
if gamma > 0:
|
| 1130 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1131 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1132 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1133 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1134 |
+
if callback is not None:
|
| 1135 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1136 |
+
if sigmas[i + 1] > 0:
|
| 1137 |
+
x_2 = x + d * dt
|
| 1138 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1139 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1140 |
+
x = x + d_prime * dt
|
| 1141 |
+
else:
|
| 1142 |
+
# Euler method
|
| 1143 |
+
x = x + d * dt
|
| 1144 |
+
return x
|
| 1145 |
+
|
| 1146 |
+
@torch.no_grad()
|
| 1147 |
+
def sample_euler_h_m_d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1148 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1149 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1150 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1151 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1152 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1153 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1154 |
+
gamma = min((2 ** 0.5 - 1) - wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1155 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1156 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1157 |
+
if gamma > 0:
|
| 1158 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1159 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1160 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1161 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1162 |
+
if callback is not None:
|
| 1163 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1164 |
+
if sigmas[i + 1] > 0:
|
| 1165 |
+
x_2 = x + d * dt
|
| 1166 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1167 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1168 |
+
x = x + d_prime * dt
|
| 1169 |
+
else:
|
| 1170 |
+
# Euler method
|
| 1171 |
+
x = x + d * dt
|
| 1172 |
+
return x
|
| 1173 |
+
|
| 1174 |
+
@torch.no_grad()
|
| 1175 |
+
def sample_euler_h_m_e(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1176 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1177 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1178 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1179 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1180 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1181 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1182 |
+
gamma = max((2 ** 0.5 - 1) + wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1183 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1184 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1185 |
+
if gamma > 0:
|
| 1186 |
+
x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1187 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1188 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1189 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1190 |
+
if callback is not None:
|
| 1191 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1192 |
+
if sigmas[i + 1] > 0:
|
| 1193 |
+
x_2 = x + d * dt
|
| 1194 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1195 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1196 |
+
x = x + d_prime * dt
|
| 1197 |
+
else:
|
| 1198 |
+
# Euler method
|
| 1199 |
+
x = x + d * dt
|
| 1200 |
+
return x
|
| 1201 |
+
|
| 1202 |
+
@torch.no_grad()
|
| 1203 |
+
def sample_euler_h_m_f(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1204 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1205 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1206 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1207 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1208 |
+
wave_max = math.cos(0)/1.5 + 1
|
| 1209 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1210 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1211 |
+
gamma = min((wave_max - wave) * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1212 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1213 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1214 |
+
if gamma > 0:
|
| 1215 |
+
x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1216 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1217 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1218 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1219 |
+
if callback is not None:
|
| 1220 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1221 |
+
if sigmas[i + 1] > 0:
|
| 1222 |
+
x_2 = x + d * dt
|
| 1223 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1224 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1225 |
+
x = x + d_prime * dt
|
| 1226 |
+
else:
|
| 1227 |
+
# Euler method
|
| 1228 |
+
x = x + d * dt
|
| 1229 |
+
return x
|
| 1230 |
+
|
| 1231 |
+
@torch.no_grad()
|
| 1232 |
+
def sample_euler_h_m_g(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1233 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1234 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1235 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1236 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1237 |
+
wave_max = math.cos(0)/1.5 + 1
|
| 1238 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1239 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1240 |
+
gamma = min((wave_max - wave) * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1241 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1242 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1243 |
+
if gamma > 0:
|
| 1244 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1245 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1246 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1247 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1248 |
+
if callback is not None:
|
| 1249 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1250 |
+
if sigmas[i + 1] > 0:
|
| 1251 |
+
x_2 = x + d * dt
|
| 1252 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1253 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1254 |
+
x = x + d_prime * dt
|
| 1255 |
+
else:
|
| 1256 |
+
# Euler method
|
| 1257 |
+
x = x + d * dt
|
| 1258 |
+
return x
|
| 1259 |
+
|
| 1260 |
+
@torch.no_grad()
|
| 1261 |
+
def sample_euler_h_m_b_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1262 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1263 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1264 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1265 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1266 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1267 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1268 |
+
gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1269 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1270 |
+
gammaup = gamma + 1
|
| 1271 |
+
sigma_hat = sigmas[i] * gammaup
|
| 1272 |
+
if gamma > 0:
|
| 1273 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1274 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1275 |
+
last_noise_uncond = model.last_noise_uncond
|
| 1276 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1277 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1278 |
+
if callback is not None:
|
| 1279 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1280 |
+
if i == 0:
|
| 1281 |
+
x = x + d * dt
|
| 1282 |
+
elif i <= len(sigmas) - 4:
|
| 1283 |
+
x_2 = x + d * dt
|
| 1284 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1285 |
+
x_3 = x_2 + d_2 * dt
|
| 1286 |
+
d_3 = to_d(x_3, sigmas[i + 2] * gammaup, denoised)
|
| 1287 |
+
d_prime = d * 0.5 + d_2 * 0.375 + d_3 * 0.125
|
| 1288 |
+
x = x + d_prime * dt
|
| 1289 |
+
elif sigmas[i + 1] > 0:
|
| 1290 |
+
x_2 = x + d * dt
|
| 1291 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1292 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1293 |
+
x = x + d_prime * dt
|
| 1294 |
+
else:
|
| 1295 |
+
# Euler method
|
| 1296 |
+
x = x + d * dt
|
| 1297 |
+
return x
|
| 1298 |
+
|
| 1299 |
+
@torch.no_grad()
|
| 1300 |
+
def sample_euler_h_m_b_c_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1301 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1302 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1303 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1304 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1305 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1306 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1307 |
+
gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1308 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1309 |
+
gammaup = gamma + 1
|
| 1310 |
+
sigma_hat = sigmas[i] * gammaup
|
| 1311 |
+
if gamma > 0:
|
| 1312 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1313 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1314 |
+
last_noise_uncond = model.last_noise_uncond
|
| 1315 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1316 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1317 |
+
if callback is not None:
|
| 1318 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1319 |
+
if i == 0:
|
| 1320 |
+
x = x + d * dt
|
| 1321 |
+
elif i <= len(sigmas) - 4:
|
| 1322 |
+
x_2 = x + d * dt
|
| 1323 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1324 |
+
x_3 = x_2 + d_2 * dt
|
| 1325 |
+
d_3 = to_d(x_3, sigmas[i + 2] * gammaup, last_noise_uncond)
|
| 1326 |
+
d_prime = d * 0.5 + d_2 * 0.375 + d_3 * 0.125
|
| 1327 |
+
x = x + d_prime * dt
|
| 1328 |
+
elif sigmas[i + 1] > 0:
|
| 1329 |
+
x_2 = x + d * dt
|
| 1330 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1331 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1332 |
+
x = x + d_prime * dt
|
| 1333 |
+
else:
|
| 1334 |
+
# Euler method
|
| 1335 |
+
x = x + d * dt
|
| 1336 |
+
return x
|
| 1337 |
+
|
| 1338 |
+
@torch.no_grad()
|
| 1339 |
+
def sample_euler_smea_max(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 1340 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1341 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1342 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1343 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1344 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1345 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1346 |
+
sa = math.cos(i + 1)/(1.5 * i + 1.75) + 1
|
| 1347 |
+
if gamma > 0:
|
| 1348 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1349 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1350 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1351 |
+
if callback is not None:
|
| 1352 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1353 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 1354 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1355 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1356 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1357 |
+
x_2 = x + d * dt_1
|
| 1358 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1359 |
+
sigB = sigma_mid
|
| 1360 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1361 |
+
denoised_2b = model(x_2, sigma_mid * s_in, **extra_args)
|
| 1362 |
+
denoised_2 = (denoised_2a * 0.5 * (sa ** 2) + denoised_2b * 0.5 / (sa ** 2))
|
| 1363 |
+
d_2 = to_d(x_2, sigA * 0.5 * (sa ** 2) + sigB * 0.5 / (sa ** 2), denoised_2)
|
| 1364 |
+
x = x + d_2 * dt_2
|
| 1365 |
+
else:
|
| 1366 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1367 |
+
# Euler method
|
| 1368 |
+
x = x + sa * d * dt
|
| 1369 |
+
return x
|
| 1370 |
+
|
| 1371 |
+
|
| 1372 |
+
@torch.no_grad()
|
| 1373 |
+
def sample_euler_smea_max_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1374 |
+
sample = sample_euler_smea_max(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 1375 |
+
return sample
|
| 1376 |
+
|
| 1377 |
+
@torch.no_grad()
|
| 1378 |
+
def sample_euler_smea_multi_bs(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1379 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1380 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1381 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1382 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1383 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1384 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1385 |
+
if gamma > 0:
|
| 1386 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1387 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1388 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1389 |
+
if callback is not None:
|
| 1390 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1391 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1392 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1393 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1394 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1395 |
+
x_2 = x + d * dt_1
|
| 1396 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 1397 |
+
sa = 1 - scale * 0.25
|
| 1398 |
+
sb = 1 + scale * 0.15
|
| 1399 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 1400 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, **extra_args)
|
| 1401 |
+
denoised_2 = denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375 / (0.95**2)
|
| 1402 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 1403 |
+
x = x + d_2 * dt_2
|
| 1404 |
+
else:
|
| 1405 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1406 |
+
# Euler method
|
| 1407 |
+
x = x + d * dt
|
| 1408 |
+
return x
|
| 1409 |
+
|
| 1410 |
+
@torch.no_grad()
|
| 1411 |
+
def sample_euler_smea_multi_bs2_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1412 |
+
sample = sample_euler_smea_multi_bs2(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 1413 |
+
return sample
|
| 1414 |
+
|
| 1415 |
+
@torch.no_grad()
|
| 1416 |
+
def sample_euler_smea_multi_bs2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 1417 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1418 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1419 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1420 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1421 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1422 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1423 |
+
if gamma > 0:
|
| 1424 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1425 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1426 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1427 |
+
if callback is not None:
|
| 1428 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1429 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1430 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1431 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1432 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1433 |
+
x_2 = x + d * dt_1
|
| 1434 |
+
scale = (sigmas[i] / sigmas[0]) ** 2
|
| 1435 |
+
scale = scale.item()
|
| 1436 |
+
sa = 1 - scale * 0.25
|
| 1437 |
+
sb = 1 + scale * 0.15
|
| 1438 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1439 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1440 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1441 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1442 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2)
|
| 1443 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 1444 |
+
x = x + d_2 * dt_2
|
| 1445 |
+
else:
|
| 1446 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1447 |
+
# Euler method
|
| 1448 |
+
x = x + d * dt
|
| 1449 |
+
return x
|
| 1450 |
+
|
| 1451 |
+
@torch.no_grad()
|
| 1452 |
+
def sample_euler_smea_multi_cs(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1453 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1454 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1455 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1456 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1457 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1458 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1459 |
+
if gamma > 0:
|
| 1460 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1461 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1462 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1463 |
+
if callback is not None:
|
| 1464 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1465 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1466 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1467 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1468 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1469 |
+
x_2 = x + d * dt_1
|
| 1470 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 1471 |
+
sa = 1 - scale * 0.25
|
| 1472 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 1473 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2 * (sa ** 2) * 1.25)
|
| 1474 |
+
x = x + d_2 * dt_2
|
| 1475 |
+
else:
|
| 1476 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1477 |
+
# Euler method
|
| 1478 |
+
x = x + d * dt
|
| 1479 |
+
return x
|
| 1480 |
+
|
| 1481 |
+
@torch.no_grad()
|
| 1482 |
+
def sample_euler_smea_multi_as(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1483 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1484 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1485 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1486 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1487 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1488 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1489 |
+
if gamma > 0:
|
| 1490 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1491 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1492 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1493 |
+
if callback is not None:
|
| 1494 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1495 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1496 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1497 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1498 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1499 |
+
x_2 = x + d * dt_1
|
| 1500 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 1501 |
+
sa = 1 + scale * 0.15
|
| 1502 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 1503 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2 * (sa ** 2) * 0.75)
|
| 1504 |
+
x = x + d_2 * dt_2
|
| 1505 |
+
else:
|
| 1506 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1507 |
+
# Euler method
|
| 1508 |
+
x = x + d * dt
|
| 1509 |
+
return x
|
| 1510 |
+
|
| 1511 |
+
## og sampler
|
| 1512 |
+
@torch.no_grad()
|
| 1513 |
+
def sample_euler_dy_og(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1514 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1515 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1516 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1517 |
+
# print(i)
|
| 1518 |
+
# i绗竴姝ヤ负0
|
| 1519 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1520 |
+
eps = torch.randn_like(x) * s_noise
|
| 1521 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1522 |
+
# print(sigma_hat)
|
| 1523 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1524 |
+
if gamma > 0:
|
| 1525 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1526 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1527 |
+
d = sampling.to_d(x, sigma_hat, denoised)
|
| 1528 |
+
if sigmas[i + 1] > 0:
|
| 1529 |
+
if i // 2 == 1:
|
| 1530 |
+
x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args)
|
| 1531 |
+
if callback is not None:
|
| 1532 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1533 |
+
# Euler method
|
| 1534 |
+
x = x + d * dt
|
| 1535 |
+
return x
|
| 1536 |
+
|
| 1537 |
+
@torch.no_grad()
|
| 1538 |
+
def sample_euler_smea_dy_og(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1539 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1540 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1541 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1542 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1543 |
+
eps = torch.randn_like(x) * s_noise
|
| 1544 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1545 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1546 |
+
if gamma > 0:
|
| 1547 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1548 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1549 |
+
d = sampling.to_d(x, sigma_hat, denoised)
|
| 1550 |
+
# Euler method
|
| 1551 |
+
x = x + d * dt
|
| 1552 |
+
if sigmas[i + 1] > 0:
|
| 1553 |
+
if i + 1 // 2 == 1:
|
| 1554 |
+
x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args)
|
| 1555 |
+
if i + 1 // 2 == 0:
|
| 1556 |
+
x = smea_sampling_step(x, model, dt, sigma_hat, **extra_args)
|
| 1557 |
+
if callback is not None:
|
| 1558 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1559 |
+
return x
|
| 1560 |
+
|
| 1561 |
+
## TCD
|
| 1562 |
+
|
| 1563 |
+
def sample_tcd_euler_a(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, gamma=0.3):
|
| 1564 |
+
# TCD sampling using modified Euler Ancestral sampler. by @laksjdjf
|
| 1565 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1566 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
| 1567 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1568 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1569 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 1570 |
+
if callback is not None:
|
| 1571 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1572 |
+
|
| 1573 |
+
#d = to_d(x, sigmas[i], denoised)
|
| 1574 |
+
sigma_from = sigmas[i]
|
| 1575 |
+
sigma_to = sigmas[i + 1]
|
| 1576 |
+
|
| 1577 |
+
t = model.inner_model.sigma_to_t(sigma_from)
|
| 1578 |
+
down_t = (1 - gamma) * t
|
| 1579 |
+
sigma_down = model.inner_model.t_to_sigma(down_t)
|
| 1580 |
+
|
| 1581 |
+
if sigma_down > sigma_to:
|
| 1582 |
+
sigma_down = sigma_to
|
| 1583 |
+
sigma_up = (sigma_to ** 2 - sigma_down ** 2) ** 0.5
|
| 1584 |
+
|
| 1585 |
+
# same as euler ancestral
|
| 1586 |
+
d = to_d(x, sigma_from, denoised)
|
| 1587 |
+
dt = sigma_down - sigma_from
|
| 1588 |
+
x += d * dt
|
| 1589 |
+
|
| 1590 |
+
if sigma_to > 0 and gamma > 0:
|
| 1591 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigma_up
|
| 1592 |
+
return x
|
| 1593 |
+
|
| 1594 |
+
@torch.no_grad()
|
| 1595 |
+
def sample_tcd(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, gamma=0.3):
|
| 1596 |
+
# TCD sampling using modified DDPM.
|
| 1597 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1598 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
| 1599 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1600 |
+
|
| 1601 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1602 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 1603 |
+
if callback is not None:
|
| 1604 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1605 |
+
|
| 1606 |
+
sigma_from, sigma_to = sigmas[i], sigmas[i+1]
|
| 1607 |
+
|
| 1608 |
+
# TCD offset, based on gamma, and conversion between sigma and timestep
|
| 1609 |
+
t = model.inner_model.sigma_to_t(sigma_from)
|
| 1610 |
+
t_s = (1 - gamma) * t
|
| 1611 |
+
sigma_to_s = model.inner_model.t_to_sigma(t_s)
|
| 1612 |
+
|
| 1613 |
+
# if sigma_to_s > sigma_to:
|
| 1614 |
+
# sigma_to_s = sigma_to
|
| 1615 |
+
# if sigma_to_s < 0:
|
| 1616 |
+
# sigma_to_s = torch.tensor(1.0)
|
| 1617 |
+
#print(f"sigma_from: {sigma_from}, sigma_to: {sigma_to}, sigma_to_s: {sigma_to_s}")
|
| 1618 |
+
|
| 1619 |
+
|
| 1620 |
+
# The following is equivalent to the comfy DDPM implementation
|
| 1621 |
+
# x = DDPMSampler_step(x / torch.sqrt(1.0 + sigma_from ** 2.0), sigma_from, sigma_to, (x - denoised) / sigma_from, noise_sampler)
|
| 1622 |
+
|
| 1623 |
+
noise_est = (x - denoised) / sigma_from
|
| 1624 |
+
x /= torch.sqrt(1.0 + sigma_from ** 2.0)
|
| 1625 |
+
|
| 1626 |
+
alpha_cumprod = 1 / ((sigma_from * sigma_from) + 1) # _t
|
| 1627 |
+
alpha_cumprod_prev = 1 / ((sigma_to * sigma_to) + 1) # _t_prev
|
| 1628 |
+
alpha = (alpha_cumprod / alpha_cumprod_prev)
|
| 1629 |
+
|
| 1630 |
+
## These values should approach 1.0?
|
| 1631 |
+
# print(f"alpha_cumprod: {alpha_cumprod}")
|
| 1632 |
+
# print(f"alpha_cumprod_prev: {alpha_cumprod_prev}")
|
| 1633 |
+
# print(f"alpha: {alpha}")
|
| 1634 |
+
|
| 1635 |
+
|
| 1636 |
+
# alpha_cumprod_down = 1 / ((sigma_to_s * sigma_to_s) + 1) # _s
|
| 1637 |
+
# alpha_d = (alpha_cumprod_prev / alpha_cumprod_down)
|
| 1638 |
+
# alpha2 = (alpha_cumprod / alpha_cumprod_down)
|
| 1639 |
+
# print(f"** alpha_cumprod_down: {alpha_cumprod_down}")
|
| 1640 |
+
# print(f"** alpha_d: {alpha_d}, alpha2: #{alpha2}")
|
| 1641 |
+
|
| 1642 |
+
# epsilon noise prediction from comfy DDPM implementation
|
| 1643 |
+
x = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise_est / (1 - alpha_cumprod).sqrt())
|
| 1644 |
+
# x = (1.0 / alpha_d).sqrt() * (x - (1 - alpha) * noise_est / (1 - alpha_cumprod).sqrt())
|
| 1645 |
+
|
| 1646 |
+
first_step = sigma_to == 0
|
| 1647 |
+
last_step = i == len(sigmas) - 2
|
| 1648 |
+
|
| 1649 |
+
if not first_step:
|
| 1650 |
+
if gamma > 0 and not last_step:
|
| 1651 |
+
noise = noise_sampler(sigma_from, sigma_to)
|
| 1652 |
+
|
| 1653 |
+
# x += ((1 - alpha_d) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise
|
| 1654 |
+
variance = ((1 - alpha_cumprod_prev) / (1 - alpha_cumprod)) * (1 - alpha_cumprod / alpha_cumprod_prev)
|
| 1655 |
+
x += variance.sqrt() * noise # scale noise by std deviation
|
| 1656 |
+
|
| 1657 |
+
# relevant diffusers code from scheduling_tcd.py
|
| 1658 |
+
# prev_sample = (alpha_prod_t_prev / alpha_prod_s).sqrt() * pred_noised_sample + (
|
| 1659 |
+
# 1 - alpha_prod_t_prev / alpha_prod_s
|
| 1660 |
+
# ).sqrt() * noise
|
| 1661 |
+
|
| 1662 |
+
x *= torch.sqrt(1.0 + sigma_to ** 2.0)
|
| 1663 |
+
|
| 1664 |
+
# beta_cumprod_t = 1 - alpha_cumprod
|
| 1665 |
+
# beta_cumprod_s = 1 - alpha_cumprod_down
|
| 1666 |
+
|
| 1667 |
+
|
| 1668 |
+
return x
|
| 1669 |
+
|
| 1670 |
+
# 袙 褋邪屑芯屑 泻芯薪褑械 sd-webui-smea.py
|
| 1671 |
+
from modules.script_callbacks import on_before_ui
|
| 1672 |
+
on_before_ui(init)
|
sd-webui-smea/sd-webui-smea (13).py
ADDED
|
@@ -0,0 +1,1657 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import math
|
| 3 |
+
import k_diffusion.sampling
|
| 4 |
+
|
| 5 |
+
from k_diffusion.sampling import to_d, BrownianTreeNoiseSampler
|
| 6 |
+
from tqdm.auto import trange
|
| 7 |
+
from modules import scripts
|
| 8 |
+
from modules import sd_samplers_kdiffusion, sd_samplers_common, sd_samplers
|
| 9 |
+
from modules.sd_samplers_kdiffusion import KDiffusionSampler
|
| 10 |
+
|
| 11 |
+
class _Rescaler:
|
| 12 |
+
def __init__(self, model, x, mode, **extra_args):
|
| 13 |
+
self.model = model
|
| 14 |
+
self.x = x
|
| 15 |
+
self.mode = mode
|
| 16 |
+
self.extra_args = extra_args
|
| 17 |
+
self.init_latent, self.mask, self.nmask = model.init_latent, model.mask, model.nmask
|
| 18 |
+
|
| 19 |
+
def __enter__(self):
|
| 20 |
+
if self.init_latent is not None:
|
| 21 |
+
self.model.init_latent = torch.nn.functional.interpolate(input=self.init_latent, size=self.x.shape[2:4], mode=self.mode)
|
| 22 |
+
if self.mask is not None:
|
| 23 |
+
self.model.mask = torch.nn.functional.interpolate(input=self.mask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0)
|
| 24 |
+
if self.nmask is not None:
|
| 25 |
+
self.model.nmask = torch.nn.functional.interpolate(input=self.nmask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0)
|
| 26 |
+
return self
|
| 27 |
+
|
| 28 |
+
def __exit__(self, type, value, traceback):
|
| 29 |
+
del self.model.init_latent, self.model.mask, self.model.nmask
|
| 30 |
+
self.model.init_latent, self.model.mask, self.model.nmask = self.init_latent, self.mask, self.nmask
|
| 31 |
+
|
| 32 |
+
class Smea(scripts.Script):
|
| 33 |
+
|
| 34 |
+
def title(self):
|
| 35 |
+
return "Euler Smea Dy sampler"
|
| 36 |
+
|
| 37 |
+
def show(self, is_img2img):
|
| 38 |
+
return scripts.AlwaysVisible
|
| 39 |
+
|
| 40 |
+
def __init__(self):
|
| 41 |
+
init()
|
| 42 |
+
return
|
| 43 |
+
|
| 44 |
+
def init():
|
| 45 |
+
for i in sd_samplers.all_samplers:
|
| 46 |
+
if "Euler Max" in i.name:
|
| 47 |
+
return
|
| 48 |
+
|
| 49 |
+
samplers_smea = [
|
| 50 |
+
('Euler Max', sample_euler_max, ['k_euler'], {}),
|
| 51 |
+
('Euler Max1b', sample_euler_max1b, ['k_euler'], {}),
|
| 52 |
+
('Euler Max1c', sample_euler_max1c, ['k_euler'], {}),
|
| 53 |
+
('Euler Max1d', sample_euler_max1d, ['k_euler'], {}),
|
| 54 |
+
('Euler Max2', sample_euler_max2, ['k_euler'], {}),
|
| 55 |
+
('Euler Max2b', sample_euler_max2b, ['k_euler'], {}),
|
| 56 |
+
('Euler Max2c', sample_euler_max2c, ['k_euler'], {}),
|
| 57 |
+
('Euler Max2d', sample_euler_max2d, ['k_euler'], {}),
|
| 58 |
+
('Euler Max3', sample_euler_max3, ['k_euler'], {}),
|
| 59 |
+
('Euler Max3b', sample_euler_max3b, ['k_euler'], {}),
|
| 60 |
+
('Euler Max3c', sample_euler_max3c, ['k_euler'], {}),
|
| 61 |
+
('Euler Max4', sample_euler_max4, ['k_euler'], {}),
|
| 62 |
+
('Euler Max4b', sample_euler_max4b, ['k_euler'], {}),
|
| 63 |
+
('Euler Max4c', sample_euler_max4c, ['k_euler'], {}),
|
| 64 |
+
('Euler Max4d', sample_euler_max4d, ['k_euler'], {}),
|
| 65 |
+
('Euler Max4e', sample_euler_max4e, ['k_euler'], {}),
|
| 66 |
+
('Euler Max4f', sample_euler_max4f, ['k_euler'], {}),
|
| 67 |
+
('Euler Dy', sample_euler_dy, ['k_euler'], {}),
|
| 68 |
+
('Euler Smea', sample_euler_smea, ['k_euler'], {}),
|
| 69 |
+
('Euler Smea Dy', sample_euler_smea_dy, ['k_euler'], {}),
|
| 70 |
+
('Euler Smea Max', sample_euler_smea_max, ['k_euler'], {}),
|
| 71 |
+
('Euler Smea Max s', sample_euler_smea_max_s, ['k_euler'], {}),
|
| 72 |
+
('Euler Smea dyn a', sample_euler_smea_dyn_a, ['k_euler'], {}),
|
| 73 |
+
('Euler Smea dyn b', sample_euler_smea_dyn_b, ['k_euler'], {}),
|
| 74 |
+
('Euler Smea dyn c', sample_euler_smea_dyn_c, ['k_euler'], {}),
|
| 75 |
+
('Euler Smea ma', sample_euler_smea_multi_a, ['k_euler'], {}),
|
| 76 |
+
('Euler Smea mb', sample_euler_smea_multi_b, ['k_euler'], {}),
|
| 77 |
+
('Euler Smea mc', sample_euler_smea_multi_c, ['k_euler'], {}),
|
| 78 |
+
('Euler Smea md', sample_euler_smea_multi_d, ['k_euler'], {}),
|
| 79 |
+
('Euler Smea mas', sample_euler_smea_multi_as, ['k_euler'], {}),
|
| 80 |
+
('Euler Smea mbs', sample_euler_smea_multi_bs, ['k_euler'], {}),
|
| 81 |
+
('Euler Smea mcs', sample_euler_smea_multi_cs, ['k_euler'], {}),
|
| 82 |
+
('Euler Smea mds', sample_euler_smea_multi_ds, ['k_euler'], {}),
|
| 83 |
+
('Euler Smea mbs2', sample_euler_smea_multi_bs2, ['k_euler'], {}),
|
| 84 |
+
('Euler Smea mds2', sample_euler_smea_multi_ds2, ['k_euler'], {}),
|
| 85 |
+
('Euler Smea mds2 max', sample_euler_smea_multi_ds2_m, ['k_euler'], {}),
|
| 86 |
+
('Euler Smea mds2 s max', sample_euler_smea_multi_ds2_s_m, ['k_euler'], {}),
|
| 87 |
+
('Euler Smea mbs2 s', sample_euler_smea_multi_bs2_s, ['k_euler'], {}),
|
| 88 |
+
('Euler Smea mds2 s', sample_euler_smea_multi_ds2_s, ['k_euler'], {}),
|
| 89 |
+
('Euler h max', sample_euler_h_m, ['k_euler'], {"brownian_noise": True}),
|
| 90 |
+
('Euler h max b', sample_euler_h_m_b, ['k_euler'], {"brownian_noise": True}),
|
| 91 |
+
('Euler h max c', sample_euler_h_m_c, ['k_euler'], {"brownian_noise": True}),
|
| 92 |
+
('Euler h max d', sample_euler_h_m_d, ['k_euler'], {"brownian_noise": True}),
|
| 93 |
+
('Euler h max e', sample_euler_h_m_e, ['k_euler'], {"brownian_noise": True}),
|
| 94 |
+
('Euler h max f', sample_euler_h_m_f, ['k_euler'], {"brownian_noise": True}),
|
| 95 |
+
('Euler h max g', sample_euler_h_m_g, ['k_euler'], {"brownian_noise": True}),
|
| 96 |
+
('Euler h max b c', sample_euler_h_m_b_c, ['k_euler'], {"brownian_noise": True}),
|
| 97 |
+
('Euler h max b c CFG++', sample_euler_h_m_b_c_pp, ['k_euler'], {"brownian_noise": True, "cfgpp": True}),
|
| 98 |
+
('Euler Dy koishi-star', sample_euler_dy_og, ['k_euler'], {}),
|
| 99 |
+
('Euler Smea Dy koishi-star', sample_euler_smea_dy_og, ['k_euler'], {}),
|
| 100 |
+
('TCD Euler a', sample_tcd_euler_a, ['tcd_euler_a'], {}),
|
| 101 |
+
('TCD', sample_tcd, ['tcd'], {}),
|
| 102 |
+
]
|
| 103 |
+
|
| 104 |
+
samplers_data_smea = [
|
| 105 |
+
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
|
| 106 |
+
for label, funcname, aliases, options in samplers_smea
|
| 107 |
+
if callable(funcname)
|
| 108 |
+
]
|
| 109 |
+
|
| 110 |
+
sampler_exparams_smea = {
|
| 111 |
+
sample_euler_max: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 112 |
+
sample_euler_max1b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 113 |
+
sample_euler_max1c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 114 |
+
sample_euler_max1d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 115 |
+
sample_euler_max2: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 116 |
+
sample_euler_max2b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 117 |
+
sample_euler_max2c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 118 |
+
sample_euler_max2d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 119 |
+
sample_euler_max3: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 120 |
+
sample_euler_max3b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 121 |
+
sample_euler_max3c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 122 |
+
sample_euler_max4: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 123 |
+
sample_euler_max4b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 124 |
+
sample_euler_max4c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 125 |
+
sample_euler_max4d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 126 |
+
sample_euler_max4e: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 127 |
+
sample_euler_max4f: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 128 |
+
sample_euler_dy: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 129 |
+
sample_euler_smea: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 130 |
+
sample_euler_smea_dy: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 131 |
+
sample_euler_smea_max: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 132 |
+
sample_euler_smea_max_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 133 |
+
sample_euler_smea_dyn_a: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 134 |
+
sample_euler_smea_dyn_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 135 |
+
sample_euler_smea_dyn_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 136 |
+
sample_euler_smea_multi_a: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 137 |
+
sample_euler_smea_multi_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 138 |
+
sample_euler_smea_multi_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 139 |
+
sample_euler_smea_multi_d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 140 |
+
sample_euler_smea_multi_as: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 141 |
+
sample_euler_smea_multi_bs: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 142 |
+
sample_euler_smea_multi_cs: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 143 |
+
sample_euler_smea_multi_ds: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 144 |
+
sample_euler_smea_multi_bs2: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 145 |
+
sample_euler_smea_multi_ds2: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 146 |
+
sample_euler_smea_multi_ds2_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 147 |
+
sample_euler_smea_multi_ds2_s_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 148 |
+
sample_euler_smea_multi_bs2_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 149 |
+
sample_euler_smea_multi_ds2_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 150 |
+
sample_euler_h_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 151 |
+
sample_euler_h_m_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 152 |
+
sample_euler_h_m_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 153 |
+
sample_euler_h_m_d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 154 |
+
sample_euler_h_m_e: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 155 |
+
sample_euler_h_m_f: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 156 |
+
sample_euler_h_m_g: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 157 |
+
sample_euler_h_m_b_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 158 |
+
sample_euler_h_m_b_c_pp: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 159 |
+
sample_euler_dy_og: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 160 |
+
sample_euler_smea_dy_og: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 161 |
+
}
|
| 162 |
+
sd_samplers_kdiffusion.sampler_extra_params = {**sd_samplers_kdiffusion.sampler_extra_params, **sampler_exparams_smea}
|
| 163 |
+
|
| 164 |
+
samplers_map_smea = {x.name: x for x in samplers_data_smea}
|
| 165 |
+
sd_samplers_kdiffusion.k_diffusion_samplers_map = {**sd_samplers_kdiffusion.k_diffusion_samplers_map, **samplers_map_smea}
|
| 166 |
+
|
| 167 |
+
for i, item in enumerate(sd_samplers.all_samplers):
|
| 168 |
+
if "Euler" in item.name:
|
| 169 |
+
sd_samplers.all_samplers = sd_samplers.all_samplers[:i + 1] + [*samplers_data_smea] + sd_samplers.all_samplers[i + 1:]
|
| 170 |
+
break
|
| 171 |
+
sd_samplers.all_samplers_map = {x.name: x for x in sd_samplers.all_samplers}
|
| 172 |
+
sd_samplers.set_samplers()
|
| 173 |
+
|
| 174 |
+
return
|
| 175 |
+
|
| 176 |
+
def default_noise_sampler(x):
|
| 177 |
+
return lambda sigma, sigma_next: k_diffusion.sampling.torch.randn_like(x)
|
| 178 |
+
|
| 179 |
+
@torch.no_grad()
|
| 180 |
+
def dy_sampling_step(x, model, dt, sigma_hat, **extra_args):
|
| 181 |
+
original_shape = x.shape
|
| 182 |
+
batch_size, channels, m, n = original_shape[0], original_shape[1], original_shape[2] // 2, original_shape[3] // 2
|
| 183 |
+
extra_row = x.shape[2] % 2 == 1
|
| 184 |
+
extra_col = x.shape[3] % 2 == 1
|
| 185 |
+
|
| 186 |
+
if extra_row:
|
| 187 |
+
extra_row_content = x[:, :, -1:, :]
|
| 188 |
+
x = x[:, :, :-1, :]
|
| 189 |
+
if extra_col:
|
| 190 |
+
extra_col_content = x[:, :, :, -1:]
|
| 191 |
+
x = x[:, :, :, :-1]
|
| 192 |
+
|
| 193 |
+
a_list = x.unfold(2, 2, 2).unfold(3, 2, 2).contiguous().view(batch_size, channels, m * n, 2, 2)
|
| 194 |
+
c = a_list[:, :, :, 1, 1].view(batch_size, channels, m, n)
|
| 195 |
+
|
| 196 |
+
with _Rescaler(model, c, 'nearest-exact', **extra_args) as rescaler:
|
| 197 |
+
denoised = model(c, sigma_hat * c.new_ones([c.shape[0]]), **rescaler.extra_args)
|
| 198 |
+
d = to_d(c, sigma_hat, denoised)
|
| 199 |
+
c = c + d * dt
|
| 200 |
+
|
| 201 |
+
d_list = c.view(batch_size, channels, m * n, 1, 1)
|
| 202 |
+
a_list[:, :, :, 1, 1] = d_list[:, :, :, 0, 0]
|
| 203 |
+
x = a_list.view(batch_size, channels, m, n, 2, 2).permute(0, 1, 2, 4, 3, 5).reshape(batch_size, channels, 2 * m, 2 * n)
|
| 204 |
+
|
| 205 |
+
if extra_row or extra_col:
|
| 206 |
+
x_expanded = torch.zeros(original_shape, dtype=x.dtype, device=x.device)
|
| 207 |
+
x_expanded[:, :, :2 * m, :2 * n] = x
|
| 208 |
+
if extra_row:
|
| 209 |
+
x_expanded[:, :, -1:, :2 * n + 1] = extra_row_content
|
| 210 |
+
if extra_col:
|
| 211 |
+
x_expanded[:, :, :2 * m, -1:] = extra_col_content
|
| 212 |
+
if extra_row and extra_col:
|
| 213 |
+
x_expanded[:, :, -1:, -1:] = extra_col_content[:, :, -1:, :]
|
| 214 |
+
x = x_expanded
|
| 215 |
+
|
| 216 |
+
return x
|
| 217 |
+
|
| 218 |
+
@torch.no_grad()
|
| 219 |
+
def smea_sampling_step(x, model, dt, sigma_hat, **extra_args):
|
| 220 |
+
m, n = x.shape[2], x.shape[3]
|
| 221 |
+
x = torch.nn.functional.interpolate(input=x, size=None, scale_factor=(1.25, 1.25), mode='nearest-exact', align_corners=None, recompute_scale_factor=None)
|
| 222 |
+
with _Rescaler(model, x, 'nearest-exact', **extra_args) as rescaler:
|
| 223 |
+
denoised = model(x, sigma_hat * x.new_ones([x.shape[0]]), **rescaler.extra_args)
|
| 224 |
+
d = to_d(x, sigma_hat, denoised)
|
| 225 |
+
x = x + d * dt
|
| 226 |
+
x = torch.nn.functional.interpolate(input=x, size=(m,n), scale_factor=None, mode='nearest-exact', align_corners=None, recompute_scale_factor=None)
|
| 227 |
+
return x
|
| 228 |
+
|
| 229 |
+
@torch.no_grad()
|
| 230 |
+
def smea_sampling_step_denoised(x, model, sigma_hat, scale=1.25, smooth=False, **extra_args):
|
| 231 |
+
m, n = x.shape[2], x.shape[3]
|
| 232 |
+
filter = 'nearest-exact' if not smooth else 'bilinear'
|
| 233 |
+
x = torch.nn.functional.interpolate(input=x, scale_factor=(scale, scale), mode=filter)
|
| 234 |
+
with _Rescaler(model, x, filter, **extra_args) as rescaler:
|
| 235 |
+
denoised = model(x, sigma_hat * x.new_ones([x.shape[0]]), **rescaler.extra_args)
|
| 236 |
+
x = denoised
|
| 237 |
+
x = torch.nn.functional.interpolate(input=x, size=(m,n), mode='nearest-exact')
|
| 238 |
+
return x
|
| 239 |
+
|
| 240 |
+
@torch.no_grad()
|
| 241 |
+
def sample_euler_max(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 242 |
+
extra_args = {} if extra_args is None else extra_args
|
| 243 |
+
s_in = x.new_ones([x.shape[0]])
|
| 244 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 245 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 246 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 247 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 248 |
+
if gamma > 0:
|
| 249 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 250 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 251 |
+
d = to_d(x, sigma_hat, denoised)
|
| 252 |
+
if callback is not None:
|
| 253 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 254 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 255 |
+
# Euler method
|
| 256 |
+
x = x + (math.cos(i + 1)/(i + 1) + 1) * d * dt
|
| 257 |
+
return x
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
@torch.no_grad()
|
| 261 |
+
def sample_euler_max1b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 262 |
+
extra_args = {} if extra_args is None else extra_args
|
| 263 |
+
s_in = x.new_ones([x.shape[0]])
|
| 264 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 265 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 266 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 267 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 268 |
+
if gamma > 0:
|
| 269 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 270 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 271 |
+
d = to_d(x, sigma_hat, denoised)
|
| 272 |
+
if callback is not None:
|
| 273 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 274 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 275 |
+
# Euler method
|
| 276 |
+
x = x + (math.cos(1.05 * i + 1)/(1.1 * i + 1.5) + 1) * d * dt
|
| 277 |
+
return x
|
| 278 |
+
|
| 279 |
+
@torch.no_grad()
|
| 280 |
+
def sample_euler_max1c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 281 |
+
extra_args = {} if extra_args is None else extra_args
|
| 282 |
+
s_in = x.new_ones([x.shape[0]])
|
| 283 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 284 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 285 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 286 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 287 |
+
if gamma > 0:
|
| 288 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 289 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 290 |
+
d = to_d(x, sigma_hat, denoised)
|
| 291 |
+
if callback is not None:
|
| 292 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 293 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 294 |
+
# Euler method
|
| 295 |
+
x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d * dt
|
| 296 |
+
return x
|
| 297 |
+
|
| 298 |
+
@torch.no_grad()
|
| 299 |
+
def sample_euler_max1d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 300 |
+
extra_args = {} if extra_args is None else extra_args
|
| 301 |
+
s_in = x.new_ones([x.shape[0]])
|
| 302 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 303 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 304 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 305 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 306 |
+
if gamma > 0:
|
| 307 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 308 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 309 |
+
d = to_d(x, sigma_hat, denoised)
|
| 310 |
+
if callback is not None:
|
| 311 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 312 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 313 |
+
# Euler method
|
| 314 |
+
x = x + (math.cos(math.pi * 0.333 * i + 0.9)/(0.5 * i + 1.5) + 1) * d * dt
|
| 315 |
+
return x
|
| 316 |
+
|
| 317 |
+
@torch.no_grad()
|
| 318 |
+
def sample_euler_max2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 319 |
+
extra_args = {} if extra_args is None else extra_args
|
| 320 |
+
s_in = x.new_ones([x.shape[0]])
|
| 321 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 322 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 323 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 324 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 325 |
+
if gamma > 0:
|
| 326 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 327 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 328 |
+
d = to_d(x, sigma_hat, denoised)
|
| 329 |
+
if callback is not None:
|
| 330 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 331 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 332 |
+
# Euler method
|
| 333 |
+
x = x + (math.cos(math.pi * 0.333 * i - 0.1)/(0.5 * i + 1.5) + 1) * d * dt
|
| 334 |
+
return x
|
| 335 |
+
|
| 336 |
+
@torch.no_grad()
|
| 337 |
+
def sample_euler_max2b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 338 |
+
extra_args = {} if extra_args is None else extra_args
|
| 339 |
+
s_in = x.new_ones([x.shape[0]])
|
| 340 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 341 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 342 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 343 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 344 |
+
if gamma > 0:
|
| 345 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 346 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 347 |
+
d = to_d(x, sigma_hat, denoised)
|
| 348 |
+
if callback is not None:
|
| 349 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 350 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 351 |
+
# Euler method
|
| 352 |
+
x = x + (math.cos(math.pi * 0.5 * i - 0.0)/(0.5 * i + 1.5) + 1) * d * dt
|
| 353 |
+
return x
|
| 354 |
+
|
| 355 |
+
@torch.no_grad()
|
| 356 |
+
def sample_euler_max2c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 357 |
+
extra_args = {} if extra_args is None else extra_args
|
| 358 |
+
s_in = x.new_ones([x.shape[0]])
|
| 359 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 360 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 361 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 362 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 363 |
+
if gamma > 0:
|
| 364 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 365 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 366 |
+
d = to_d(x, sigma_hat, denoised)
|
| 367 |
+
if callback is not None:
|
| 368 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 369 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 370 |
+
# Euler method
|
| 371 |
+
x = x + (math.cos(math.pi * 0.5 * i)/(i + 2) + 1) * d * dt
|
| 372 |
+
return x
|
| 373 |
+
|
| 374 |
+
@torch.no_grad()
|
| 375 |
+
def sample_euler_max2d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 376 |
+
extra_args = {} if extra_args is None else extra_args
|
| 377 |
+
s_in = x.new_ones([x.shape[0]])
|
| 378 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 379 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 380 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 381 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 382 |
+
if gamma > 0:
|
| 383 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 384 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 385 |
+
d = to_d(x, sigma_hat, denoised)
|
| 386 |
+
if callback is not None:
|
| 387 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 388 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 389 |
+
# Euler method
|
| 390 |
+
x = x + (math.cos(math.pi * 0.5 * i)/(0.75 * i + 1.75) + 1) * d * dt
|
| 391 |
+
return x
|
| 392 |
+
|
| 393 |
+
@torch.no_grad()
|
| 394 |
+
def sample_euler_max3b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 395 |
+
extra_args = {} if extra_args is None else extra_args
|
| 396 |
+
s_in = x.new_ones([x.shape[0]])
|
| 397 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 398 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 399 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 400 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 401 |
+
if gamma > 0:
|
| 402 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 403 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 404 |
+
d = to_d(x, sigma_hat, denoised)
|
| 405 |
+
if callback is not None:
|
| 406 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 407 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 408 |
+
# Euler method
|
| 409 |
+
x = x + (math.cos(2 * i + 0.5)/(2 * i + 1.5) + 1) * d * dt
|
| 410 |
+
return x
|
| 411 |
+
|
| 412 |
+
@torch.no_grad()
|
| 413 |
+
def sample_euler_max3c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 414 |
+
extra_args = {} if extra_args is None else extra_args
|
| 415 |
+
s_in = x.new_ones([x.shape[0]])
|
| 416 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 417 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 418 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 419 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 420 |
+
if gamma > 0:
|
| 421 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 422 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 423 |
+
d = to_d(x, sigma_hat, denoised)
|
| 424 |
+
if callback is not None:
|
| 425 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 426 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 427 |
+
# Euler method
|
| 428 |
+
x = x + (math.cos(2 * i + 0.5)/(1.5 * i + 2.7) + 1) * d * dt
|
| 429 |
+
return x
|
| 430 |
+
|
| 431 |
+
@torch.no_grad()
|
| 432 |
+
def sample_euler_max3(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 433 |
+
extra_args = {} if extra_args is None else extra_args
|
| 434 |
+
s_in = x.new_ones([x.shape[0]])
|
| 435 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 436 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 437 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 438 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 439 |
+
if gamma > 0:
|
| 440 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 441 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 442 |
+
d = to_d(x, sigma_hat, denoised)
|
| 443 |
+
if callback is not None:
|
| 444 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 445 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 446 |
+
# Euler method
|
| 447 |
+
x = x + (math.cos(2 * i + 1)/(2 * i + 1) + 1) * d * dt
|
| 448 |
+
return x
|
| 449 |
+
|
| 450 |
+
@torch.no_grad()
|
| 451 |
+
def sample_euler_max4b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 452 |
+
extra_args = {} if extra_args is None else extra_args
|
| 453 |
+
s_in = x.new_ones([x.shape[0]])
|
| 454 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 455 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 456 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 457 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 458 |
+
if gamma > 0:
|
| 459 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 460 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 461 |
+
d = to_d(x, sigma_hat, denoised)
|
| 462 |
+
if callback is not None:
|
| 463 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 464 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 465 |
+
# Euler method
|
| 466 |
+
x = x + (math.cos(math.pi * i - 0.1)/(2 * i + 2) + 1) * d * dt
|
| 467 |
+
return x
|
| 468 |
+
|
| 469 |
+
@torch.no_grad()
|
| 470 |
+
def sample_euler_max4c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 471 |
+
extra_args = {} if extra_args is None else extra_args
|
| 472 |
+
s_in = x.new_ones([x.shape[0]])
|
| 473 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 474 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 475 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 476 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 477 |
+
if gamma > 0:
|
| 478 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 479 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 480 |
+
d = to_d(x, sigma_hat, denoised)
|
| 481 |
+
if callback is not None:
|
| 482 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 483 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 484 |
+
# Euler method
|
| 485 |
+
x = x + (math.cos(math.pi * i - 0.1)/(2 * i + 1.5) + 1) * d * dt
|
| 486 |
+
return x
|
| 487 |
+
|
| 488 |
+
@torch.no_grad()
|
| 489 |
+
def sample_euler_max4d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 490 |
+
extra_args = {} if extra_args is None else extra_args
|
| 491 |
+
s_in = x.new_ones([x.shape[0]])
|
| 492 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 493 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 494 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 495 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 496 |
+
if gamma > 0:
|
| 497 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 498 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 499 |
+
d = to_d(x, sigma_hat, denoised)
|
| 500 |
+
if callback is not None:
|
| 501 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 502 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 503 |
+
# Euler method
|
| 504 |
+
x = x + (math.cos(math.pi * i - 0.1)/(i + 1.5) + 1) * d * dt
|
| 505 |
+
return x
|
| 506 |
+
|
| 507 |
+
@torch.no_grad()
|
| 508 |
+
def sample_euler_max4e(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 509 |
+
extra_args = {} if extra_args is None else extra_args
|
| 510 |
+
s_in = x.new_ones([x.shape[0]])
|
| 511 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 512 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 513 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 514 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 515 |
+
if gamma > 0:
|
| 516 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 517 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 518 |
+
d = to_d(x, sigma_hat, denoised)
|
| 519 |
+
if callback is not None:
|
| 520 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 521 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 522 |
+
# Euler method
|
| 523 |
+
x = x + (math.cos(math.pi * i - 0.1)/(i + 1) + 1) * d * dt
|
| 524 |
+
return x
|
| 525 |
+
|
| 526 |
+
@torch.no_grad()
|
| 527 |
+
def sample_euler_max4f(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 528 |
+
extra_args = {} if extra_args is None else extra_args
|
| 529 |
+
s_in = x.new_ones([x.shape[0]])
|
| 530 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 531 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 532 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 533 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 534 |
+
if gamma > 0:
|
| 535 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 536 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 537 |
+
d = to_d(x, sigma_hat, denoised)
|
| 538 |
+
if callback is not None:
|
| 539 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 540 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 541 |
+
# Euler method
|
| 542 |
+
x = x + (math.cos(math.pi * i - 0.1)/(i + 2) + 1) * d * dt
|
| 543 |
+
return x
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
@torch.no_grad()
|
| 547 |
+
def sample_euler_max4(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 548 |
+
# 袛芯斜邪胁褜褌械 蟹写械褋褜 褌械谢芯 褎褍薪泻褑懈懈 懈谢懈 褏芯褌褟 斜褘 pass, 褔褌芯斜褘 懈蟹斜械卸邪褌褜 IndentationError
|
| 549 |
+
pass
|
| 550 |
+
|
| 551 |
+
@torch.no_grad()
|
| 552 |
+
def sample_euler_dy(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 553 |
+
extra_args = {} if extra_args is None else extra_args
|
| 554 |
+
s_in = x.new_ones([x.shape[0]])
|
| 555 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 556 |
+
# print(i)
|
| 557 |
+
# i绗竴姝ヤ负0
|
| 558 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 559 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 560 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 561 |
+
# print(sigma_hat)
|
| 562 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 563 |
+
if gamma > 0:
|
| 564 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 565 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 566 |
+
d = to_d(x, sigma_hat, denoised)
|
| 567 |
+
if callback is not None:
|
| 568 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 569 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 and i % 2 == 0:
|
| 570 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 571 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 572 |
+
dt_2 = sigmas[i + 1] - sigmas[i]
|
| 573 |
+
x_2 = x + d * dt_1
|
| 574 |
+
x_temp = dy_sampling_step(x_2, model, dt_2, sigma_mid, **extra_args)
|
| 575 |
+
x = x_temp - d * dt_1
|
| 576 |
+
# Euler method
|
| 577 |
+
x = x + d * dt
|
| 578 |
+
return x
|
| 579 |
+
|
| 580 |
+
@torch.no_grad()
|
| 581 |
+
def sample_euler_smea_dyn_a(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 582 |
+
extra_args = {} if extra_args is None else extra_args
|
| 583 |
+
s_in = x.new_ones([x.shape[0]])
|
| 584 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 585 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 586 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 587 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 588 |
+
if gamma > 0:
|
| 589 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 590 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 591 |
+
d = to_d(x, sigma_hat, denoised)
|
| 592 |
+
if callback is not None:
|
| 593 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 594 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2:
|
| 595 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 596 |
+
dt_1 = sigma_mid - sigma_hat
|
| 597 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 598 |
+
x_2 = x + d * dt_1
|
| 599 |
+
#scale = (sigma_mid / sigmas[0]) * 0.25
|
| 600 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.15
|
| 601 |
+
#scale = scale.item()
|
| 602 |
+
if i % 2 == 0:
|
| 603 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale, **extra_args)
|
| 604 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args)
|
| 605 |
+
else:
|
| 606 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 607 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 608 |
+
x = x + d_2 * dt_2
|
| 609 |
+
else:
|
| 610 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 611 |
+
# Euler method
|
| 612 |
+
x = x + d * dt
|
| 613 |
+
return x
|
| 614 |
+
|
| 615 |
+
@torch.no_grad()
|
| 616 |
+
def sample_euler_smea_dyn_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 617 |
+
extra_args = {} if extra_args is None else extra_args
|
| 618 |
+
s_in = x.new_ones([x.shape[0]])
|
| 619 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 620 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 621 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 622 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 623 |
+
if gamma > 0:
|
| 624 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 625 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 626 |
+
d = to_d(x, sigma_hat, denoised)
|
| 627 |
+
if callback is not None:
|
| 628 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 629 |
+
if sigmas[i + 1] > 0 and (i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 3 or i < 3):
|
| 630 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 631 |
+
dt_1 = sigma_mid - sigma_hat
|
| 632 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 633 |
+
x_2 = x + d * dt_1
|
| 634 |
+
#scale = (sigma_mid / sigmas[0]) * 0.25
|
| 635 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.2
|
| 636 |
+
#scale = scale.item()
|
| 637 |
+
if i % 4 == 0:
|
| 638 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale, **extra_args)
|
| 639 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - sigma_mid.item() * 0.01, **extra_args)
|
| 640 |
+
elif i % 4 == 2:
|
| 641 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale, **extra_args)
|
| 642 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args)
|
| 643 |
+
else:
|
| 644 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 645 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 646 |
+
x = x + d_2 * dt_2
|
| 647 |
+
else:
|
| 648 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 649 |
+
# Euler method
|
| 650 |
+
x = x + d * dt
|
| 651 |
+
return x
|
| 652 |
+
|
| 653 |
+
@torch.no_grad()
|
| 654 |
+
def sample_euler_smea_dyn_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 655 |
+
extra_args = {} if extra_args is None else extra_args
|
| 656 |
+
s_in = x.new_ones([x.shape[0]])
|
| 657 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 658 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 659 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 660 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 661 |
+
if gamma > 0:
|
| 662 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 663 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 664 |
+
d = to_d(x, sigma_hat, denoised)
|
| 665 |
+
if callback is not None:
|
| 666 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 667 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2:
|
| 668 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 669 |
+
dt_1 = sigma_mid - sigma_hat
|
| 670 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 671 |
+
x_2 = x + d * dt_1
|
| 672 |
+
#scale = (sigma_mid / sigmas[0]) * 0.25
|
| 673 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.25
|
| 674 |
+
#scale = scale.item()
|
| 675 |
+
if i % 2 == 0:
|
| 676 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale, **extra_args)
|
| 677 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args)
|
| 678 |
+
else:
|
| 679 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 680 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 681 |
+
x = x + d_2 * dt_2
|
| 682 |
+
else:
|
| 683 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 684 |
+
# Euler method
|
| 685 |
+
x = x + d * dt
|
| 686 |
+
return x
|
| 687 |
+
|
| 688 |
+
@torch.no_grad()
|
| 689 |
+
def sample_euler_smea(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 690 |
+
extra_args = {} if extra_args is None else extra_args
|
| 691 |
+
s_in = x.new_ones([x.shape[0]])
|
| 692 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 693 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 694 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 695 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 696 |
+
if gamma > 0:
|
| 697 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 698 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 699 |
+
d = to_d(x, sigma_hat, denoised)
|
| 700 |
+
if callback is not None:
|
| 701 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 702 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 703 |
+
# Euler method
|
| 704 |
+
x = x + d * dt
|
| 705 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 and i % 2 == 0:
|
| 706 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 707 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 708 |
+
dt_2 = sigmas[i + 1] - sigmas[i]
|
| 709 |
+
#print(dt_1, "#", dt_2, "#", dt_3, "#", dt_4)
|
| 710 |
+
x_2 = x + d * dt_1
|
| 711 |
+
x_temp = smea_sampling_step(x, model, dt_2, sigma_mid, **extra_args)
|
| 712 |
+
x = x_temp - d * dt_1
|
| 713 |
+
return x
|
| 714 |
+
|
| 715 |
+
@torch.no_grad()
|
| 716 |
+
def sample_euler_smea_dy(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 717 |
+
extra_args = {} if extra_args is None else extra_args
|
| 718 |
+
s_in = x.new_ones([x.shape[0]])
|
| 719 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 720 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 721 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 722 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 723 |
+
if gamma > 0:
|
| 724 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 725 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 726 |
+
d = to_d(x, sigma_hat, denoised)
|
| 727 |
+
if callback is not None:
|
| 728 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 729 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 730 |
+
# Euler method
|
| 731 |
+
x = x + d * dt
|
| 732 |
+
if sigmas[i + 1] > 0 and (i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 or i < 3) and i % 3 != 2:
|
| 733 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 734 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 735 |
+
dt_2 = sigmas[i + 1] - sigmas[i]
|
| 736 |
+
#print(dt_1, "#", dt_2, "#", dt_3, "#", dt_4)
|
| 737 |
+
x_2 = x + d * dt_1
|
| 738 |
+
if i % 3 == 1:
|
| 739 |
+
x_temp = dy_sampling_step(x, model, dt_2, sigma_mid, **extra_args)
|
| 740 |
+
elif i % 3 == 0:
|
| 741 |
+
x_temp = smea_sampling_step(x, model, dt_2, sigma_mid, **extra_args)
|
| 742 |
+
x = x_temp - d * dt_1
|
| 743 |
+
return x
|
| 744 |
+
|
| 745 |
+
@torch.no_grad()
|
| 746 |
+
def sample_euler_smea_multi_d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 747 |
+
extra_args = {} if extra_args is None else extra_args
|
| 748 |
+
s_in = x.new_ones([x.shape[0]])
|
| 749 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 750 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 751 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 752 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 753 |
+
if gamma > 0:
|
| 754 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 755 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 756 |
+
d = to_d(x, sigma_hat, denoised)
|
| 757 |
+
if callback is not None:
|
| 758 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 759 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 + 2 and i % 2 == 0:
|
| 760 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 761 |
+
dt_1 = sigma_mid - sigma_hat
|
| 762 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 763 |
+
x_2 = x + d * dt_1
|
| 764 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 765 |
+
if i == 0:
|
| 766 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.15, **extra_args)
|
| 767 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 768 |
+
denoised_2 = (denoised_2a + denoised_2c) / 2
|
| 769 |
+
elif i < len(sigmas) * 0.334:
|
| 770 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args)
|
| 771 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args)
|
| 772 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 773 |
+
denoised_2 = (denoised_2a + denoised_2b + denoised_2c) / 3
|
| 774 |
+
else:
|
| 775 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.03, True, **extra_args)
|
| 776 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 777 |
+
denoised_2 = (denoised_2b + denoised_2c) / 2
|
| 778 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 779 |
+
x = x + d_2 * dt_2
|
| 780 |
+
else:
|
| 781 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 782 |
+
# Euler method
|
| 783 |
+
x = x + d * dt
|
| 784 |
+
return x
|
| 785 |
+
|
| 786 |
+
@torch.no_grad()
|
| 787 |
+
def sample_euler_smea_multi_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 788 |
+
extra_args = {} if extra_args is None else extra_args
|
| 789 |
+
s_in = x.new_ones([x.shape[0]])
|
| 790 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 791 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 792 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 793 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 794 |
+
if gamma > 0:
|
| 795 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 796 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 797 |
+
d = to_d(x, sigma_hat, denoised)
|
| 798 |
+
if callback is not None:
|
| 799 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 800 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 801 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 802 |
+
dt_1 = sigma_mid - sigma_hat
|
| 803 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 804 |
+
x_2 = x + d * dt_1
|
| 805 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 806 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args)
|
| 807 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args)
|
| 808 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 809 |
+
denoised_2 = (denoised_2a + denoised_2b + denoised_2c) / 3
|
| 810 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 811 |
+
x = x + d_2 * dt_2
|
| 812 |
+
else:
|
| 813 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 814 |
+
# Euler method
|
| 815 |
+
x = x + d * dt
|
| 816 |
+
return x
|
| 817 |
+
|
| 818 |
+
@torch.no_grad()
|
| 819 |
+
def sample_euler_smea_multi_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 820 |
+
extra_args = {} if extra_args is None else extra_args
|
| 821 |
+
s_in = x.new_ones([x.shape[0]])
|
| 822 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 823 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 824 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 825 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 826 |
+
if gamma > 0:
|
| 827 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 828 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 829 |
+
d = to_d(x, sigma_hat, denoised)
|
| 830 |
+
if callback is not None:
|
| 831 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 832 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 833 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 834 |
+
dt_1 = sigma_mid - sigma_hat
|
| 835 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 836 |
+
x_2 = x + d * dt_1
|
| 837 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 838 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args)
|
| 839 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 840 |
+
denoised_2 = (denoised_2a + denoised_2c) / 2
|
| 841 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 842 |
+
x = x + d_2 * dt_2
|
| 843 |
+
else:
|
| 844 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 845 |
+
# Euler method
|
| 846 |
+
x = x + d * dt
|
| 847 |
+
return x
|
| 848 |
+
|
| 849 |
+
@torch.no_grad()
|
| 850 |
+
def sample_euler_smea_multi_a(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 851 |
+
extra_args = {} if extra_args is None else extra_args
|
| 852 |
+
s_in = x.new_ones([x.shape[0]])
|
| 853 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 854 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 855 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 856 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 857 |
+
if gamma > 0:
|
| 858 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 859 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 860 |
+
d = to_d(x, sigma_hat, denoised)
|
| 861 |
+
if callback is not None:
|
| 862 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 863 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 864 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 865 |
+
dt_1 = sigma_mid - sigma_hat
|
| 866 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 867 |
+
x_2 = x + d * dt_1
|
| 868 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 869 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args)
|
| 870 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 871 |
+
denoised_2 = (denoised_2b + denoised_2c) / 2
|
| 872 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 873 |
+
x = x + d_2 * dt_2
|
| 874 |
+
else:
|
| 875 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 876 |
+
# Euler method
|
| 877 |
+
x = x + d * dt
|
| 878 |
+
return x
|
| 879 |
+
|
| 880 |
+
|
| 881 |
+
@torch.no_grad()
|
| 882 |
+
def sample_euler_smea_multi_ds(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 883 |
+
extra_args = {} if extra_args is None else extra_args
|
| 884 |
+
s_in = x.new_ones([x.shape[0]])
|
| 885 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 886 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 887 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 888 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 889 |
+
if gamma > 0:
|
| 890 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 891 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 892 |
+
d = to_d(x, sigma_hat, denoised)
|
| 893 |
+
if callback is not None:
|
| 894 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 895 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 896 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 897 |
+
dt_1 = sigma_mid - sigma_hat
|
| 898 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 899 |
+
x_2 = x + d * dt_1
|
| 900 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 901 |
+
if i == 0:
|
| 902 |
+
sa = 1 - scale * 0.15
|
| 903 |
+
sb = 1 + scale * 0.09
|
| 904 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 905 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, **extra_args)
|
| 906 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375) / (0.97**2)
|
| 907 |
+
elif i < len(sigmas) * 0.167:
|
| 908 |
+
sa = 1 - scale * 0.25
|
| 909 |
+
sb = 1 + scale * 0.15
|
| 910 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 911 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb , **extra_args)
|
| 912 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375) / (0.95**2)
|
| 913 |
+
else:
|
| 914 |
+
sb = 1 + scale * 0.06
|
| 915 |
+
sc = 1 - scale * 0.1
|
| 916 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, True, **extra_args)
|
| 917 |
+
denoised_2c = smea_sampling_step_denoised(x_2, model, sigma_mid, sc, **extra_args)
|
| 918 |
+
denoised_2 = (denoised_2b * (sb ** 2) * 0.375 + denoised_2c * (sc ** 2) * 0.625) / (0.98**2)
|
| 919 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 920 |
+
x = x + d_2 * dt_2
|
| 921 |
+
else:
|
| 922 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 923 |
+
# Euler method
|
| 924 |
+
x = x + d * dt
|
| 925 |
+
return x
|
| 926 |
+
|
| 927 |
+
@torch.no_grad()
|
| 928 |
+
def sample_euler_smea_multi_ds2_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 929 |
+
sample = sample_euler_smea_multi_ds2(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 930 |
+
return sample
|
| 931 |
+
|
| 932 |
+
@torch.no_grad()
|
| 933 |
+
def sample_euler_smea_multi_ds2_s_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 934 |
+
sample = sample_euler_smea_multi_ds2_m(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 935 |
+
return sample
|
| 936 |
+
|
| 937 |
+
@torch.no_grad()
|
| 938 |
+
def sample_euler_smea_multi_ds2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 939 |
+
extra_args = {} if extra_args is None else extra_args
|
| 940 |
+
s_in = x.new_ones([x.shape[0]])
|
| 941 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 942 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 943 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 944 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 945 |
+
if gamma > 0:
|
| 946 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 947 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 948 |
+
d = to_d(x, sigma_hat, denoised)
|
| 949 |
+
if callback is not None:
|
| 950 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 951 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 952 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 953 |
+
dt_1 = sigma_mid - sigma_hat
|
| 954 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 955 |
+
x_2 = x + d * dt_1
|
| 956 |
+
scale = (sigmas[i] / sigmas[0]) ** 2
|
| 957 |
+
scale = scale.item()
|
| 958 |
+
if i == 0:
|
| 959 |
+
sa = 1 - scale * 0.15
|
| 960 |
+
sb = 1 + scale * 0.09
|
| 961 |
+
sigA = sigma_mid / (sa ** 2)
|
| 962 |
+
sigB = sigma_mid / (sb ** 2)
|
| 963 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 964 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 965 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.97**2) # 1 - (sa * sb ) / 2 + 1
|
| 966 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 967 |
+
elif i < len(sigmas) * 0.167:
|
| 968 |
+
sa = 1 - scale * 0.25
|
| 969 |
+
sb = 1 + scale * 0.15
|
| 970 |
+
sigA = sigma_mid / (sa ** 2)
|
| 971 |
+
sigB = sigma_mid / (sb ** 2)
|
| 972 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 973 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 974 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.95**2)
|
| 975 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 976 |
+
else:
|
| 977 |
+
sb = 1 + scale * 0.06
|
| 978 |
+
sc = 1 - scale * 0.1
|
| 979 |
+
sigB = sigma_mid / (sb ** 2)
|
| 980 |
+
sigC = sigma_mid / (sc ** 2)
|
| 981 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 982 |
+
denoised_2c = smea_sampling_step_denoised(x_2, model, sigC, sc, smooth, **extra_args)
|
| 983 |
+
denoised_2 = (denoised_2b * (sb ** 2) * 0.5 * sc ** 2 + denoised_2c * (sc ** 2) * 0.5 * sb ** 2) #/ (0.98**2)
|
| 984 |
+
d_2 = to_d(x_2, sigB * 0.5 * sc ** 2 + sigC * 0.5 * sb ** 2, denoised_2)
|
| 985 |
+
x = x + d_2 * dt_2
|
| 986 |
+
else:
|
| 987 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 988 |
+
# Euler method
|
| 989 |
+
x = x + d * dt
|
| 990 |
+
return x
|
| 991 |
+
|
| 992 |
+
@torch.no_grad()
|
| 993 |
+
def sample_euler_smea_multi_ds2_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 994 |
+
extra_args = {} if extra_args is None else extra_args
|
| 995 |
+
s_in = x.new_ones([x.shape[0]])
|
| 996 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 997 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 998 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 999 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1000 |
+
if gamma > 0:
|
| 1001 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1002 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1003 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1004 |
+
if callback is not None:
|
| 1005 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1006 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 1007 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1008 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1009 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1010 |
+
x_2 = x + d * dt_1
|
| 1011 |
+
scale = (sigmas[i] / sigmas[0]) ** 2
|
| 1012 |
+
#scale = dt_1 ** 2 * 0.01
|
| 1013 |
+
scale = scale.item()
|
| 1014 |
+
if i == 0:
|
| 1015 |
+
sa = 1 - scale * 0.15 #15
|
| 1016 |
+
sb = 1 + scale * 0.09 #09
|
| 1017 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1018 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1019 |
+
#delta = sa * sb
|
| 1020 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1021 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1022 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.97**2) # 1 - (sa * sb ) / 2 + 1
|
| 1023 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 1024 |
+
elif i < len(sigmas) * 0.167:
|
| 1025 |
+
sa = 1 - scale * 0.25 #25
|
| 1026 |
+
sb = 1 + scale * 0.15 #15
|
| 1027 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1028 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1029 |
+
#delta = sa * sb
|
| 1030 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1031 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1032 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.95**2)
|
| 1033 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 1034 |
+
else:
|
| 1035 |
+
sb = 1 + scale * 0.06
|
| 1036 |
+
sc = 1 - scale * 0.1
|
| 1037 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1038 |
+
sigC = sigma_mid / (sc ** 2)
|
| 1039 |
+
#delta = sb * sc
|
| 1040 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1041 |
+
denoised_2c = smea_sampling_step_denoised(x_2, model, sigC, sc, smooth, **extra_args)
|
| 1042 |
+
denoised_2 = (denoised_2b * (sb ** 2) * 0.5 * sc ** 2+ denoised_2c * (sc ** 2) * 0.5 * sb ** 2) #/ (0.98**2)
|
| 1043 |
+
d_2 = to_d(x_2, sigB * 0.5 * sc ** 2 + sigC * 0.5 * sb ** 2, denoised_2)
|
| 1044 |
+
x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d_2 * dt_2
|
| 1045 |
+
else:
|
| 1046 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1047 |
+
# Euler method
|
| 1048 |
+
x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d * dt
|
| 1049 |
+
return x
|
| 1050 |
+
|
| 1051 |
+
@torch.no_grad()
|
| 1052 |
+
def sample_euler_h_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1053 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1054 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1055 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1056 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1057 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1058 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1059 |
+
gamma = min((2 ** 0.5 - 1) - wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1060 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler == None else noise_sampler
|
| 1061 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1062 |
+
if gamma > 0:
|
| 1063 |
+
x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1064 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1065 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1066 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1067 |
+
if callback is not None:
|
| 1068 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1069 |
+
if sigmas[i + 1] > 0:
|
| 1070 |
+
x_2 = x + (gamma + 1) * d * dt
|
| 1071 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1072 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1073 |
+
x = x + d_prime * dt
|
| 1074 |
+
else:
|
| 1075 |
+
# Euler method
|
| 1076 |
+
x = x + (gamma + 1) * d * dt
|
| 1077 |
+
return x
|
| 1078 |
+
|
| 1079 |
+
@torch.no_grad()
|
| 1080 |
+
def sample_euler_h_m_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1081 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1082 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1083 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1084 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1085 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1086 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1087 |
+
gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1088 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1089 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1090 |
+
if gamma > 0:
|
| 1091 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1092 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1093 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1094 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1095 |
+
if callback is not None:
|
| 1096 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1097 |
+
if sigmas[i + 1] > 0:
|
| 1098 |
+
x_2 = x + (gamma + 1) * d * dt
|
| 1099 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1100 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1101 |
+
x = x + d_prime * dt
|
| 1102 |
+
else:
|
| 1103 |
+
# Euler method
|
| 1104 |
+
x = x + (gamma + 1) * d * dt
|
| 1105 |
+
return x
|
| 1106 |
+
|
| 1107 |
+
@torch.no_grad()
|
| 1108 |
+
def sample_euler_h_m_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1109 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1110 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1111 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1112 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1113 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1114 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1115 |
+
gamma = max((2 ** 0.5 - 1) + wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1116 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1117 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1118 |
+
if gamma > 0:
|
| 1119 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1120 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1121 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1122 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1123 |
+
if callback is not None:
|
| 1124 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1125 |
+
if sigmas[i + 1] > 0:
|
| 1126 |
+
x_2 = x + (gamma + 1) * d * dt
|
| 1127 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1128 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1129 |
+
x = x + d_prime * dt
|
| 1130 |
+
else:
|
| 1131 |
+
# Euler method
|
| 1132 |
+
x = x + (gamma + 1) * d * dt
|
| 1133 |
+
return x
|
| 1134 |
+
|
| 1135 |
+
@torch.no_grad()
|
| 1136 |
+
def sample_euler_h_m_d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1137 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1138 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1139 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1140 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1141 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1142 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1143 |
+
gamma = min((2 ** 0.5 - 1) - wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1144 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1145 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1146 |
+
if gamma > 0:
|
| 1147 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1148 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1149 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1150 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1151 |
+
if callback is not None:
|
| 1152 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1153 |
+
if sigmas[i + 1] > 0:
|
| 1154 |
+
x_2 = x + (gamma + 1) * d * dt
|
| 1155 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1156 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1157 |
+
x = x + d_prime * dt
|
| 1158 |
+
else:
|
| 1159 |
+
# Euler method
|
| 1160 |
+
x = x + (gamma + 1) * d * dt
|
| 1161 |
+
return x
|
| 1162 |
+
|
| 1163 |
+
@torch.no_grad()
|
| 1164 |
+
def sample_euler_h_m_e(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1165 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1166 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1167 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1168 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1169 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1170 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1171 |
+
gamma = max((2 ** 0.5 - 1) + wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1172 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1173 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1174 |
+
if gamma > 0:
|
| 1175 |
+
x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1176 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1177 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1178 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1179 |
+
if callback is not None:
|
| 1180 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1181 |
+
if sigmas[i + 1] > 0:
|
| 1182 |
+
x_2 = x + (gamma + 1) * d * dt
|
| 1183 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1184 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1185 |
+
x = x + d_prime * dt
|
| 1186 |
+
else:
|
| 1187 |
+
# Euler method
|
| 1188 |
+
x = x + (gamma + 1) * d * dt
|
| 1189 |
+
return x
|
| 1190 |
+
|
| 1191 |
+
@torch.no_grad()
|
| 1192 |
+
def sample_euler_h_m_f(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1193 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1194 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1195 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1196 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1197 |
+
wave_max = math.cos(0)/1.5 + 1
|
| 1198 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1199 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1200 |
+
gamma = min((wave_max - wave) * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1201 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1202 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1203 |
+
if gamma > 0:
|
| 1204 |
+
x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1205 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1206 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1207 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1208 |
+
if callback is not None:
|
| 1209 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1210 |
+
if sigmas[i + 1] > 0:
|
| 1211 |
+
x_2 = x + (gamma + 1) * d * dt
|
| 1212 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1213 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1214 |
+
x = x + d_prime * dt
|
| 1215 |
+
else:
|
| 1216 |
+
# Euler method
|
| 1217 |
+
x = x + (gamma + 1) * d * dt
|
| 1218 |
+
return x
|
| 1219 |
+
|
| 1220 |
+
@torch.no_grad()
|
| 1221 |
+
def sample_euler_h_m_g(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1222 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1223 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1224 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1225 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1226 |
+
wave_max = math.cos(0)/1.5 + 1
|
| 1227 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1228 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1229 |
+
gamma = min((wave_max - wave) * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1230 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1231 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1232 |
+
if gamma > 0:
|
| 1233 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1234 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1235 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1236 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1237 |
+
if callback is not None:
|
| 1238 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1239 |
+
if sigmas[i + 1] > 0:
|
| 1240 |
+
x_2 = x + (gamma + 1) * d * dt
|
| 1241 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1242 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1243 |
+
x = x + d_prime * dt
|
| 1244 |
+
else:
|
| 1245 |
+
# Euler method
|
| 1246 |
+
x = x + (gamma + 1) * d * dt
|
| 1247 |
+
return x
|
| 1248 |
+
|
| 1249 |
+
@torch.no_grad()
|
| 1250 |
+
def sample_euler_h_m_b_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1251 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1252 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1253 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1254 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1255 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1256 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1257 |
+
gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1258 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1259 |
+
gammaup = gamma + 1
|
| 1260 |
+
sigma_hat = sigmas[i] * gammaup
|
| 1261 |
+
if gamma > 0:
|
| 1262 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1263 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1264 |
+
last_noise_uncond = model.last_noise_uncond
|
| 1265 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1266 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1267 |
+
if callback is not None:
|
| 1268 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1269 |
+
if i == 0:
|
| 1270 |
+
x = x + gammaup * d * dt
|
| 1271 |
+
elif i <= len(sigmas) - 4:
|
| 1272 |
+
x_2 = x + gammaup * d * dt
|
| 1273 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1274 |
+
x_3 = x_2 + gammaup * d_2 * dt
|
| 1275 |
+
d_3 = to_d(x_3, sigmas[i + 2] * gammaup, denoised)
|
| 1276 |
+
d_prime = d * 0.5 + d_2 * 0.375 + d_3 * 0.125
|
| 1277 |
+
x = x + d_prime * dt
|
| 1278 |
+
elif sigmas[i + 1] > 0:
|
| 1279 |
+
x_2 = x + gammaup * d * dt
|
| 1280 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1281 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1282 |
+
x = x + d_prime * dt
|
| 1283 |
+
else:
|
| 1284 |
+
# Euler method
|
| 1285 |
+
x = x + gammaup * d * dt
|
| 1286 |
+
return x
|
| 1287 |
+
|
| 1288 |
+
@torch.no_grad()
|
| 1289 |
+
def sample_euler_h_m_b_c_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1290 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1291 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1292 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1293 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1294 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1295 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1296 |
+
gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1297 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1298 |
+
gammaup = gamma + 1
|
| 1299 |
+
sigma_hat = sigmas[i] * gammaup
|
| 1300 |
+
if gamma > 0:
|
| 1301 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1302 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1303 |
+
last_noise_uncond = model.last_noise_uncond
|
| 1304 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1305 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1306 |
+
if callback is not None:
|
| 1307 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1308 |
+
if i == 0:
|
| 1309 |
+
x = x + gammaup * d * dt
|
| 1310 |
+
elif i <= len(sigmas) - 4:
|
| 1311 |
+
x_2 = x + gammaup * d * dt
|
| 1312 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1313 |
+
x_3 = x_2 + gammaup * d_2 * dt
|
| 1314 |
+
d_3 = to_d(x_3, sigmas[i + 2] * gammaup, last_noise_uncond)
|
| 1315 |
+
d_prime = d * 0.5 + d_2 * 0.375 + d_3 * 0.125
|
| 1316 |
+
x = x + d_prime * dt
|
| 1317 |
+
elif sigmas[i + 1] > 0:
|
| 1318 |
+
x_2 = x + gammaup * d * dt
|
| 1319 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1320 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1321 |
+
x = x + d_prime * dt
|
| 1322 |
+
else:
|
| 1323 |
+
# Euler method
|
| 1324 |
+
x = x + gammaup * d * dt
|
| 1325 |
+
return x
|
| 1326 |
+
|
| 1327 |
+
@torch.no_grad()
|
| 1328 |
+
def sample_euler_smea_max(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 1329 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1330 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1331 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1332 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1333 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1334 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1335 |
+
sa = math.cos(i + 1)/(1.5 * i + 1.75) + 1
|
| 1336 |
+
if gamma > 0:
|
| 1337 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1338 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1339 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1340 |
+
if callback is not None:
|
| 1341 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1342 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 1343 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1344 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1345 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1346 |
+
x_2 = x + d * dt_1
|
| 1347 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1348 |
+
sigB = sigma_mid
|
| 1349 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1350 |
+
denoised_2b = model(x_2, sigma_mid * s_in, **extra_args)
|
| 1351 |
+
denoised_2 = (denoised_2a * 0.5 * (sa ** 2) + denoised_2b * 0.5 / (sa ** 2))
|
| 1352 |
+
d_2 = to_d(x_2, sigA * 0.5 * (sa ** 2) + sigB * 0.5 / (sa ** 2), denoised_2)
|
| 1353 |
+
x = x + d_2 * dt_2
|
| 1354 |
+
else:
|
| 1355 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1356 |
+
# Euler method
|
| 1357 |
+
x = x + sa * d * dt
|
| 1358 |
+
return x
|
| 1359 |
+
|
| 1360 |
+
|
| 1361 |
+
@torch.no_grad()
|
| 1362 |
+
def sample_euler_smea_max_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1363 |
+
sample = sample_euler_smea_max(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 1364 |
+
return sample
|
| 1365 |
+
|
| 1366 |
+
@torch.no_grad()
|
| 1367 |
+
def sample_euler_smea_multi_bs(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1368 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1369 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1370 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1371 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1372 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1373 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1374 |
+
if gamma > 0:
|
| 1375 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1376 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1377 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1378 |
+
if callback is not None:
|
| 1379 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1380 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1381 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1382 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1383 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1384 |
+
x_2 = x + d * dt_1
|
| 1385 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 1386 |
+
sa = 1 - scale * 0.25
|
| 1387 |
+
sb = 1 + scale * 0.15
|
| 1388 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 1389 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, **extra_args)
|
| 1390 |
+
denoised_2 = denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375 / (0.95**2)
|
| 1391 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 1392 |
+
x = x + d_2 * dt_2
|
| 1393 |
+
else:
|
| 1394 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1395 |
+
# Euler method
|
| 1396 |
+
x = x + d * dt
|
| 1397 |
+
return x
|
| 1398 |
+
|
| 1399 |
+
@torch.no_grad()
|
| 1400 |
+
def sample_euler_smea_multi_bs2_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1401 |
+
sample = sample_euler_smea_multi_bs2(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 1402 |
+
return sample
|
| 1403 |
+
|
| 1404 |
+
@torch.no_grad()
|
| 1405 |
+
def sample_euler_smea_multi_bs2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 1406 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1407 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1408 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1409 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1410 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1411 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1412 |
+
if gamma > 0:
|
| 1413 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1414 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1415 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1416 |
+
if callback is not None:
|
| 1417 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1418 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1419 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1420 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1421 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1422 |
+
x_2 = x + d * dt_1
|
| 1423 |
+
scale = (sigmas[i] / sigmas[0]) ** 2
|
| 1424 |
+
scale = scale.item()
|
| 1425 |
+
sa = 1 - scale * 0.25
|
| 1426 |
+
sb = 1 + scale * 0.15
|
| 1427 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1428 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1429 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1430 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1431 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2)
|
| 1432 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 1433 |
+
x = x + d_2 * dt_2
|
| 1434 |
+
else:
|
| 1435 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1436 |
+
# Euler method
|
| 1437 |
+
x = x + d * dt
|
| 1438 |
+
return x
|
| 1439 |
+
|
| 1440 |
+
@torch.no_grad()
|
| 1441 |
+
def sample_euler_smea_multi_cs(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1442 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1443 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1444 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1445 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1446 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1447 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1448 |
+
if gamma > 0:
|
| 1449 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1450 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1451 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1452 |
+
if callback is not None:
|
| 1453 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1454 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1455 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1456 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1457 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1458 |
+
x_2 = x + d * dt_1
|
| 1459 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 1460 |
+
sa = 1 - scale * 0.25
|
| 1461 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 1462 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2 * (sa ** 2) * 1.25)
|
| 1463 |
+
x = x + d_2 * dt_2
|
| 1464 |
+
else:
|
| 1465 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1466 |
+
# Euler method
|
| 1467 |
+
x = x + d * dt
|
| 1468 |
+
return x
|
| 1469 |
+
|
| 1470 |
+
@torch.no_grad()
|
| 1471 |
+
def sample_euler_smea_multi_as(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1472 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1473 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1474 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1475 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1476 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1477 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1478 |
+
if gamma > 0:
|
| 1479 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1480 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1481 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1482 |
+
if callback is not None:
|
| 1483 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1484 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1485 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1486 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1487 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1488 |
+
x_2 = x + d * dt_1
|
| 1489 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 1490 |
+
sa = 1 + scale * 0.15
|
| 1491 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 1492 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2 * (sa ** 2) * 0.75)
|
| 1493 |
+
x = x + d_2 * dt_2
|
| 1494 |
+
else:
|
| 1495 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1496 |
+
# Euler method
|
| 1497 |
+
x = x + d * dt
|
| 1498 |
+
return x
|
| 1499 |
+
|
| 1500 |
+
## og sampler
|
| 1501 |
+
@torch.no_grad()
|
| 1502 |
+
def sample_euler_dy_og(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1503 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1504 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1505 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1506 |
+
# print(i)
|
| 1507 |
+
# i绗竴姝ヤ负0
|
| 1508 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1509 |
+
eps = torch.randn_like(x) * s_noise
|
| 1510 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1511 |
+
# print(sigma_hat)
|
| 1512 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1513 |
+
if gamma > 0:
|
| 1514 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1515 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1516 |
+
d = sampling.to_d(x, sigma_hat, denoised)
|
| 1517 |
+
if sigmas[i + 1] > 0:
|
| 1518 |
+
if i // 2 == 1:
|
| 1519 |
+
x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args)
|
| 1520 |
+
if callback is not None:
|
| 1521 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1522 |
+
# Euler method
|
| 1523 |
+
x = x + d * dt
|
| 1524 |
+
return x
|
| 1525 |
+
|
| 1526 |
+
@torch.no_grad()
|
| 1527 |
+
def sample_euler_smea_dy_og(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1528 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1529 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1530 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1531 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1532 |
+
eps = torch.randn_like(x) * s_noise
|
| 1533 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1534 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1535 |
+
if gamma > 0:
|
| 1536 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1537 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1538 |
+
d = sampling.to_d(x, sigma_hat, denoised)
|
| 1539 |
+
# Euler method
|
| 1540 |
+
x = x + d * dt
|
| 1541 |
+
if sigmas[i + 1] > 0:
|
| 1542 |
+
if i + 1 // 2 == 1:
|
| 1543 |
+
x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args)
|
| 1544 |
+
if i + 1 // 2 == 0:
|
| 1545 |
+
x = smea_sampling_step(x, model, dt, sigma_hat, **extra_args)
|
| 1546 |
+
if callback is not None:
|
| 1547 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1548 |
+
return x
|
| 1549 |
+
|
| 1550 |
+
## TCD
|
| 1551 |
+
|
| 1552 |
+
def sample_tcd_euler_a(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, gamma=0.3):
|
| 1553 |
+
# TCD sampling using modified Euler Ancestral sampler. by @laksjdjf
|
| 1554 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1555 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
| 1556 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1557 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1558 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 1559 |
+
if callback is not None:
|
| 1560 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1561 |
+
|
| 1562 |
+
#d = to_d(x, sigmas[i], denoised)
|
| 1563 |
+
sigma_from = sigmas[i]
|
| 1564 |
+
sigma_to = sigmas[i + 1]
|
| 1565 |
+
|
| 1566 |
+
t = model.inner_model.sigma_to_t(sigma_from)
|
| 1567 |
+
down_t = (1 - gamma) * t
|
| 1568 |
+
sigma_down = model.inner_model.t_to_sigma(down_t)
|
| 1569 |
+
|
| 1570 |
+
if sigma_down > sigma_to:
|
| 1571 |
+
sigma_down = sigma_to
|
| 1572 |
+
sigma_up = (sigma_to ** 2 - sigma_down ** 2) ** 0.5
|
| 1573 |
+
|
| 1574 |
+
# same as euler ancestral
|
| 1575 |
+
d = to_d(x, sigma_from, denoised)
|
| 1576 |
+
dt = sigma_down - sigma_from
|
| 1577 |
+
x += d * dt
|
| 1578 |
+
|
| 1579 |
+
if sigma_to > 0 and gamma > 0:
|
| 1580 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigma_up
|
| 1581 |
+
return x
|
| 1582 |
+
|
| 1583 |
+
@torch.no_grad()
|
| 1584 |
+
def sample_tcd(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, gamma=0.3):
|
| 1585 |
+
# TCD sampling using modified DDPM.
|
| 1586 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1587 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
| 1588 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1589 |
+
|
| 1590 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1591 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 1592 |
+
if callback is not None:
|
| 1593 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1594 |
+
|
| 1595 |
+
sigma_from, sigma_to = sigmas[i], sigmas[i+1]
|
| 1596 |
+
|
| 1597 |
+
# TCD offset, based on gamma, and conversion between sigma and timestep
|
| 1598 |
+
t = model.inner_model.sigma_to_t(sigma_from)
|
| 1599 |
+
t_s = (1 - gamma) * t
|
| 1600 |
+
sigma_to_s = model.inner_model.t_to_sigma(t_s)
|
| 1601 |
+
|
| 1602 |
+
# if sigma_to_s > sigma_to:
|
| 1603 |
+
# sigma_to_s = sigma_to
|
| 1604 |
+
# if sigma_to_s < 0:
|
| 1605 |
+
# sigma_to_s = torch.tensor(1.0)
|
| 1606 |
+
#print(f"sigma_from: {sigma_from}, sigma_to: {sigma_to}, sigma_to_s: {sigma_to_s}")
|
| 1607 |
+
|
| 1608 |
+
|
| 1609 |
+
# The following is equivalent to the comfy DDPM implementation
|
| 1610 |
+
# x = DDPMSampler_step(x / torch.sqrt(1.0 + sigma_from ** 2.0), sigma_from, sigma_to, (x - denoised) / sigma_from, noise_sampler)
|
| 1611 |
+
|
| 1612 |
+
noise_est = (x - denoised) / sigma_from
|
| 1613 |
+
x /= torch.sqrt(1.0 + sigma_from ** 2.0)
|
| 1614 |
+
|
| 1615 |
+
alpha_cumprod = 1 / ((sigma_from * sigma_from) + 1) # _t
|
| 1616 |
+
alpha_cumprod_prev = 1 / ((sigma_to * sigma_to) + 1) # _t_prev
|
| 1617 |
+
alpha = (alpha_cumprod / alpha_cumprod_prev)
|
| 1618 |
+
|
| 1619 |
+
## These values should approach 1.0?
|
| 1620 |
+
# print(f"alpha_cumprod: {alpha_cumprod}")
|
| 1621 |
+
# print(f"alpha_cumprod_prev: {alpha_cumprod_prev}")
|
| 1622 |
+
# print(f"alpha: {alpha}")
|
| 1623 |
+
|
| 1624 |
+
|
| 1625 |
+
# alpha_cumprod_down = 1 / ((sigma_to_s * sigma_to_s) + 1) # _s
|
| 1626 |
+
# alpha_d = (alpha_cumprod_prev / alpha_cumprod_down)
|
| 1627 |
+
# alpha2 = (alpha_cumprod / alpha_cumprod_down)
|
| 1628 |
+
# print(f"** alpha_cumprod_down: {alpha_cumprod_down}")
|
| 1629 |
+
# print(f"** alpha_d: {alpha_d}, alpha2: #{alpha2}")
|
| 1630 |
+
|
| 1631 |
+
# epsilon noise prediction from comfy DDPM implementation
|
| 1632 |
+
x = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise_est / (1 - alpha_cumprod).sqrt())
|
| 1633 |
+
# x = (1.0 / alpha_d).sqrt() * (x - (1 - alpha) * noise_est / (1 - alpha_cumprod).sqrt())
|
| 1634 |
+
|
| 1635 |
+
first_step = sigma_to == 0
|
| 1636 |
+
last_step = i == len(sigmas) - 2
|
| 1637 |
+
|
| 1638 |
+
if not first_step:
|
| 1639 |
+
if gamma > 0 and not last_step:
|
| 1640 |
+
noise = noise_sampler(sigma_from, sigma_to)
|
| 1641 |
+
|
| 1642 |
+
# x += ((1 - alpha_d) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise
|
| 1643 |
+
variance = ((1 - alpha_cumprod_prev) / (1 - alpha_cumprod)) * (1 - alpha_cumprod / alpha_cumprod_prev)
|
| 1644 |
+
x += variance.sqrt() * noise # scale noise by std deviation
|
| 1645 |
+
|
| 1646 |
+
# relevant diffusers code from scheduling_tcd.py
|
| 1647 |
+
# prev_sample = (alpha_prod_t_prev / alpha_prod_s).sqrt() * pred_noised_sample + (
|
| 1648 |
+
# 1 - alpha_prod_t_prev / alpha_prod_s
|
| 1649 |
+
# ).sqrt() * noise
|
| 1650 |
+
|
| 1651 |
+
x *= torch.sqrt(1.0 + sigma_to ** 2.0)
|
| 1652 |
+
|
| 1653 |
+
# beta_cumprod_t = 1 - alpha_cumprod
|
| 1654 |
+
# beta_cumprod_s = 1 - alpha_cumprod_down
|
| 1655 |
+
|
| 1656 |
+
|
| 1657 |
+
return x
|
sd-webui-smea/sd-webui-smea-chanhe.py
ADDED
|
@@ -0,0 +1,1657 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import math
|
| 3 |
+
import k_diffusion.sampling
|
| 4 |
+
|
| 5 |
+
from k_diffusion.sampling import to_d, BrownianTreeNoiseSampler
|
| 6 |
+
from tqdm.auto import trange
|
| 7 |
+
from modules import scripts
|
| 8 |
+
from modules import sd_samplers_kdiffusion, sd_samplers_common, sd_samplers
|
| 9 |
+
from modules.sd_samplers_kdiffusion import KDiffusionSampler
|
| 10 |
+
|
| 11 |
+
class _Rescaler:
|
| 12 |
+
def __init__(self, model, x, mode, **extra_args):
|
| 13 |
+
self.model = model
|
| 14 |
+
self.x = x
|
| 15 |
+
self.mode = mode
|
| 16 |
+
self.extra_args = extra_args
|
| 17 |
+
self.init_latent, self.mask, self.nmask = model.init_latent, model.mask, model.nmask
|
| 18 |
+
|
| 19 |
+
def __enter__(self):
|
| 20 |
+
if self.init_latent is not None:
|
| 21 |
+
self.model.init_latent = torch.nn.functional.interpolate(input=self.init_latent, size=self.x.shape[2:4], mode=self.mode)
|
| 22 |
+
if self.mask is not None:
|
| 23 |
+
self.model.mask = torch.nn.functional.interpolate(input=self.mask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0)
|
| 24 |
+
if self.nmask is not None:
|
| 25 |
+
self.model.nmask = torch.nn.functional.interpolate(input=self.nmask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0)
|
| 26 |
+
return self
|
| 27 |
+
|
| 28 |
+
def __exit__(self, type, value, traceback):
|
| 29 |
+
del self.model.init_latent, self.model.mask, self.model.nmask
|
| 30 |
+
self.model.init_latent, self.model.mask, self.model.nmask = self.init_latent, self.mask, self.nmask
|
| 31 |
+
|
| 32 |
+
class Smea(scripts.Script):
|
| 33 |
+
|
| 34 |
+
def title(self):
|
| 35 |
+
return "Euler Smea Dy sampler"
|
| 36 |
+
|
| 37 |
+
def show(self, is_img2img):
|
| 38 |
+
return scripts.AlwaysVisible
|
| 39 |
+
|
| 40 |
+
def __init__(self):
|
| 41 |
+
init()
|
| 42 |
+
return
|
| 43 |
+
|
| 44 |
+
def init():
|
| 45 |
+
for i in sd_samplers.all_samplers:
|
| 46 |
+
if "Euler Max" in i.name:
|
| 47 |
+
return
|
| 48 |
+
|
| 49 |
+
samplers_smea = [
|
| 50 |
+
('Euler Max', sample_euler_max, ['k_euler'], {}),
|
| 51 |
+
('Euler Max1b', sample_euler_max1b, ['k_euler'], {}),
|
| 52 |
+
('Euler Max1c', sample_euler_max1c, ['k_euler'], {}),
|
| 53 |
+
('Euler Max1d', sample_euler_max1d, ['k_euler'], {}),
|
| 54 |
+
('Euler Max2', sample_euler_max2, ['k_euler'], {}),
|
| 55 |
+
('Euler Max2b', sample_euler_max2b, ['k_euler'], {}),
|
| 56 |
+
('Euler Max2c', sample_euler_max2c, ['k_euler'], {}),
|
| 57 |
+
('Euler Max2d', sample_euler_max2d, ['k_euler'], {}),
|
| 58 |
+
('Euler Max3', sample_euler_max3, ['k_euler'], {}),
|
| 59 |
+
('Euler Max3b', sample_euler_max3b, ['k_euler'], {}),
|
| 60 |
+
('Euler Max3c', sample_euler_max3c, ['k_euler'], {}),
|
| 61 |
+
('Euler Max4', sample_euler_max4, ['k_euler'], {}),
|
| 62 |
+
('Euler Max4b', sample_euler_max4b, ['k_euler'], {}),
|
| 63 |
+
('Euler Max4c', sample_euler_max4c, ['k_euler'], {}),
|
| 64 |
+
('Euler Max4d', sample_euler_max4d, ['k_euler'], {}),
|
| 65 |
+
('Euler Max4e', sample_euler_max4e, ['k_euler'], {}),
|
| 66 |
+
('Euler Max4f', sample_euler_max4f, ['k_euler'], {}),
|
| 67 |
+
('Euler Dy', sample_euler_dy, ['k_euler'], {}),
|
| 68 |
+
('Euler Smea', sample_euler_smea, ['k_euler'], {}),
|
| 69 |
+
('Euler Smea Dy', sample_euler_smea_dy, ['k_euler'], {}),
|
| 70 |
+
('Euler Smea Max', sample_euler_smea_max, ['k_euler'], {}),
|
| 71 |
+
('Euler Smea Max s', sample_euler_smea_max_s, ['k_euler'], {}),
|
| 72 |
+
('Euler Smea dyn a', sample_euler_smea_dyn_a, ['k_euler'], {}),
|
| 73 |
+
('Euler Smea dyn b', sample_euler_smea_dyn_b, ['k_euler'], {}),
|
| 74 |
+
('Euler Smea dyn c', sample_euler_smea_dyn_c, ['k_euler'], {}),
|
| 75 |
+
('Euler Smea ma', sample_euler_smea_multi_a, ['k_euler'], {}),
|
| 76 |
+
('Euler Smea mb', sample_euler_smea_multi_b, ['k_euler'], {}),
|
| 77 |
+
('Euler Smea mc', sample_euler_smea_multi_c, ['k_euler'], {}),
|
| 78 |
+
('Euler Smea md', sample_euler_smea_multi_d, ['k_euler'], {}),
|
| 79 |
+
('Euler Smea mas', sample_euler_smea_multi_as, ['k_euler'], {}),
|
| 80 |
+
('Euler Smea mbs', sample_euler_smea_multi_bs, ['k_euler'], {}),
|
| 81 |
+
('Euler Smea mcs', sample_euler_smea_multi_cs, ['k_euler'], {}),
|
| 82 |
+
('Euler Smea mds', sample_euler_smea_multi_ds, ['k_euler'], {}),
|
| 83 |
+
('Euler Smea mbs2', sample_euler_smea_multi_bs2, ['k_euler'], {}),
|
| 84 |
+
('Euler Smea mds2', sample_euler_smea_multi_ds2, ['k_euler'], {}),
|
| 85 |
+
('Euler Smea mds2 max', sample_euler_smea_multi_ds2_m, ['k_euler'], {}),
|
| 86 |
+
('Euler Smea mds2 s max', sample_euler_smea_multi_ds2_s_m, ['k_euler'], {}),
|
| 87 |
+
('Euler Smea mbs2 s', sample_euler_smea_multi_bs2_s, ['k_euler'], {}),
|
| 88 |
+
('Euler Smea mds2 s', sample_euler_smea_multi_ds2_s, ['k_euler'], {}),
|
| 89 |
+
('Euler h max', sample_euler_h_m, ['k_euler'], {"brownian_noise": True}),
|
| 90 |
+
('Euler h max b', sample_euler_h_m_b, ['k_euler'], {"brownian_noise": True}),
|
| 91 |
+
('Euler h max c', sample_euler_h_m_c, ['k_euler'], {"brownian_noise": True}),
|
| 92 |
+
('Euler h max d', sample_euler_h_m_d, ['k_euler'], {"brownian_noise": True}),
|
| 93 |
+
('Euler h max e', sample_euler_h_m_e, ['k_euler'], {"brownian_noise": True}),
|
| 94 |
+
('Euler h max f', sample_euler_h_m_f, ['k_euler'], {"brownian_noise": True}),
|
| 95 |
+
('Euler h max g', sample_euler_h_m_g, ['k_euler'], {"brownian_noise": True}),
|
| 96 |
+
('Euler h max b c', sample_euler_h_m_b_c, ['k_euler'], {"brownian_noise": True}),
|
| 97 |
+
('Euler h max b c CFG++', sample_euler_h_m_b_c_pp, ['k_euler'], {"brownian_noise": True, "cfgpp": True}),
|
| 98 |
+
('Euler Dy koishi-star', sample_euler_dy_og, ['k_euler'], {}),
|
| 99 |
+
('Euler Smea Dy koishi-star', sample_euler_smea_dy_og, ['k_euler'], {}),
|
| 100 |
+
('TCD Euler a', sample_tcd_euler_a, ['tcd_euler_a'], {}),
|
| 101 |
+
('TCD', sample_tcd, ['tcd'], {}),
|
| 102 |
+
]
|
| 103 |
+
|
| 104 |
+
samplers_data_smea = [
|
| 105 |
+
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
|
| 106 |
+
for label, funcname, aliases, options in samplers_smea
|
| 107 |
+
if callable(funcname)
|
| 108 |
+
]
|
| 109 |
+
|
| 110 |
+
sampler_exparams_smea = {
|
| 111 |
+
sample_euler_max: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 112 |
+
sample_euler_max1b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 113 |
+
sample_euler_max1c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 114 |
+
sample_euler_max1d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 115 |
+
sample_euler_max2: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 116 |
+
sample_euler_max2b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 117 |
+
sample_euler_max2c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 118 |
+
sample_euler_max2d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 119 |
+
sample_euler_max3: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 120 |
+
sample_euler_max3b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 121 |
+
sample_euler_max3c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 122 |
+
sample_euler_max4: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 123 |
+
sample_euler_max4b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 124 |
+
sample_euler_max4c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 125 |
+
sample_euler_max4d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 126 |
+
sample_euler_max4e: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 127 |
+
sample_euler_max4f: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 128 |
+
sample_euler_dy: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 129 |
+
sample_euler_smea: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 130 |
+
sample_euler_smea_dy: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 131 |
+
sample_euler_smea_max: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 132 |
+
sample_euler_smea_max_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 133 |
+
sample_euler_smea_dyn_a: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 134 |
+
sample_euler_smea_dyn_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 135 |
+
sample_euler_smea_dyn_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 136 |
+
sample_euler_smea_multi_a: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 137 |
+
sample_euler_smea_multi_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 138 |
+
sample_euler_smea_multi_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 139 |
+
sample_euler_smea_multi_d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 140 |
+
sample_euler_smea_multi_as: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 141 |
+
sample_euler_smea_multi_bs: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 142 |
+
sample_euler_smea_multi_cs: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 143 |
+
sample_euler_smea_multi_ds: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 144 |
+
sample_euler_smea_multi_bs2: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 145 |
+
sample_euler_smea_multi_ds2: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 146 |
+
sample_euler_smea_multi_ds2_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 147 |
+
sample_euler_smea_multi_ds2_s_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 148 |
+
sample_euler_smea_multi_bs2_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 149 |
+
sample_euler_smea_multi_ds2_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 150 |
+
sample_euler_h_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 151 |
+
sample_euler_h_m_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 152 |
+
sample_euler_h_m_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 153 |
+
sample_euler_h_m_d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 154 |
+
sample_euler_h_m_e: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 155 |
+
sample_euler_h_m_f: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 156 |
+
sample_euler_h_m_g: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 157 |
+
sample_euler_h_m_b_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 158 |
+
sample_euler_h_m_b_c_pp: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 159 |
+
sample_euler_dy_og: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 160 |
+
sample_euler_smea_dy_og: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 161 |
+
}
|
| 162 |
+
sd_samplers_kdiffusion.sampler_extra_params = {**sd_samplers_kdiffusion.sampler_extra_params, **sampler_exparams_smea}
|
| 163 |
+
|
| 164 |
+
samplers_map_smea = {x.name: x for x in samplers_data_smea}
|
| 165 |
+
sd_samplers_kdiffusion.k_diffusion_samplers_map = {**sd_samplers_kdiffusion.k_diffusion_samplers_map, **samplers_map_smea}
|
| 166 |
+
|
| 167 |
+
for i, item in enumerate(sd_samplers.all_samplers):
|
| 168 |
+
if "Euler" in item.name:
|
| 169 |
+
sd_samplers.all_samplers = sd_samplers.all_samplers[:i + 1] + [*samplers_data_smea] + sd_samplers.all_samplers[i + 1:]
|
| 170 |
+
break
|
| 171 |
+
sd_samplers.all_samplers_map = {x.name: x for x in sd_samplers.all_samplers}
|
| 172 |
+
sd_samplers.set_samplers()
|
| 173 |
+
|
| 174 |
+
return
|
| 175 |
+
|
| 176 |
+
def default_noise_sampler(x):
|
| 177 |
+
return lambda sigma, sigma_next: k_diffusion.sampling.torch.randn_like(x)
|
| 178 |
+
|
| 179 |
+
@torch.no_grad()
|
| 180 |
+
def dy_sampling_step(x, model, dt, sigma_hat, **extra_args):
|
| 181 |
+
original_shape = x.shape
|
| 182 |
+
batch_size, channels, m, n = original_shape[0], original_shape[1], original_shape[2] // 2, original_shape[3] // 2
|
| 183 |
+
extra_row = x.shape[2] % 2 == 1
|
| 184 |
+
extra_col = x.shape[3] % 2 == 1
|
| 185 |
+
|
| 186 |
+
if extra_row:
|
| 187 |
+
extra_row_content = x[:, :, -1:, :]
|
| 188 |
+
x = x[:, :, :-1, :]
|
| 189 |
+
if extra_col:
|
| 190 |
+
extra_col_content = x[:, :, :, -1:]
|
| 191 |
+
x = x[:, :, :, :-1]
|
| 192 |
+
|
| 193 |
+
a_list = x.unfold(2, 2, 2).unfold(3, 2, 2).contiguous().view(batch_size, channels, m * n, 2, 2)
|
| 194 |
+
c = a_list[:, :, :, 1, 1].view(batch_size, channels, m, n)
|
| 195 |
+
|
| 196 |
+
with _Rescaler(model, c, 'nearest-exact', **extra_args) as rescaler:
|
| 197 |
+
denoised = model(c, sigma_hat * c.new_ones([c.shape[0]]), **rescaler.extra_args)
|
| 198 |
+
d = to_d(c, sigma_hat, denoised)
|
| 199 |
+
c = c + d * dt
|
| 200 |
+
|
| 201 |
+
d_list = c.view(batch_size, channels, m * n, 1, 1)
|
| 202 |
+
a_list[:, :, :, 1, 1] = d_list[:, :, :, 0, 0]
|
| 203 |
+
x = a_list.view(batch_size, channels, m, n, 2, 2).permute(0, 1, 2, 4, 3, 5).reshape(batch_size, channels, 2 * m, 2 * n)
|
| 204 |
+
|
| 205 |
+
if extra_row or extra_col:
|
| 206 |
+
x_expanded = torch.zeros(original_shape, dtype=x.dtype, device=x.device)
|
| 207 |
+
x_expanded[:, :, :2 * m, :2 * n] = x
|
| 208 |
+
if extra_row:
|
| 209 |
+
x_expanded[:, :, -1:, :2 * n + 1] = extra_row_content
|
| 210 |
+
if extra_col:
|
| 211 |
+
x_expanded[:, :, :2 * m, -1:] = extra_col_content
|
| 212 |
+
if extra_row and extra_col:
|
| 213 |
+
x_expanded[:, :, -1:, -1:] = extra_col_content[:, :, -1:, :]
|
| 214 |
+
x = x_expanded
|
| 215 |
+
|
| 216 |
+
return x
|
| 217 |
+
|
| 218 |
+
@torch.no_grad()
|
| 219 |
+
def smea_sampling_step(x, model, dt, sigma_hat, **extra_args):
|
| 220 |
+
m, n = x.shape[2], x.shape[3]
|
| 221 |
+
x = torch.nn.functional.interpolate(input=x, size=None, scale_factor=(1.25, 1.25), mode='nearest-exact', align_corners=None, recompute_scale_factor=None)
|
| 222 |
+
with _Rescaler(model, x, 'nearest-exact', **extra_args) as rescaler:
|
| 223 |
+
denoised = model(x, sigma_hat * x.new_ones([x.shape[0]]), **rescaler.extra_args)
|
| 224 |
+
d = to_d(x, sigma_hat, denoised)
|
| 225 |
+
x = x + d * dt
|
| 226 |
+
x = torch.nn.functional.interpolate(input=x, size=(m,n), scale_factor=None, mode='nearest-exact', align_corners=None, recompute_scale_factor=None)
|
| 227 |
+
return x
|
| 228 |
+
|
| 229 |
+
@torch.no_grad()
|
| 230 |
+
def smea_sampling_step_denoised(x, model, sigma_hat, scale=1.25, smooth=False, **extra_args):
|
| 231 |
+
m, n = x.shape[2], x.shape[3]
|
| 232 |
+
filter = 'nearest-exact' if not smooth else 'bilinear'
|
| 233 |
+
x = torch.nn.functional.interpolate(input=x, scale_factor=(scale, scale), mode=filter)
|
| 234 |
+
with _Rescaler(model, x, filter, **extra_args) as rescaler:
|
| 235 |
+
denoised = model(x, sigma_hat * x.new_ones([x.shape[0]]), **rescaler.extra_args)
|
| 236 |
+
x = denoised
|
| 237 |
+
x = torch.nn.functional.interpolate(input=x, size=(m,n), mode='nearest-exact')
|
| 238 |
+
return x
|
| 239 |
+
|
| 240 |
+
@torch.no_grad()
|
| 241 |
+
def sample_euler_max(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 242 |
+
extra_args = {} if extra_args is None else extra_args
|
| 243 |
+
s_in = x.new_ones([x.shape[0]])
|
| 244 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 245 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 246 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 247 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 248 |
+
if gamma > 0:
|
| 249 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 250 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 251 |
+
d = to_d(x, sigma_hat, denoised)
|
| 252 |
+
if callback is not None:
|
| 253 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 254 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 255 |
+
# Euler method
|
| 256 |
+
x = x + (math.cos(i + 1)/(i + 1) + 1) * d * dt
|
| 257 |
+
return x
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
@torch.no_grad()
|
| 261 |
+
def sample_euler_max1b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 262 |
+
extra_args = {} if extra_args is None else extra_args
|
| 263 |
+
s_in = x.new_ones([x.shape[0]])
|
| 264 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 265 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 266 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 267 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 268 |
+
if gamma > 0:
|
| 269 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 270 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 271 |
+
d = to_d(x, sigma_hat, denoised)
|
| 272 |
+
if callback is not None:
|
| 273 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 274 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 275 |
+
# Euler method
|
| 276 |
+
x = x + (math.cos(1.05 * i + 1)/(1.1 * i + 1.5) + 1) * d * dt
|
| 277 |
+
return x
|
| 278 |
+
|
| 279 |
+
@torch.no_grad()
|
| 280 |
+
def sample_euler_max1c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 281 |
+
extra_args = {} if extra_args is None else extra_args
|
| 282 |
+
s_in = x.new_ones([x.shape[0]])
|
| 283 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 284 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 285 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 286 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 287 |
+
if gamma > 0:
|
| 288 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 289 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 290 |
+
d = to_d(x, sigma_hat, denoised)
|
| 291 |
+
if callback is not None:
|
| 292 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 293 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 294 |
+
# Euler method
|
| 295 |
+
x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d * dt
|
| 296 |
+
return x
|
| 297 |
+
|
| 298 |
+
@torch.no_grad()
|
| 299 |
+
def sample_euler_max1d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 300 |
+
extra_args = {} if extra_args is None else extra_args
|
| 301 |
+
s_in = x.new_ones([x.shape[0]])
|
| 302 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 303 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 304 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 305 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 306 |
+
if gamma > 0:
|
| 307 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 308 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 309 |
+
d = to_d(x, sigma_hat, denoised)
|
| 310 |
+
if callback is not None:
|
| 311 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 312 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 313 |
+
# Euler method
|
| 314 |
+
x = x + (math.cos(math.pi * 0.333 * i + 0.9)/(0.5 * i + 1.5) + 1) * d * dt
|
| 315 |
+
return x
|
| 316 |
+
|
| 317 |
+
@torch.no_grad()
|
| 318 |
+
def sample_euler_max2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 319 |
+
extra_args = {} if extra_args is None else extra_args
|
| 320 |
+
s_in = x.new_ones([x.shape[0]])
|
| 321 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 322 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 323 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 324 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 325 |
+
if gamma > 0:
|
| 326 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 327 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 328 |
+
d = to_d(x, sigma_hat, denoised)
|
| 329 |
+
if callback is not None:
|
| 330 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 331 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 332 |
+
# Euler method
|
| 333 |
+
x = x + (math.cos(math.pi * 0.333 * i - 0.1)/(0.5 * i + 1.5) + 1) * d * dt
|
| 334 |
+
return x
|
| 335 |
+
|
| 336 |
+
@torch.no_grad()
|
| 337 |
+
def sample_euler_max2b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 338 |
+
extra_args = {} if extra_args is None else extra_args
|
| 339 |
+
s_in = x.new_ones([x.shape[0]])
|
| 340 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 341 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 342 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 343 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 344 |
+
if gamma > 0:
|
| 345 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 346 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 347 |
+
d = to_d(x, sigma_hat, denoised)
|
| 348 |
+
if callback is not None:
|
| 349 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 350 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 351 |
+
# Euler method
|
| 352 |
+
x = x + (math.cos(math.pi * 0.5 * i - 0.0)/(0.5 * i + 1.5) + 1) * d * dt
|
| 353 |
+
return x
|
| 354 |
+
|
| 355 |
+
@torch.no_grad()
|
| 356 |
+
def sample_euler_max2c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 357 |
+
extra_args = {} if extra_args is None else extra_args
|
| 358 |
+
s_in = x.new_ones([x.shape[0]])
|
| 359 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 360 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 361 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 362 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 363 |
+
if gamma > 0:
|
| 364 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 365 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 366 |
+
d = to_d(x, sigma_hat, denoised)
|
| 367 |
+
if callback is not None:
|
| 368 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 369 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 370 |
+
# Euler method
|
| 371 |
+
x = x + (math.cos(math.pi * 0.5 * i)/(i + 2) + 1) * d * dt
|
| 372 |
+
return x
|
| 373 |
+
|
| 374 |
+
@torch.no_grad()
|
| 375 |
+
def sample_euler_max2d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 376 |
+
extra_args = {} if extra_args is None else extra_args
|
| 377 |
+
s_in = x.new_ones([x.shape[0]])
|
| 378 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 379 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 380 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 381 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 382 |
+
if gamma > 0:
|
| 383 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 384 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 385 |
+
d = to_d(x, sigma_hat, denoised)
|
| 386 |
+
if callback is not None:
|
| 387 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 388 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 389 |
+
# Euler method
|
| 390 |
+
x = x + (math.cos(math.pi * 0.5 * i)/(0.75 * i + 1.75) + 1) * d * dt
|
| 391 |
+
return x
|
| 392 |
+
|
| 393 |
+
@torch.no_grad()
|
| 394 |
+
def sample_euler_max3b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 395 |
+
extra_args = {} if extra_args is None else extra_args
|
| 396 |
+
s_in = x.new_ones([x.shape[0]])
|
| 397 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 398 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 399 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 400 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 401 |
+
if gamma > 0:
|
| 402 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 403 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 404 |
+
d = to_d(x, sigma_hat, denoised)
|
| 405 |
+
if callback is not None:
|
| 406 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 407 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 408 |
+
# Euler method
|
| 409 |
+
x = x + (math.cos(2 * i + 0.5)/(2 * i + 1.5) + 1) * d * dt
|
| 410 |
+
return x
|
| 411 |
+
|
| 412 |
+
@torch.no_grad()
|
| 413 |
+
def sample_euler_max3c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 414 |
+
extra_args = {} if extra_args is None else extra_args
|
| 415 |
+
s_in = x.new_ones([x.shape[0]])
|
| 416 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 417 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 418 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 419 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 420 |
+
if gamma > 0:
|
| 421 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 422 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 423 |
+
d = to_d(x, sigma_hat, denoised)
|
| 424 |
+
if callback is not None:
|
| 425 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 426 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 427 |
+
# Euler method
|
| 428 |
+
x = x + (math.cos(2 * i + 0.5)/(1.5 * i + 2.7) + 1) * d * dt
|
| 429 |
+
return x
|
| 430 |
+
|
| 431 |
+
@torch.no_grad()
|
| 432 |
+
def sample_euler_max3(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 433 |
+
extra_args = {} if extra_args is None else extra_args
|
| 434 |
+
s_in = x.new_ones([x.shape[0]])
|
| 435 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 436 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 437 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 438 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 439 |
+
if gamma > 0:
|
| 440 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 441 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 442 |
+
d = to_d(x, sigma_hat, denoised)
|
| 443 |
+
if callback is not None:
|
| 444 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 445 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 446 |
+
# Euler method
|
| 447 |
+
x = x + (math.cos(2 * i + 1)/(2 * i + 1) + 1) * d * dt
|
| 448 |
+
return x
|
| 449 |
+
|
| 450 |
+
@torch.no_grad()
|
| 451 |
+
def sample_euler_max4b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 452 |
+
extra_args = {} if extra_args is None else extra_args
|
| 453 |
+
s_in = x.new_ones([x.shape[0]])
|
| 454 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 455 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 456 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 457 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 458 |
+
if gamma > 0:
|
| 459 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 460 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 461 |
+
d = to_d(x, sigma_hat, denoised)
|
| 462 |
+
if callback is not None:
|
| 463 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 464 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 465 |
+
# Euler method
|
| 466 |
+
x = x + (math.cos(math.pi * i - 0.1)/(2 * i + 2) + 1) * d * dt
|
| 467 |
+
return x
|
| 468 |
+
|
| 469 |
+
@torch.no_grad()
|
| 470 |
+
def sample_euler_max4c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 471 |
+
extra_args = {} if extra_args is None else extra_args
|
| 472 |
+
s_in = x.new_ones([x.shape[0]])
|
| 473 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 474 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 475 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 476 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 477 |
+
if gamma > 0:
|
| 478 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 479 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 480 |
+
d = to_d(x, sigma_hat, denoised)
|
| 481 |
+
if callback is not None:
|
| 482 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 483 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 484 |
+
# Euler method
|
| 485 |
+
x = x + (math.cos(math.pi * i - 0.1)/(2 * i + 1.5) + 1) * d * dt
|
| 486 |
+
return x
|
| 487 |
+
|
| 488 |
+
@torch.no_grad()
|
| 489 |
+
def sample_euler_max4d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 490 |
+
extra_args = {} if extra_args is None else extra_args
|
| 491 |
+
s_in = x.new_ones([x.shape[0]])
|
| 492 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 493 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 494 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 495 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 496 |
+
if gamma > 0:
|
| 497 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 498 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 499 |
+
d = to_d(x, sigma_hat, denoised)
|
| 500 |
+
if callback is not None:
|
| 501 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 502 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 503 |
+
# Euler method
|
| 504 |
+
x = x + (math.cos(math.pi * i - 0.1)/(i + 1.5) + 1) * d * dt
|
| 505 |
+
return x
|
| 506 |
+
|
| 507 |
+
@torch.no_grad()
|
| 508 |
+
def sample_euler_max4e(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 509 |
+
extra_args = {} if extra_args is None else extra_args
|
| 510 |
+
s_in = x.new_ones([x.shape[0]])
|
| 511 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 512 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 513 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 514 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 515 |
+
if gamma > 0:
|
| 516 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 517 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 518 |
+
d = to_d(x, sigma_hat, denoised)
|
| 519 |
+
if callback is not None:
|
| 520 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 521 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 522 |
+
# Euler method
|
| 523 |
+
x = x + (math.cos(math.pi * i - 0.1)/(i + 1) + 1) * d * dt
|
| 524 |
+
return x
|
| 525 |
+
|
| 526 |
+
@torch.no_grad()
|
| 527 |
+
def sample_euler_max4f(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 528 |
+
extra_args = {} if extra_args is None else extra_args
|
| 529 |
+
s_in = x.new_ones([x.shape[0]])
|
| 530 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 531 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 532 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 533 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 534 |
+
if gamma > 0:
|
| 535 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 536 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 537 |
+
d = to_d(x, sigma_hat, denoised)
|
| 538 |
+
if callback is not None:
|
| 539 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 540 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 541 |
+
# Euler method
|
| 542 |
+
x = x + (math.cos(math.pi * i - 0.1)/(i + 2) + 1) * d * dt
|
| 543 |
+
return x
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
@torch.no_grad()
|
| 547 |
+
def sample_euler_max4(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 548 |
+
# 袛芯斜邪胁褜褌械 蟹写械褋褜 褌械谢芯 褎褍薪泻褑懈懈 懈谢懈 褏芯褌褟 斜褘 pass, 褔褌芯斜褘 懈蟹斜械卸邪褌褜 IndentationError
|
| 549 |
+
pass
|
| 550 |
+
|
| 551 |
+
@torch.no_grad()
|
| 552 |
+
def sample_euler_dy(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 553 |
+
extra_args = {} if extra_args is None else extra_args
|
| 554 |
+
s_in = x.new_ones([x.shape[0]])
|
| 555 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 556 |
+
# print(i)
|
| 557 |
+
# i绗竴姝ヤ负0
|
| 558 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 559 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 560 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 561 |
+
# print(sigma_hat)
|
| 562 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 563 |
+
if gamma > 0:
|
| 564 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 565 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 566 |
+
d = to_d(x, sigma_hat, denoised)
|
| 567 |
+
if callback is not None:
|
| 568 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 569 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 and i % 2 == 0:
|
| 570 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 571 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 572 |
+
dt_2 = sigmas[i + 1] - sigmas[i]
|
| 573 |
+
x_2 = x + d * dt_1
|
| 574 |
+
x_temp = dy_sampling_step(x_2, model, dt_2, sigma_mid, **extra_args)
|
| 575 |
+
x = x_temp - d * dt_1
|
| 576 |
+
# Euler method
|
| 577 |
+
x = x + d * dt
|
| 578 |
+
return x
|
| 579 |
+
|
| 580 |
+
@torch.no_grad()
|
| 581 |
+
def sample_euler_smea_dyn_a(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 582 |
+
extra_args = {} if extra_args is None else extra_args
|
| 583 |
+
s_in = x.new_ones([x.shape[0]])
|
| 584 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 585 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 586 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 587 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 588 |
+
if gamma > 0:
|
| 589 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 590 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 591 |
+
d = to_d(x, sigma_hat, denoised)
|
| 592 |
+
if callback is not None:
|
| 593 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 594 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2:
|
| 595 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 596 |
+
dt_1 = sigma_mid - sigma_hat
|
| 597 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 598 |
+
x_2 = x + d * dt_1
|
| 599 |
+
#scale = (sigma_mid / sigmas[0]) * 0.25
|
| 600 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.15
|
| 601 |
+
#scale = scale.item()
|
| 602 |
+
if i % 2 == 0:
|
| 603 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale, **extra_args)
|
| 604 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args)
|
| 605 |
+
else:
|
| 606 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 607 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 608 |
+
x = x + d_2 * dt_2
|
| 609 |
+
else:
|
| 610 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 611 |
+
# Euler method
|
| 612 |
+
x = x + d * dt
|
| 613 |
+
return x
|
| 614 |
+
|
| 615 |
+
@torch.no_grad()
|
| 616 |
+
def sample_euler_smea_dyn_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 617 |
+
extra_args = {} if extra_args is None else extra_args
|
| 618 |
+
s_in = x.new_ones([x.shape[0]])
|
| 619 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 620 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 621 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 622 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 623 |
+
if gamma > 0:
|
| 624 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 625 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 626 |
+
d = to_d(x, sigma_hat, denoised)
|
| 627 |
+
if callback is not None:
|
| 628 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 629 |
+
if sigmas[i + 1] > 0 and (i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 3 or i < 3):
|
| 630 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 631 |
+
dt_1 = sigma_mid - sigma_hat
|
| 632 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 633 |
+
x_2 = x + d * dt_1
|
| 634 |
+
#scale = (sigma_mid / sigmas[0]) * 0.25
|
| 635 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.2
|
| 636 |
+
#scale = scale.item()
|
| 637 |
+
if i % 4 == 0:
|
| 638 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale, **extra_args)
|
| 639 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - sigma_mid.item() * 0.01, **extra_args)
|
| 640 |
+
elif i % 4 == 2:
|
| 641 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale, **extra_args)
|
| 642 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args)
|
| 643 |
+
else:
|
| 644 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 645 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 646 |
+
x = x + d_2 * dt_2
|
| 647 |
+
else:
|
| 648 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 649 |
+
# Euler method
|
| 650 |
+
x = x + d * dt
|
| 651 |
+
return x
|
| 652 |
+
|
| 653 |
+
@torch.no_grad()
|
| 654 |
+
def sample_euler_smea_dyn_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 655 |
+
extra_args = {} if extra_args is None else extra_args
|
| 656 |
+
s_in = x.new_ones([x.shape[0]])
|
| 657 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 658 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 659 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 660 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 661 |
+
if gamma > 0:
|
| 662 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 663 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 664 |
+
d = to_d(x, sigma_hat, denoised)
|
| 665 |
+
if callback is not None:
|
| 666 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 667 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2:
|
| 668 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 669 |
+
dt_1 = sigma_mid - sigma_hat
|
| 670 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 671 |
+
x_2 = x + d * dt_1
|
| 672 |
+
#scale = (sigma_mid / sigmas[0]) * 0.25
|
| 673 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.25
|
| 674 |
+
#scale = scale.item()
|
| 675 |
+
if i % 2 == 0:
|
| 676 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale, **extra_args)
|
| 677 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args)
|
| 678 |
+
else:
|
| 679 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 680 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 681 |
+
x = x + d_2 * dt_2
|
| 682 |
+
else:
|
| 683 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 684 |
+
# Euler method
|
| 685 |
+
x = x + d * dt
|
| 686 |
+
return x
|
| 687 |
+
|
| 688 |
+
@torch.no_grad()
|
| 689 |
+
def sample_euler_smea(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 690 |
+
extra_args = {} if extra_args is None else extra_args
|
| 691 |
+
s_in = x.new_ones([x.shape[0]])
|
| 692 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 693 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 694 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 695 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 696 |
+
if gamma > 0:
|
| 697 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 698 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 699 |
+
d = to_d(x, sigma_hat, denoised)
|
| 700 |
+
if callback is not None:
|
| 701 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 702 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 703 |
+
# Euler method
|
| 704 |
+
x = x + d * dt
|
| 705 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 and i % 2 == 0:
|
| 706 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 707 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 708 |
+
dt_2 = sigmas[i + 1] - sigmas[i]
|
| 709 |
+
#print(dt_1, "#", dt_2, "#", dt_3, "#", dt_4)
|
| 710 |
+
x_2 = x + d * dt_1
|
| 711 |
+
x_temp = smea_sampling_step(x, model, dt_2, sigma_mid, **extra_args)
|
| 712 |
+
x = x_temp - d * dt_1
|
| 713 |
+
return x
|
| 714 |
+
|
| 715 |
+
@torch.no_grad()
|
| 716 |
+
def sample_euler_smea_dy(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 717 |
+
extra_args = {} if extra_args is None else extra_args
|
| 718 |
+
s_in = x.new_ones([x.shape[0]])
|
| 719 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 720 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 721 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 722 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 723 |
+
if gamma > 0:
|
| 724 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 725 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 726 |
+
d = to_d(x, sigma_hat, denoised)
|
| 727 |
+
if callback is not None:
|
| 728 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 729 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 730 |
+
# Euler method
|
| 731 |
+
x = x + d * dt
|
| 732 |
+
if sigmas[i + 1] > 0 and (i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 or i < 3) and i % 3 != 2:
|
| 733 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 734 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 735 |
+
dt_2 = sigmas[i + 1] - sigmas[i]
|
| 736 |
+
#print(dt_1, "#", dt_2, "#", dt_3, "#", dt_4)
|
| 737 |
+
x_2 = x + d * dt_1
|
| 738 |
+
if i % 3 == 1:
|
| 739 |
+
x_temp = dy_sampling_step(x, model, dt_2, sigma_mid, **extra_args)
|
| 740 |
+
elif i % 3 == 0:
|
| 741 |
+
x_temp = smea_sampling_step(x, model, dt_2, sigma_mid, **extra_args)
|
| 742 |
+
x = x_temp - d * dt_1
|
| 743 |
+
return x
|
| 744 |
+
|
| 745 |
+
@torch.no_grad()
|
| 746 |
+
def sample_euler_smea_multi_d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 747 |
+
extra_args = {} if extra_args is None else extra_args
|
| 748 |
+
s_in = x.new_ones([x.shape[0]])
|
| 749 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 750 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 751 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 752 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 753 |
+
if gamma > 0:
|
| 754 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 755 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 756 |
+
d = to_d(x, sigma_hat, denoised)
|
| 757 |
+
if callback is not None:
|
| 758 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 759 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 + 2 and i % 2 == 0:
|
| 760 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 761 |
+
dt_1 = sigma_mid - sigma_hat
|
| 762 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 763 |
+
x_2 = x + d * dt_1
|
| 764 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 765 |
+
if i == 0:
|
| 766 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.15, **extra_args)
|
| 767 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 768 |
+
denoised_2 = (denoised_2a + denoised_2c) / 2
|
| 769 |
+
elif i < len(sigmas) * 0.334:
|
| 770 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args)
|
| 771 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args)
|
| 772 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 773 |
+
denoised_2 = (denoised_2a + denoised_2b + denoised_2c) / 3
|
| 774 |
+
else:
|
| 775 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.03, True, **extra_args)
|
| 776 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 777 |
+
denoised_2 = (denoised_2b + denoised_2c) / 2
|
| 778 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 779 |
+
x = x + d_2 * dt_2
|
| 780 |
+
else:
|
| 781 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 782 |
+
# Euler method
|
| 783 |
+
x = x + d * dt
|
| 784 |
+
return x
|
| 785 |
+
|
| 786 |
+
@torch.no_grad()
|
| 787 |
+
def sample_euler_smea_multi_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 788 |
+
extra_args = {} if extra_args is None else extra_args
|
| 789 |
+
s_in = x.new_ones([x.shape[0]])
|
| 790 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 791 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 792 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 793 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 794 |
+
if gamma > 0:
|
| 795 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 796 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 797 |
+
d = to_d(x, sigma_hat, denoised)
|
| 798 |
+
if callback is not None:
|
| 799 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 800 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 801 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 802 |
+
dt_1 = sigma_mid - sigma_hat
|
| 803 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 804 |
+
x_2 = x + d * dt_1
|
| 805 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 806 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args)
|
| 807 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args)
|
| 808 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 809 |
+
denoised_2 = (denoised_2a + denoised_2b + denoised_2c) / 3
|
| 810 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 811 |
+
x = x + d_2 * dt_2
|
| 812 |
+
else:
|
| 813 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 814 |
+
# Euler method
|
| 815 |
+
x = x + d * dt
|
| 816 |
+
return x
|
| 817 |
+
|
| 818 |
+
@torch.no_grad()
|
| 819 |
+
def sample_euler_smea_multi_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 820 |
+
extra_args = {} if extra_args is None else extra_args
|
| 821 |
+
s_in = x.new_ones([x.shape[0]])
|
| 822 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 823 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 824 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 825 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 826 |
+
if gamma > 0:
|
| 827 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 828 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 829 |
+
d = to_d(x, sigma_hat, denoised)
|
| 830 |
+
if callback is not None:
|
| 831 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 832 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 833 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 834 |
+
dt_1 = sigma_mid - sigma_hat
|
| 835 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 836 |
+
x_2 = x + d * dt_1
|
| 837 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 838 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args)
|
| 839 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 840 |
+
denoised_2 = (denoised_2a + denoised_2c) / 2
|
| 841 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 842 |
+
x = x + d_2 * dt_2
|
| 843 |
+
else:
|
| 844 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 845 |
+
# Euler method
|
| 846 |
+
x = x + d * dt
|
| 847 |
+
return x
|
| 848 |
+
|
| 849 |
+
@torch.no_grad()
|
| 850 |
+
def sample_euler_smea_multi_a(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 851 |
+
extra_args = {} if extra_args is None else extra_args
|
| 852 |
+
s_in = x.new_ones([x.shape[0]])
|
| 853 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 854 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 855 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 856 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 857 |
+
if gamma > 0:
|
| 858 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 859 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 860 |
+
d = to_d(x, sigma_hat, denoised)
|
| 861 |
+
if callback is not None:
|
| 862 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 863 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 864 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 865 |
+
dt_1 = sigma_mid - sigma_hat
|
| 866 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 867 |
+
x_2 = x + d * dt_1
|
| 868 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 869 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args)
|
| 870 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 871 |
+
denoised_2 = (denoised_2b + denoised_2c) / 2
|
| 872 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 873 |
+
x = x + d_2 * dt_2
|
| 874 |
+
else:
|
| 875 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 876 |
+
# Euler method
|
| 877 |
+
x = x + d * dt
|
| 878 |
+
return x
|
| 879 |
+
|
| 880 |
+
|
| 881 |
+
@torch.no_grad()
|
| 882 |
+
def sample_euler_smea_multi_ds(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 883 |
+
extra_args = {} if extra_args is None else extra_args
|
| 884 |
+
s_in = x.new_ones([x.shape[0]])
|
| 885 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 886 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 887 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 888 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 889 |
+
if gamma > 0:
|
| 890 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 891 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 892 |
+
d = to_d(x, sigma_hat, denoised)
|
| 893 |
+
if callback is not None:
|
| 894 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 895 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 896 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 897 |
+
dt_1 = sigma_mid - sigma_hat
|
| 898 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 899 |
+
x_2 = x + d * dt_1
|
| 900 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 901 |
+
if i == 0:
|
| 902 |
+
sa = 1 - scale * 0.15
|
| 903 |
+
sb = 1 + scale * 0.09
|
| 904 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 905 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, **extra_args)
|
| 906 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375) / (0.97**2)
|
| 907 |
+
elif i < len(sigmas) * 0.167:
|
| 908 |
+
sa = 1 - scale * 0.25
|
| 909 |
+
sb = 1 + scale * 0.15
|
| 910 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 911 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb , **extra_args)
|
| 912 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375) / (0.95**2)
|
| 913 |
+
else:
|
| 914 |
+
sb = 1 + scale * 0.06
|
| 915 |
+
sc = 1 - scale * 0.1
|
| 916 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, True, **extra_args)
|
| 917 |
+
denoised_2c = smea_sampling_step_denoised(x_2, model, sigma_mid, sc, **extra_args)
|
| 918 |
+
denoised_2 = (denoised_2b * (sb ** 2) * 0.375 + denoised_2c * (sc ** 2) * 0.625) / (0.98**2)
|
| 919 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 920 |
+
x = x + d_2 * dt_2
|
| 921 |
+
else:
|
| 922 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 923 |
+
# Euler method
|
| 924 |
+
x = x + d * dt
|
| 925 |
+
return x
|
| 926 |
+
|
| 927 |
+
@torch.no_grad()
|
| 928 |
+
def sample_euler_smea_multi_ds2_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 929 |
+
sample = sample_euler_smea_multi_ds2(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 930 |
+
return sample
|
| 931 |
+
|
| 932 |
+
@torch.no_grad()
|
| 933 |
+
def sample_euler_smea_multi_ds2_s_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 934 |
+
sample = sample_euler_smea_multi_ds2_m(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 935 |
+
return sample
|
| 936 |
+
|
| 937 |
+
@torch.no_grad()
|
| 938 |
+
def sample_euler_smea_multi_ds2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 939 |
+
extra_args = {} if extra_args is None else extra_args
|
| 940 |
+
s_in = x.new_ones([x.shape[0]])
|
| 941 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 942 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 943 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 944 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 945 |
+
if gamma > 0:
|
| 946 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 947 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 948 |
+
d = to_d(x, sigma_hat, denoised)
|
| 949 |
+
if callback is not None:
|
| 950 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 951 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 952 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 953 |
+
dt_1 = sigma_mid - sigma_hat
|
| 954 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 955 |
+
x_2 = x + d * dt_1
|
| 956 |
+
scale = (sigmas[i] / sigmas[0]) ** 2
|
| 957 |
+
scale = scale.item()
|
| 958 |
+
if i == 0:
|
| 959 |
+
sa = 1 - scale * 0.15
|
| 960 |
+
sb = 1 + scale * 0.09
|
| 961 |
+
sigA = sigma_mid / (sa ** 2)
|
| 962 |
+
sigB = sigma_mid / (sb ** 2)
|
| 963 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 964 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 965 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.97**2) # 1 - (sa * sb ) / 2 + 1
|
| 966 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 967 |
+
elif i < len(sigmas) * 0.167:
|
| 968 |
+
sa = 1 - scale * 0.25
|
| 969 |
+
sb = 1 + scale * 0.15
|
| 970 |
+
sigA = sigma_mid / (sa ** 2)
|
| 971 |
+
sigB = sigma_mid / (sb ** 2)
|
| 972 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 973 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 974 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.95**2)
|
| 975 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 976 |
+
else:
|
| 977 |
+
sb = 1 + scale * 0.06
|
| 978 |
+
sc = 1 - scale * 0.1
|
| 979 |
+
sigB = sigma_mid / (sb ** 2)
|
| 980 |
+
sigC = sigma_mid / (sc ** 2)
|
| 981 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 982 |
+
denoised_2c = smea_sampling_step_denoised(x_2, model, sigC, sc, smooth, **extra_args)
|
| 983 |
+
denoised_2 = (denoised_2b * (sb ** 2) * 0.5 * sc ** 2 + denoised_2c * (sc ** 2) * 0.5 * sb ** 2) #/ (0.98**2)
|
| 984 |
+
d_2 = to_d(x_2, sigB * 0.5 * sc ** 2 + sigC * 0.5 * sb ** 2, denoised_2)
|
| 985 |
+
x = x + d_2 * dt_2
|
| 986 |
+
else:
|
| 987 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 988 |
+
# Euler method
|
| 989 |
+
x = x + d * dt
|
| 990 |
+
return x
|
| 991 |
+
|
| 992 |
+
@torch.no_grad()
|
| 993 |
+
def sample_euler_smea_multi_ds2_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 994 |
+
extra_args = {} if extra_args is None else extra_args
|
| 995 |
+
s_in = x.new_ones([x.shape[0]])
|
| 996 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 997 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 998 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 999 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1000 |
+
if gamma > 0:
|
| 1001 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1002 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1003 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1004 |
+
if callback is not None:
|
| 1005 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1006 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 1007 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1008 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1009 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1010 |
+
x_2 = x + d * dt_1
|
| 1011 |
+
scale = (sigmas[i] / sigmas[0]) ** 2
|
| 1012 |
+
#scale = dt_1 ** 2 * 0.01
|
| 1013 |
+
scale = scale.item()
|
| 1014 |
+
if i == 0:
|
| 1015 |
+
sa = 1 - scale * 0.15 #15
|
| 1016 |
+
sb = 1 + scale * 0.09 #09
|
| 1017 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1018 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1019 |
+
#delta = sa * sb
|
| 1020 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1021 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1022 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.97**2) # 1 - (sa * sb ) / 2 + 1
|
| 1023 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 1024 |
+
elif i < len(sigmas) * 0.167:
|
| 1025 |
+
sa = 1 - scale * 0.25 #25
|
| 1026 |
+
sb = 1 + scale * 0.15 #15
|
| 1027 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1028 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1029 |
+
#delta = sa * sb
|
| 1030 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1031 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1032 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.95**2)
|
| 1033 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 1034 |
+
else:
|
| 1035 |
+
sb = 1 + scale * 0.06
|
| 1036 |
+
sc = 1 - scale * 0.1
|
| 1037 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1038 |
+
sigC = sigma_mid / (sc ** 2)
|
| 1039 |
+
#delta = sb * sc
|
| 1040 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1041 |
+
denoised_2c = smea_sampling_step_denoised(x_2, model, sigC, sc, smooth, **extra_args)
|
| 1042 |
+
denoised_2 = (denoised_2b * (sb ** 2) * 0.5 * sc ** 2+ denoised_2c * (sc ** 2) * 0.5 * sb ** 2) #/ (0.98**2)
|
| 1043 |
+
d_2 = to_d(x_2, sigB * 0.5 * sc ** 2 + sigC * 0.5 * sb ** 2, denoised_2)
|
| 1044 |
+
x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d_2 * dt_2
|
| 1045 |
+
else:
|
| 1046 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1047 |
+
# Euler method
|
| 1048 |
+
x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d * dt
|
| 1049 |
+
return x
|
| 1050 |
+
|
| 1051 |
+
@torch.no_grad()
|
| 1052 |
+
def sample_euler_h_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1053 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1054 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1055 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1056 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1057 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1058 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1059 |
+
gamma = min((2 ** 0.5 - 1) - wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1060 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler == None else noise_sampler
|
| 1061 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1062 |
+
if gamma > 0:
|
| 1063 |
+
x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1064 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1065 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1066 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1067 |
+
if callback is not None:
|
| 1068 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1069 |
+
if sigmas[i + 1] > 0:
|
| 1070 |
+
x_2 = x + d * dt
|
| 1071 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1072 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1073 |
+
x = x + d_prime * dt
|
| 1074 |
+
else:
|
| 1075 |
+
# Euler method
|
| 1076 |
+
x = x + d * dt
|
| 1077 |
+
return x
|
| 1078 |
+
|
| 1079 |
+
@torch.no_grad()
|
| 1080 |
+
def sample_euler_h_m_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1081 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1082 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1083 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1084 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1085 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1086 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1087 |
+
gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1088 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1089 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1090 |
+
if gamma > 0:
|
| 1091 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1092 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1093 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1094 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1095 |
+
if callback is not None:
|
| 1096 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1097 |
+
if sigmas[i + 1] > 0:
|
| 1098 |
+
x_2 = x + d * dt
|
| 1099 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1100 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1101 |
+
x = x + d_prime * dt
|
| 1102 |
+
else:
|
| 1103 |
+
# Euler method
|
| 1104 |
+
x = x + d * dt
|
| 1105 |
+
return x
|
| 1106 |
+
|
| 1107 |
+
@torch.no_grad()
|
| 1108 |
+
def sample_euler_h_m_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1109 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1110 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1111 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1112 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1113 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1114 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1115 |
+
gamma = max((2 ** 0.5 - 1) + wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1116 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1117 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1118 |
+
if gamma > 0:
|
| 1119 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1120 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1121 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1122 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1123 |
+
if callback is not None:
|
| 1124 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1125 |
+
if sigmas[i + 1] > 0:
|
| 1126 |
+
x_2 = x + d * dt
|
| 1127 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1128 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1129 |
+
x = x + d_prime * dt
|
| 1130 |
+
else:
|
| 1131 |
+
# Euler method
|
| 1132 |
+
x = x + d * dt
|
| 1133 |
+
return x
|
| 1134 |
+
|
| 1135 |
+
@torch.no_grad()
|
| 1136 |
+
def sample_euler_h_m_d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1137 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1138 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1139 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1140 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1141 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1142 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1143 |
+
gamma = min((2 ** 0.5 - 1) - wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1144 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1145 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1146 |
+
if gamma > 0:
|
| 1147 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1148 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1149 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1150 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1151 |
+
if callback is not None:
|
| 1152 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1153 |
+
if sigmas[i + 1] > 0:
|
| 1154 |
+
x_2 = x + d * dt
|
| 1155 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1156 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1157 |
+
x = x + d_prime * dt
|
| 1158 |
+
else:
|
| 1159 |
+
# Euler method
|
| 1160 |
+
x = x + d * dt
|
| 1161 |
+
return x
|
| 1162 |
+
|
| 1163 |
+
@torch.no_grad()
|
| 1164 |
+
def sample_euler_h_m_e(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1165 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1166 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1167 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1168 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1169 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1170 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1171 |
+
gamma = max((2 ** 0.5 - 1) + wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1172 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1173 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1174 |
+
if gamma > 0:
|
| 1175 |
+
x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1176 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1177 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1178 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1179 |
+
if callback is not None:
|
| 1180 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1181 |
+
if sigmas[i + 1] > 0:
|
| 1182 |
+
x_2 = x + d * dt
|
| 1183 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1184 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1185 |
+
x = x + d_prime * dt
|
| 1186 |
+
else:
|
| 1187 |
+
# Euler method
|
| 1188 |
+
x = x + d * dt
|
| 1189 |
+
return x
|
| 1190 |
+
|
| 1191 |
+
@torch.no_grad()
|
| 1192 |
+
def sample_euler_h_m_f(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1193 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1194 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1195 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1196 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1197 |
+
wave_max = math.cos(0)/1.5 + 1
|
| 1198 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1199 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1200 |
+
gamma = min((wave_max - wave) * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1201 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1202 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1203 |
+
if gamma > 0:
|
| 1204 |
+
x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1205 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1206 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1207 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1208 |
+
if callback is not None:
|
| 1209 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1210 |
+
if sigmas[i + 1] > 0:
|
| 1211 |
+
x_2 = x + d * dt
|
| 1212 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1213 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1214 |
+
x = x + d_prime * dt
|
| 1215 |
+
else:
|
| 1216 |
+
# Euler method
|
| 1217 |
+
x = x + d * dt
|
| 1218 |
+
return x
|
| 1219 |
+
|
| 1220 |
+
@torch.no_grad()
|
| 1221 |
+
def sample_euler_h_m_g(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1222 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1223 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1224 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1225 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1226 |
+
wave_max = math.cos(0)/1.5 + 1
|
| 1227 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1228 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1229 |
+
gamma = min((wave_max - wave) * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1230 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1231 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1232 |
+
if gamma > 0:
|
| 1233 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1234 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1235 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1236 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1237 |
+
if callback is not None:
|
| 1238 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1239 |
+
if sigmas[i + 1] > 0:
|
| 1240 |
+
x_2 = x + d * dt
|
| 1241 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1242 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1243 |
+
x = x + d_prime * dt
|
| 1244 |
+
else:
|
| 1245 |
+
# Euler method
|
| 1246 |
+
x = x + d * dt
|
| 1247 |
+
return x
|
| 1248 |
+
|
| 1249 |
+
@torch.no_grad()
|
| 1250 |
+
def sample_euler_h_m_b_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1251 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1252 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1253 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1254 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1255 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1256 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1257 |
+
gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1258 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1259 |
+
gammaup = gamma + 1
|
| 1260 |
+
sigma_hat = sigmas[i] * gammaup
|
| 1261 |
+
if gamma > 0:
|
| 1262 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1263 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1264 |
+
last_noise_uncond = model.last_noise_uncond
|
| 1265 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1266 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1267 |
+
if callback is not None:
|
| 1268 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1269 |
+
if i == 0:
|
| 1270 |
+
x = x + d * dt
|
| 1271 |
+
elif i <= len(sigmas) - 4:
|
| 1272 |
+
x_2 = x + d * dt
|
| 1273 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1274 |
+
x_3 = x_2 + d_2 * dt
|
| 1275 |
+
d_3 = to_d(x_3, sigmas[i + 2] * gammaup, denoised)
|
| 1276 |
+
d_prime = d * 0.5 + d_2 * 0.375 + d_3 * 0.125
|
| 1277 |
+
x = x + d_prime * dt
|
| 1278 |
+
elif sigmas[i + 1] > 0:
|
| 1279 |
+
x_2 = x + d * dt
|
| 1280 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1281 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1282 |
+
x = x + d_prime * dt
|
| 1283 |
+
else:
|
| 1284 |
+
# Euler method
|
| 1285 |
+
x = x + d * dt
|
| 1286 |
+
return x
|
| 1287 |
+
|
| 1288 |
+
@torch.no_grad()
|
| 1289 |
+
def sample_euler_h_m_b_c_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1290 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1291 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1292 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1293 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1294 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1295 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1296 |
+
gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1297 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1298 |
+
gammaup = gamma + 1
|
| 1299 |
+
sigma_hat = sigmas[i] * gammaup
|
| 1300 |
+
if gamma > 0:
|
| 1301 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1302 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1303 |
+
last_noise_uncond = model.last_noise_uncond
|
| 1304 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1305 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1306 |
+
if callback is not None:
|
| 1307 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1308 |
+
if i == 0:
|
| 1309 |
+
x = x + d * dt
|
| 1310 |
+
elif i <= len(sigmas) - 4:
|
| 1311 |
+
x_2 = x + d * dt
|
| 1312 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1313 |
+
x_3 = x_2 + d_2 * dt
|
| 1314 |
+
d_3 = to_d(x_3, sigmas[i + 2] * gammaup, last_noise_uncond)
|
| 1315 |
+
d_prime = d * 0.5 + d_2 * 0.375 + d_3 * 0.125
|
| 1316 |
+
x = x + d_prime * dt
|
| 1317 |
+
elif sigmas[i + 1] > 0:
|
| 1318 |
+
x_2 = x + d * dt
|
| 1319 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1320 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1321 |
+
x = x + d_prime * dt
|
| 1322 |
+
else:
|
| 1323 |
+
# Euler method
|
| 1324 |
+
x = x + d * dt
|
| 1325 |
+
return x
|
| 1326 |
+
|
| 1327 |
+
@torch.no_grad()
|
| 1328 |
+
def sample_euler_smea_max(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 1329 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1330 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1331 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1332 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1333 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1334 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1335 |
+
sa = math.cos(i + 1)/(1.5 * i + 1.75) + 1
|
| 1336 |
+
if gamma > 0:
|
| 1337 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1338 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1339 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1340 |
+
if callback is not None:
|
| 1341 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1342 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 1343 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1344 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1345 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1346 |
+
x_2 = x + d * dt_1
|
| 1347 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1348 |
+
sigB = sigma_mid
|
| 1349 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1350 |
+
denoised_2b = model(x_2, sigma_mid * s_in, **extra_args)
|
| 1351 |
+
denoised_2 = (denoised_2a * 0.5 * (sa ** 2) + denoised_2b * 0.5 / (sa ** 2))
|
| 1352 |
+
d_2 = to_d(x_2, sigA * 0.5 * (sa ** 2) + sigB * 0.5 / (sa ** 2), denoised_2)
|
| 1353 |
+
x = x + d_2 * dt_2
|
| 1354 |
+
else:
|
| 1355 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1356 |
+
# Euler method
|
| 1357 |
+
x = x + sa * d * dt
|
| 1358 |
+
return x
|
| 1359 |
+
|
| 1360 |
+
|
| 1361 |
+
@torch.no_grad()
|
| 1362 |
+
def sample_euler_smea_max_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1363 |
+
sample = sample_euler_smea_max(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 1364 |
+
return sample
|
| 1365 |
+
|
| 1366 |
+
@torch.no_grad()
|
| 1367 |
+
def sample_euler_smea_multi_bs(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1368 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1369 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1370 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1371 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1372 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1373 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1374 |
+
if gamma > 0:
|
| 1375 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1376 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1377 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1378 |
+
if callback is not None:
|
| 1379 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1380 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1381 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1382 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1383 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1384 |
+
x_2 = x + d * dt_1
|
| 1385 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 1386 |
+
sa = 1 - scale * 0.25
|
| 1387 |
+
sb = 1 + scale * 0.15
|
| 1388 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 1389 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, **extra_args)
|
| 1390 |
+
denoised_2 = denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375 / (0.95**2)
|
| 1391 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 1392 |
+
x = x + d_2 * dt_2
|
| 1393 |
+
else:
|
| 1394 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1395 |
+
# Euler method
|
| 1396 |
+
x = x + d * dt
|
| 1397 |
+
return x
|
| 1398 |
+
|
| 1399 |
+
@torch.no_grad()
|
| 1400 |
+
def sample_euler_smea_multi_bs2_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1401 |
+
sample = sample_euler_smea_multi_bs2(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 1402 |
+
return sample
|
| 1403 |
+
|
| 1404 |
+
@torch.no_grad()
|
| 1405 |
+
def sample_euler_smea_multi_bs2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 1406 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1407 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1408 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1409 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1410 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1411 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1412 |
+
if gamma > 0:
|
| 1413 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1414 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1415 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1416 |
+
if callback is not None:
|
| 1417 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1418 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1419 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1420 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1421 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1422 |
+
x_2 = x + d * dt_1
|
| 1423 |
+
scale = (sigmas[i] / sigmas[0]) ** 2
|
| 1424 |
+
scale = scale.item()
|
| 1425 |
+
sa = 1 - scale * 0.25
|
| 1426 |
+
sb = 1 + scale * 0.15
|
| 1427 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1428 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1429 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1430 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1431 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2)
|
| 1432 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 1433 |
+
x = x + d_2 * dt_2
|
| 1434 |
+
else:
|
| 1435 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1436 |
+
# Euler method
|
| 1437 |
+
x = x + d * dt
|
| 1438 |
+
return x
|
| 1439 |
+
|
| 1440 |
+
@torch.no_grad()
|
| 1441 |
+
def sample_euler_smea_multi_cs(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1442 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1443 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1444 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1445 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1446 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1447 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1448 |
+
if gamma > 0:
|
| 1449 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1450 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1451 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1452 |
+
if callback is not None:
|
| 1453 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1454 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1455 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1456 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1457 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1458 |
+
x_2 = x + d * dt_1
|
| 1459 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 1460 |
+
sa = 1 - scale * 0.25
|
| 1461 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 1462 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2 * (sa ** 2) * 1.25)
|
| 1463 |
+
x = x + d_2 * dt_2
|
| 1464 |
+
else:
|
| 1465 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1466 |
+
# Euler method
|
| 1467 |
+
x = x + d * dt
|
| 1468 |
+
return x
|
| 1469 |
+
|
| 1470 |
+
@torch.no_grad()
|
| 1471 |
+
def sample_euler_smea_multi_as(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1472 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1473 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1474 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1475 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1476 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1477 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1478 |
+
if gamma > 0:
|
| 1479 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1480 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1481 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1482 |
+
if callback is not None:
|
| 1483 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1484 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1485 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1486 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1487 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1488 |
+
x_2 = x + d * dt_1
|
| 1489 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 1490 |
+
sa = 1 + scale * 0.15
|
| 1491 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 1492 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2 * (sa ** 2) * 0.75)
|
| 1493 |
+
x = x + d_2 * dt_2
|
| 1494 |
+
else:
|
| 1495 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1496 |
+
# Euler method
|
| 1497 |
+
x = x + d * dt
|
| 1498 |
+
return x
|
| 1499 |
+
|
| 1500 |
+
## og sampler
|
| 1501 |
+
@torch.no_grad()
|
| 1502 |
+
def sample_euler_dy_og(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1503 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1504 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1505 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1506 |
+
# print(i)
|
| 1507 |
+
# i绗竴姝ヤ负0
|
| 1508 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1509 |
+
eps = torch.randn_like(x) * s_noise
|
| 1510 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1511 |
+
# print(sigma_hat)
|
| 1512 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1513 |
+
if gamma > 0:
|
| 1514 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1515 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1516 |
+
d = sampling.to_d(x, sigma_hat, denoised)
|
| 1517 |
+
if sigmas[i + 1] > 0:
|
| 1518 |
+
if i // 2 == 1:
|
| 1519 |
+
x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args)
|
| 1520 |
+
if callback is not None:
|
| 1521 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1522 |
+
# Euler method
|
| 1523 |
+
x = x + d * dt
|
| 1524 |
+
return x
|
| 1525 |
+
|
| 1526 |
+
@torch.no_grad()
|
| 1527 |
+
def sample_euler_smea_dy_og(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1528 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1529 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1530 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1531 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1532 |
+
eps = torch.randn_like(x) * s_noise
|
| 1533 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1534 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1535 |
+
if gamma > 0:
|
| 1536 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1537 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1538 |
+
d = sampling.to_d(x, sigma_hat, denoised)
|
| 1539 |
+
# Euler method
|
| 1540 |
+
x = x + d * dt
|
| 1541 |
+
if sigmas[i + 1] > 0:
|
| 1542 |
+
if i + 1 // 2 == 1:
|
| 1543 |
+
x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args)
|
| 1544 |
+
if i + 1 // 2 == 0:
|
| 1545 |
+
x = smea_sampling_step(x, model, dt, sigma_hat, **extra_args)
|
| 1546 |
+
if callback is not None:
|
| 1547 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1548 |
+
return x
|
| 1549 |
+
|
| 1550 |
+
## TCD
|
| 1551 |
+
|
| 1552 |
+
def sample_tcd_euler_a(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, gamma=0.3):
|
| 1553 |
+
# TCD sampling using modified Euler Ancestral sampler. by @laksjdjf
|
| 1554 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1555 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
| 1556 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1557 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1558 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 1559 |
+
if callback is not None:
|
| 1560 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1561 |
+
|
| 1562 |
+
#d = to_d(x, sigmas[i], denoised)
|
| 1563 |
+
sigma_from = sigmas[i]
|
| 1564 |
+
sigma_to = sigmas[i + 1]
|
| 1565 |
+
|
| 1566 |
+
t = model.inner_model.sigma_to_t(sigma_from)
|
| 1567 |
+
down_t = (1 - gamma) * t
|
| 1568 |
+
sigma_down = model.inner_model.t_to_sigma(down_t)
|
| 1569 |
+
|
| 1570 |
+
if sigma_down > sigma_to:
|
| 1571 |
+
sigma_down = sigma_to
|
| 1572 |
+
sigma_up = (sigma_to ** 2 - sigma_down ** 2) ** 0.5
|
| 1573 |
+
|
| 1574 |
+
# same as euler ancestral
|
| 1575 |
+
d = to_d(x, sigma_from, denoised)
|
| 1576 |
+
dt = sigma_down - sigma_from
|
| 1577 |
+
x += d * dt
|
| 1578 |
+
|
| 1579 |
+
if sigma_to > 0 and gamma > 0:
|
| 1580 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigma_up
|
| 1581 |
+
return x
|
| 1582 |
+
|
| 1583 |
+
@torch.no_grad()
|
| 1584 |
+
def sample_tcd(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, gamma=0.3):
|
| 1585 |
+
# TCD sampling using modified DDPM.
|
| 1586 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1587 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
| 1588 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1589 |
+
|
| 1590 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1591 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 1592 |
+
if callback is not None:
|
| 1593 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1594 |
+
|
| 1595 |
+
sigma_from, sigma_to = sigmas[i], sigmas[i+1]
|
| 1596 |
+
|
| 1597 |
+
# TCD offset, based on gamma, and conversion between sigma and timestep
|
| 1598 |
+
t = model.inner_model.sigma_to_t(sigma_from)
|
| 1599 |
+
t_s = (1 - gamma) * t
|
| 1600 |
+
sigma_to_s = model.inner_model.t_to_sigma(t_s)
|
| 1601 |
+
|
| 1602 |
+
# if sigma_to_s > sigma_to:
|
| 1603 |
+
# sigma_to_s = sigma_to
|
| 1604 |
+
# if sigma_to_s < 0:
|
| 1605 |
+
# sigma_to_s = torch.tensor(1.0)
|
| 1606 |
+
#print(f"sigma_from: {sigma_from}, sigma_to: {sigma_to}, sigma_to_s: {sigma_to_s}")
|
| 1607 |
+
|
| 1608 |
+
|
| 1609 |
+
# The following is equivalent to the comfy DDPM implementation
|
| 1610 |
+
# x = DDPMSampler_step(x / torch.sqrt(1.0 + sigma_from ** 2.0), sigma_from, sigma_to, (x - denoised) / sigma_from, noise_sampler)
|
| 1611 |
+
|
| 1612 |
+
noise_est = (x - denoised) / sigma_from
|
| 1613 |
+
x /= torch.sqrt(1.0 + sigma_from ** 2.0)
|
| 1614 |
+
|
| 1615 |
+
alpha_cumprod = 1 / ((sigma_from * sigma_from) + 1) # _t
|
| 1616 |
+
alpha_cumprod_prev = 1 / ((sigma_to * sigma_to) + 1) # _t_prev
|
| 1617 |
+
alpha = (alpha_cumprod / alpha_cumprod_prev)
|
| 1618 |
+
|
| 1619 |
+
## These values should approach 1.0?
|
| 1620 |
+
# print(f"alpha_cumprod: {alpha_cumprod}")
|
| 1621 |
+
# print(f"alpha_cumprod_prev: {alpha_cumprod_prev}")
|
| 1622 |
+
# print(f"alpha: {alpha}")
|
| 1623 |
+
|
| 1624 |
+
|
| 1625 |
+
# alpha_cumprod_down = 1 / ((sigma_to_s * sigma_to_s) + 1) # _s
|
| 1626 |
+
# alpha_d = (alpha_cumprod_prev / alpha_cumprod_down)
|
| 1627 |
+
# alpha2 = (alpha_cumprod / alpha_cumprod_down)
|
| 1628 |
+
# print(f"** alpha_cumprod_down: {alpha_cumprod_down}")
|
| 1629 |
+
# print(f"** alpha_d: {alpha_d}, alpha2: #{alpha2}")
|
| 1630 |
+
|
| 1631 |
+
# epsilon noise prediction from comfy DDPM implementation
|
| 1632 |
+
x = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise_est / (1 - alpha_cumprod).sqrt())
|
| 1633 |
+
# x = (1.0 / alpha_d).sqrt() * (x - (1 - alpha) * noise_est / (1 - alpha_cumprod).sqrt())
|
| 1634 |
+
|
| 1635 |
+
first_step = sigma_to == 0
|
| 1636 |
+
last_step = i == len(sigmas) - 2
|
| 1637 |
+
|
| 1638 |
+
if not first_step:
|
| 1639 |
+
if gamma > 0 and not last_step:
|
| 1640 |
+
noise = noise_sampler(sigma_from, sigma_to)
|
| 1641 |
+
|
| 1642 |
+
# x += ((1 - alpha_d) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise
|
| 1643 |
+
variance = ((1 - alpha_cumprod_prev) / (1 - alpha_cumprod)) * (1 - alpha_cumprod / alpha_cumprod_prev)
|
| 1644 |
+
x += variance.sqrt() * noise # scale noise by std deviation
|
| 1645 |
+
|
| 1646 |
+
# relevant diffusers code from scheduling_tcd.py
|
| 1647 |
+
# prev_sample = (alpha_prod_t_prev / alpha_prod_s).sqrt() * pred_noised_sample + (
|
| 1648 |
+
# 1 - alpha_prod_t_prev / alpha_prod_s
|
| 1649 |
+
# ).sqrt() * noise
|
| 1650 |
+
|
| 1651 |
+
x *= torch.sqrt(1.0 + sigma_to ** 2.0)
|
| 1652 |
+
|
| 1653 |
+
# beta_cumprod_t = 1 - alpha_cumprod
|
| 1654 |
+
# beta_cumprod_s = 1 - alpha_cumprod_down
|
| 1655 |
+
|
| 1656 |
+
|
| 1657 |
+
return x
|
sd-webui-smea/sd_webui_smea.py
ADDED
|
@@ -0,0 +1,1657 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import math
|
| 3 |
+
import k_diffusion.sampling
|
| 4 |
+
|
| 5 |
+
from k_diffusion.sampling import to_d, BrownianTreeNoiseSampler
|
| 6 |
+
from tqdm.auto import trange
|
| 7 |
+
from modules import scripts
|
| 8 |
+
from modules import sd_samplers_kdiffusion, sd_samplers_common, sd_samplers
|
| 9 |
+
from modules.sd_samplers_kdiffusion import KDiffusionSampler
|
| 10 |
+
|
| 11 |
+
class _Rescaler:
|
| 12 |
+
def __init__(self, model, x, mode, **extra_args):
|
| 13 |
+
self.model = model
|
| 14 |
+
self.x = x
|
| 15 |
+
self.mode = mode
|
| 16 |
+
self.extra_args = extra_args
|
| 17 |
+
self.init_latent, self.mask, self.nmask = model.init_latent, model.mask, model.nmask
|
| 18 |
+
|
| 19 |
+
def __enter__(self):
|
| 20 |
+
if self.init_latent is not None:
|
| 21 |
+
self.model.init_latent = torch.nn.functional.interpolate(input=self.init_latent, size=self.x.shape[2:4], mode=self.mode)
|
| 22 |
+
if self.mask is not None:
|
| 23 |
+
self.model.mask = torch.nn.functional.interpolate(input=self.mask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0)
|
| 24 |
+
if self.nmask is not None:
|
| 25 |
+
self.model.nmask = torch.nn.functional.interpolate(input=self.nmask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0)
|
| 26 |
+
return self
|
| 27 |
+
|
| 28 |
+
def __exit__(self, type, value, traceback):
|
| 29 |
+
del self.model.init_latent, self.model.mask, self.model.nmask
|
| 30 |
+
self.model.init_latent, self.model.mask, self.model.nmask = self.init_latent, self.mask, self.nmask
|
| 31 |
+
|
| 32 |
+
class Smea(scripts.Script):
|
| 33 |
+
|
| 34 |
+
def title(self):
|
| 35 |
+
return "Euler Smea Dy sampler"
|
| 36 |
+
|
| 37 |
+
def show(self, is_img2img):
|
| 38 |
+
return scripts.AlwaysVisible
|
| 39 |
+
|
| 40 |
+
def __init__(self):
|
| 41 |
+
init()
|
| 42 |
+
return
|
| 43 |
+
|
| 44 |
+
def init():
|
| 45 |
+
for i in sd_samplers.all_samplers:
|
| 46 |
+
if "Euler Max" in i.name:
|
| 47 |
+
return
|
| 48 |
+
|
| 49 |
+
samplers_smea = [
|
| 50 |
+
('Euler Max', sample_euler_max, ['k_euler'], {}),
|
| 51 |
+
('Euler Max1b', sample_euler_max1b, ['k_euler'], {}),
|
| 52 |
+
('Euler Max1c', sample_euler_max1c, ['k_euler'], {}),
|
| 53 |
+
('Euler Max1d', sample_euler_max1d, ['k_euler'], {}),
|
| 54 |
+
('Euler Max2', sample_euler_max2, ['k_euler'], {}),
|
| 55 |
+
('Euler Max2b', sample_euler_max2b, ['k_euler'], {}),
|
| 56 |
+
('Euler Max2c', sample_euler_max2c, ['k_euler'], {}),
|
| 57 |
+
('Euler Max2d', sample_euler_max2d, ['k_euler'], {}),
|
| 58 |
+
('Euler Max3', sample_euler_max3, ['k_euler'], {}),
|
| 59 |
+
('Euler Max3b', sample_euler_max3b, ['k_euler'], {}),
|
| 60 |
+
('Euler Max3c', sample_euler_max3c, ['k_euler'], {}),
|
| 61 |
+
('Euler Max4', sample_euler_max4, ['k_euler'], {}),
|
| 62 |
+
('Euler Max4b', sample_euler_max4b, ['k_euler'], {}),
|
| 63 |
+
('Euler Max4c', sample_euler_max4c, ['k_euler'], {}),
|
| 64 |
+
('Euler Max4d', sample_euler_max4d, ['k_euler'], {}),
|
| 65 |
+
('Euler Max4e', sample_euler_max4e, ['k_euler'], {}),
|
| 66 |
+
('Euler Max4f', sample_euler_max4f, ['k_euler'], {}),
|
| 67 |
+
('Euler Dy', sample_euler_dy, ['k_euler'], {}),
|
| 68 |
+
('Euler Smea', sample_euler_smea, ['k_euler'], {}),
|
| 69 |
+
('Euler Smea Dy', sample_euler_smea_dy, ['k_euler'], {}),
|
| 70 |
+
('Euler Smea Max', sample_euler_smea_max, ['k_euler'], {}),
|
| 71 |
+
('Euler Smea Max s', sample_euler_smea_max_s, ['k_euler'], {}),
|
| 72 |
+
('Euler Smea dyn a', sample_euler_smea_dyn_a, ['k_euler'], {}),
|
| 73 |
+
('Euler Smea dyn b', sample_euler_smea_dyn_b, ['k_euler'], {}),
|
| 74 |
+
('Euler Smea dyn c', sample_euler_smea_dyn_c, ['k_euler'], {}),
|
| 75 |
+
('Euler Smea ma', sample_euler_smea_multi_a, ['k_euler'], {}),
|
| 76 |
+
('Euler Smea mb', sample_euler_smea_multi_b, ['k_euler'], {}),
|
| 77 |
+
('Euler Smea mc', sample_euler_smea_multi_c, ['k_euler'], {}),
|
| 78 |
+
('Euler Smea md', sample_euler_smea_multi_d, ['k_euler'], {}),
|
| 79 |
+
('Euler Smea mas', sample_euler_smea_multi_as, ['k_euler'], {}),
|
| 80 |
+
('Euler Smea mbs', sample_euler_smea_multi_bs, ['k_euler'], {}),
|
| 81 |
+
('Euler Smea mcs', sample_euler_smea_multi_cs, ['k_euler'], {}),
|
| 82 |
+
('Euler Smea mds', sample_euler_smea_multi_ds, ['k_euler'], {}),
|
| 83 |
+
('Euler Smea mbs2', sample_euler_smea_multi_bs2, ['k_euler'], {}),
|
| 84 |
+
('Euler Smea mds2', sample_euler_smea_multi_ds2, ['k_euler'], {}),
|
| 85 |
+
('Euler Smea mds2 max', sample_euler_smea_multi_ds2_m, ['k_euler'], {}),
|
| 86 |
+
('Euler Smea mds2 s max', sample_euler_smea_multi_ds2_s_m, ['k_euler'], {}),
|
| 87 |
+
('Euler Smea mbs2 s', sample_euler_smea_multi_bs2_s, ['k_euler'], {}),
|
| 88 |
+
('Euler Smea mds2 s', sample_euler_smea_multi_ds2_s, ['k_euler'], {}),
|
| 89 |
+
('Euler h max', sample_euler_h_m, ['k_euler'], {"brownian_noise": True}),
|
| 90 |
+
('Euler h max b', sample_euler_h_m_b, ['k_euler'], {"brownian_noise": True}),
|
| 91 |
+
('Euler h max c', sample_euler_h_m_c, ['k_euler'], {"brownian_noise": True}),
|
| 92 |
+
('Euler h max d', sample_euler_h_m_d, ['k_euler'], {"brownian_noise": True}),
|
| 93 |
+
('Euler h max e', sample_euler_h_m_e, ['k_euler'], {"brownian_noise": True}),
|
| 94 |
+
('Euler h max f', sample_euler_h_m_f, ['k_euler'], {"brownian_noise": True}),
|
| 95 |
+
('Euler h max g', sample_euler_h_m_g, ['k_euler'], {"brownian_noise": True}),
|
| 96 |
+
('Euler h max b c', sample_euler_h_m_b_c, ['k_euler'], {"brownian_noise": True}),
|
| 97 |
+
('Euler h max b c CFG++', sample_euler_h_m_b_c_pp, ['k_euler'], {"brownian_noise": True, "cfgpp": True}),
|
| 98 |
+
('Euler Dy koishi-star', sample_euler_dy_og, ['k_euler'], {}),
|
| 99 |
+
('Euler Smea Dy koishi-star', sample_euler_smea_dy_og, ['k_euler'], {}),
|
| 100 |
+
('TCD Euler a', sample_tcd_euler_a, ['tcd_euler_a'], {}),
|
| 101 |
+
('TCD', sample_tcd, ['tcd'], {}),
|
| 102 |
+
]
|
| 103 |
+
|
| 104 |
+
samplers_data_smea = [
|
| 105 |
+
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
|
| 106 |
+
for label, funcname, aliases, options in samplers_smea
|
| 107 |
+
if callable(funcname)
|
| 108 |
+
]
|
| 109 |
+
|
| 110 |
+
sampler_exparams_smea = {
|
| 111 |
+
sample_euler_max: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 112 |
+
sample_euler_max1b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 113 |
+
sample_euler_max1c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 114 |
+
sample_euler_max1d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 115 |
+
sample_euler_max2: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 116 |
+
sample_euler_max2b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 117 |
+
sample_euler_max2c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 118 |
+
sample_euler_max2d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 119 |
+
sample_euler_max3: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 120 |
+
sample_euler_max3b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 121 |
+
sample_euler_max3c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 122 |
+
sample_euler_max4: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 123 |
+
sample_euler_max4b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 124 |
+
sample_euler_max4c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 125 |
+
sample_euler_max4d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 126 |
+
sample_euler_max4e: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 127 |
+
sample_euler_max4f: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 128 |
+
sample_euler_dy: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 129 |
+
sample_euler_smea: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 130 |
+
sample_euler_smea_dy: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 131 |
+
sample_euler_smea_max: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 132 |
+
sample_euler_smea_max_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 133 |
+
sample_euler_smea_dyn_a: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 134 |
+
sample_euler_smea_dyn_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 135 |
+
sample_euler_smea_dyn_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 136 |
+
sample_euler_smea_multi_a: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 137 |
+
sample_euler_smea_multi_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 138 |
+
sample_euler_smea_multi_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 139 |
+
sample_euler_smea_multi_d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 140 |
+
sample_euler_smea_multi_as: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 141 |
+
sample_euler_smea_multi_bs: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 142 |
+
sample_euler_smea_multi_cs: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 143 |
+
sample_euler_smea_multi_ds: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 144 |
+
sample_euler_smea_multi_bs2: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 145 |
+
sample_euler_smea_multi_ds2: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 146 |
+
sample_euler_smea_multi_ds2_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 147 |
+
sample_euler_smea_multi_ds2_s_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 148 |
+
sample_euler_smea_multi_bs2_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 149 |
+
sample_euler_smea_multi_ds2_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 150 |
+
sample_euler_h_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 151 |
+
sample_euler_h_m_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 152 |
+
sample_euler_h_m_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 153 |
+
sample_euler_h_m_d: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 154 |
+
sample_euler_h_m_e: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 155 |
+
sample_euler_h_m_f: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 156 |
+
sample_euler_h_m_g: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 157 |
+
sample_euler_h_m_b_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 158 |
+
sample_euler_h_m_b_c_pp: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 159 |
+
sample_euler_dy_og: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 160 |
+
sample_euler_smea_dy_og: ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
| 161 |
+
}
|
| 162 |
+
sd_samplers_kdiffusion.sampler_extra_params = {**sd_samplers_kdiffusion.sampler_extra_params, **sampler_exparams_smea}
|
| 163 |
+
|
| 164 |
+
samplers_map_smea = {x.name: x for x in samplers_data_smea}
|
| 165 |
+
sd_samplers_kdiffusion.k_diffusion_samplers_map = {**sd_samplers_kdiffusion.k_diffusion_samplers_map, **samplers_map_smea}
|
| 166 |
+
|
| 167 |
+
for i, item in enumerate(sd_samplers.all_samplers):
|
| 168 |
+
if "Euler" in item.name:
|
| 169 |
+
sd_samplers.all_samplers = sd_samplers.all_samplers[:i + 1] + [*samplers_data_smea] + sd_samplers.all_samplers[i + 1:]
|
| 170 |
+
break
|
| 171 |
+
sd_samplers.all_samplers_map = {x.name: x for x in sd_samplers.all_samplers}
|
| 172 |
+
sd_samplers.set_samplers()
|
| 173 |
+
|
| 174 |
+
return
|
| 175 |
+
|
| 176 |
+
def default_noise_sampler(x):
|
| 177 |
+
return lambda sigma, sigma_next: k_diffusion.sampling.torch.randn_like(x)
|
| 178 |
+
|
| 179 |
+
@torch.no_grad()
|
| 180 |
+
def dy_sampling_step(x, model, dt, sigma_hat, **extra_args):
|
| 181 |
+
original_shape = x.shape
|
| 182 |
+
batch_size, channels, m, n = original_shape[0], original_shape[1], original_shape[2] // 2, original_shape[3] // 2
|
| 183 |
+
extra_row = x.shape[2] % 2 == 1
|
| 184 |
+
extra_col = x.shape[3] % 2 == 1
|
| 185 |
+
|
| 186 |
+
if extra_row:
|
| 187 |
+
extra_row_content = x[:, :, -1:, :]
|
| 188 |
+
x = x[:, :, :-1, :]
|
| 189 |
+
if extra_col:
|
| 190 |
+
extra_col_content = x[:, :, :, -1:]
|
| 191 |
+
x = x[:, :, :, :-1]
|
| 192 |
+
|
| 193 |
+
a_list = x.unfold(2, 2, 2).unfold(3, 2, 2).contiguous().view(batch_size, channels, m * n, 2, 2)
|
| 194 |
+
c = a_list[:, :, :, 1, 1].view(batch_size, channels, m, n)
|
| 195 |
+
|
| 196 |
+
with _Rescaler(model, c, 'nearest-exact', **extra_args) as rescaler:
|
| 197 |
+
denoised = model(c, sigma_hat * c.new_ones([c.shape[0]]), **rescaler.extra_args)
|
| 198 |
+
d = to_d(c, sigma_hat, denoised)
|
| 199 |
+
c = c + d * dt
|
| 200 |
+
|
| 201 |
+
d_list = c.view(batch_size, channels, m * n, 1, 1)
|
| 202 |
+
a_list[:, :, :, 1, 1] = d_list[:, :, :, 0, 0]
|
| 203 |
+
x = a_list.view(batch_size, channels, m, n, 2, 2).permute(0, 1, 2, 4, 3, 5).reshape(batch_size, channels, 2 * m, 2 * n)
|
| 204 |
+
|
| 205 |
+
if extra_row or extra_col:
|
| 206 |
+
x_expanded = torch.zeros(original_shape, dtype=x.dtype, device=x.device)
|
| 207 |
+
x_expanded[:, :, :2 * m, :2 * n] = x
|
| 208 |
+
if extra_row:
|
| 209 |
+
x_expanded[:, :, -1:, :2 * n + 1] = extra_row_content
|
| 210 |
+
if extra_col:
|
| 211 |
+
x_expanded[:, :, :2 * m, -1:] = extra_col_content
|
| 212 |
+
if extra_row and extra_col:
|
| 213 |
+
x_expanded[:, :, -1:, -1:] = extra_col_content[:, :, -1:, :]
|
| 214 |
+
x = x_expanded
|
| 215 |
+
|
| 216 |
+
return x
|
| 217 |
+
|
| 218 |
+
@torch.no_grad()
|
| 219 |
+
def smea_sampling_step(x, model, dt, sigma_hat, **extra_args):
|
| 220 |
+
m, n = x.shape[2], x.shape[3]
|
| 221 |
+
x = torch.nn.functional.interpolate(input=x, size=None, scale_factor=(1.25, 1.25), mode='nearest-exact', align_corners=None, recompute_scale_factor=None)
|
| 222 |
+
with _Rescaler(model, x, 'nearest-exact', **extra_args) as rescaler:
|
| 223 |
+
denoised = model(x, sigma_hat * x.new_ones([x.shape[0]]), **rescaler.extra_args)
|
| 224 |
+
d = to_d(x, sigma_hat, denoised)
|
| 225 |
+
x = x + d * dt
|
| 226 |
+
x = torch.nn.functional.interpolate(input=x, size=(m,n), scale_factor=None, mode='nearest-exact', align_corners=None, recompute_scale_factor=None)
|
| 227 |
+
return x
|
| 228 |
+
|
| 229 |
+
@torch.no_grad()
|
| 230 |
+
def smea_sampling_step_denoised(x, model, sigma_hat, scale=1.25, smooth=False, **extra_args):
|
| 231 |
+
m, n = x.shape[2], x.shape[3]
|
| 232 |
+
filter = 'nearest-exact' if not smooth else 'bilinear'
|
| 233 |
+
x = torch.nn.functional.interpolate(input=x, scale_factor=(scale, scale), mode=filter)
|
| 234 |
+
with _Rescaler(model, x, filter, **extra_args) as rescaler:
|
| 235 |
+
denoised = model(x, sigma_hat * x.new_ones([x.shape[0]]), **rescaler.extra_args)
|
| 236 |
+
x = denoised
|
| 237 |
+
x = torch.nn.functional.interpolate(input=x, size=(m,n), mode='nearest-exact')
|
| 238 |
+
return x
|
| 239 |
+
|
| 240 |
+
@torch.no_grad()
|
| 241 |
+
def sample_euler_max(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 242 |
+
extra_args = {} if extra_args is None else extra_args
|
| 243 |
+
s_in = x.new_ones([x.shape[0]])
|
| 244 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 245 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 246 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 247 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 248 |
+
if gamma > 0:
|
| 249 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 250 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 251 |
+
d = to_d(x, sigma_hat, denoised)
|
| 252 |
+
if callback is not None:
|
| 253 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 254 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 255 |
+
# Euler method
|
| 256 |
+
x = x + (math.cos(i + 1)/(i + 1) + 1) * d * dt
|
| 257 |
+
return x
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
@torch.no_grad()
|
| 261 |
+
def sample_euler_max1b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 262 |
+
extra_args = {} if extra_args is None else extra_args
|
| 263 |
+
s_in = x.new_ones([x.shape[0]])
|
| 264 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 265 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 266 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 267 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 268 |
+
if gamma > 0:
|
| 269 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 270 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 271 |
+
d = to_d(x, sigma_hat, denoised)
|
| 272 |
+
if callback is not None:
|
| 273 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 274 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 275 |
+
# Euler method
|
| 276 |
+
x = x + (math.cos(1.05 * i + 1)/(1.1 * i + 1.5) + 1) * d * dt
|
| 277 |
+
return x
|
| 278 |
+
|
| 279 |
+
@torch.no_grad()
|
| 280 |
+
def sample_euler_max1c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 281 |
+
extra_args = {} if extra_args is None else extra_args
|
| 282 |
+
s_in = x.new_ones([x.shape[0]])
|
| 283 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 284 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 285 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 286 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 287 |
+
if gamma > 0:
|
| 288 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 289 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 290 |
+
d = to_d(x, sigma_hat, denoised)
|
| 291 |
+
if callback is not None:
|
| 292 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 293 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 294 |
+
# Euler method
|
| 295 |
+
x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d * dt
|
| 296 |
+
return x
|
| 297 |
+
|
| 298 |
+
@torch.no_grad()
|
| 299 |
+
def sample_euler_max1d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 300 |
+
extra_args = {} if extra_args is None else extra_args
|
| 301 |
+
s_in = x.new_ones([x.shape[0]])
|
| 302 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 303 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 304 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 305 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 306 |
+
if gamma > 0:
|
| 307 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 308 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 309 |
+
d = to_d(x, sigma_hat, denoised)
|
| 310 |
+
if callback is not None:
|
| 311 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 312 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 313 |
+
# Euler method
|
| 314 |
+
x = x + (math.cos(math.pi * 0.333 * i + 0.9)/(0.5 * i + 1.5) + 1) * d * dt
|
| 315 |
+
return x
|
| 316 |
+
|
| 317 |
+
@torch.no_grad()
|
| 318 |
+
def sample_euler_max2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 319 |
+
extra_args = {} if extra_args is None else extra_args
|
| 320 |
+
s_in = x.new_ones([x.shape[0]])
|
| 321 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 322 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 323 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 324 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 325 |
+
if gamma > 0:
|
| 326 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 327 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 328 |
+
d = to_d(x, sigma_hat, denoised)
|
| 329 |
+
if callback is not None:
|
| 330 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 331 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 332 |
+
# Euler method
|
| 333 |
+
x = x + (math.cos(math.pi * 0.333 * i - 0.1)/(0.5 * i + 1.5) + 1) * d * dt
|
| 334 |
+
return x
|
| 335 |
+
|
| 336 |
+
@torch.no_grad()
|
| 337 |
+
def sample_euler_max2b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 338 |
+
extra_args = {} if extra_args is None else extra_args
|
| 339 |
+
s_in = x.new_ones([x.shape[0]])
|
| 340 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 341 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 342 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 343 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 344 |
+
if gamma > 0:
|
| 345 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 346 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 347 |
+
d = to_d(x, sigma_hat, denoised)
|
| 348 |
+
if callback is not None:
|
| 349 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 350 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 351 |
+
# Euler method
|
| 352 |
+
x = x + (math.cos(math.pi * 0.5 * i - 0.0)/(0.5 * i + 1.5) + 1) * d * dt
|
| 353 |
+
return x
|
| 354 |
+
|
| 355 |
+
@torch.no_grad()
|
| 356 |
+
def sample_euler_max2c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 357 |
+
extra_args = {} if extra_args is None else extra_args
|
| 358 |
+
s_in = x.new_ones([x.shape[0]])
|
| 359 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 360 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 361 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 362 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 363 |
+
if gamma > 0:
|
| 364 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 365 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 366 |
+
d = to_d(x, sigma_hat, denoised)
|
| 367 |
+
if callback is not None:
|
| 368 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 369 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 370 |
+
# Euler method
|
| 371 |
+
x = x + (math.cos(math.pi * 0.5 * i)/(i + 2) + 1) * d * dt
|
| 372 |
+
return x
|
| 373 |
+
|
| 374 |
+
@torch.no_grad()
|
| 375 |
+
def sample_euler_max2d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 376 |
+
extra_args = {} if extra_args is None else extra_args
|
| 377 |
+
s_in = x.new_ones([x.shape[0]])
|
| 378 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 379 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 380 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 381 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 382 |
+
if gamma > 0:
|
| 383 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 384 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 385 |
+
d = to_d(x, sigma_hat, denoised)
|
| 386 |
+
if callback is not None:
|
| 387 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 388 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 389 |
+
# Euler method
|
| 390 |
+
x = x + (math.cos(math.pi * 0.5 * i)/(0.75 * i + 1.75) + 1) * d * dt
|
| 391 |
+
return x
|
| 392 |
+
|
| 393 |
+
@torch.no_grad()
|
| 394 |
+
def sample_euler_max3b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 395 |
+
extra_args = {} if extra_args is None else extra_args
|
| 396 |
+
s_in = x.new_ones([x.shape[0]])
|
| 397 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 398 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 399 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 400 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 401 |
+
if gamma > 0:
|
| 402 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 403 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 404 |
+
d = to_d(x, sigma_hat, denoised)
|
| 405 |
+
if callback is not None:
|
| 406 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 407 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 408 |
+
# Euler method
|
| 409 |
+
x = x + (math.cos(2 * i + 0.5)/(2 * i + 1.5) + 1) * d * dt
|
| 410 |
+
return x
|
| 411 |
+
|
| 412 |
+
@torch.no_grad()
|
| 413 |
+
def sample_euler_max3c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 414 |
+
extra_args = {} if extra_args is None else extra_args
|
| 415 |
+
s_in = x.new_ones([x.shape[0]])
|
| 416 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 417 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 418 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 419 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 420 |
+
if gamma > 0:
|
| 421 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 422 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 423 |
+
d = to_d(x, sigma_hat, denoised)
|
| 424 |
+
if callback is not None:
|
| 425 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 426 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 427 |
+
# Euler method
|
| 428 |
+
x = x + (math.cos(2 * i + 0.5)/(1.5 * i + 2.7) + 1) * d * dt
|
| 429 |
+
return x
|
| 430 |
+
|
| 431 |
+
@torch.no_grad()
|
| 432 |
+
def sample_euler_max3(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 433 |
+
extra_args = {} if extra_args is None else extra_args
|
| 434 |
+
s_in = x.new_ones([x.shape[0]])
|
| 435 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 436 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 437 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 438 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 439 |
+
if gamma > 0:
|
| 440 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 441 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 442 |
+
d = to_d(x, sigma_hat, denoised)
|
| 443 |
+
if callback is not None:
|
| 444 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 445 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 446 |
+
# Euler method
|
| 447 |
+
x = x + (math.cos(2 * i + 1)/(2 * i + 1) + 1) * d * dt
|
| 448 |
+
return x
|
| 449 |
+
|
| 450 |
+
@torch.no_grad()
|
| 451 |
+
def sample_euler_max4b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 452 |
+
extra_args = {} if extra_args is None else extra_args
|
| 453 |
+
s_in = x.new_ones([x.shape[0]])
|
| 454 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 455 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 456 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 457 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 458 |
+
if gamma > 0:
|
| 459 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 460 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 461 |
+
d = to_d(x, sigma_hat, denoised)
|
| 462 |
+
if callback is not None:
|
| 463 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 464 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 465 |
+
# Euler method
|
| 466 |
+
x = x + (math.cos(math.pi * i - 0.1)/(2 * i + 2) + 1) * d * dt
|
| 467 |
+
return x
|
| 468 |
+
|
| 469 |
+
@torch.no_grad()
|
| 470 |
+
def sample_euler_max4c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 471 |
+
extra_args = {} if extra_args is None else extra_args
|
| 472 |
+
s_in = x.new_ones([x.shape[0]])
|
| 473 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 474 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 475 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 476 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 477 |
+
if gamma > 0:
|
| 478 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 479 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 480 |
+
d = to_d(x, sigma_hat, denoised)
|
| 481 |
+
if callback is not None:
|
| 482 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 483 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 484 |
+
# Euler method
|
| 485 |
+
x = x + (math.cos(math.pi * i - 0.1)/(2 * i + 1.5) + 1) * d * dt
|
| 486 |
+
return x
|
| 487 |
+
|
| 488 |
+
@torch.no_grad()
|
| 489 |
+
def sample_euler_max4d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 490 |
+
extra_args = {} if extra_args is None else extra_args
|
| 491 |
+
s_in = x.new_ones([x.shape[0]])
|
| 492 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 493 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 494 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 495 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 496 |
+
if gamma > 0:
|
| 497 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 498 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 499 |
+
d = to_d(x, sigma_hat, denoised)
|
| 500 |
+
if callback is not None:
|
| 501 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 502 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 503 |
+
# Euler method
|
| 504 |
+
x = x + (math.cos(math.pi * i - 0.1)/(i + 1.5) + 1) * d * dt
|
| 505 |
+
return x
|
| 506 |
+
|
| 507 |
+
@torch.no_grad()
|
| 508 |
+
def sample_euler_max4e(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 509 |
+
extra_args = {} if extra_args is None else extra_args
|
| 510 |
+
s_in = x.new_ones([x.shape[0]])
|
| 511 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 512 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 513 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 514 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 515 |
+
if gamma > 0:
|
| 516 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 517 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 518 |
+
d = to_d(x, sigma_hat, denoised)
|
| 519 |
+
if callback is not None:
|
| 520 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 521 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 522 |
+
# Euler method
|
| 523 |
+
x = x + (math.cos(math.pi * i - 0.1)/(i + 1) + 1) * d * dt
|
| 524 |
+
return x
|
| 525 |
+
|
| 526 |
+
@torch.no_grad()
|
| 527 |
+
def sample_euler_max4f(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 528 |
+
extra_args = {} if extra_args is None else extra_args
|
| 529 |
+
s_in = x.new_ones([x.shape[0]])
|
| 530 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 531 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 532 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 533 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 534 |
+
if gamma > 0:
|
| 535 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 536 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 537 |
+
d = to_d(x, sigma_hat, denoised)
|
| 538 |
+
if callback is not None:
|
| 539 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 540 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 541 |
+
# Euler method
|
| 542 |
+
x = x + (math.cos(math.pi * i - 0.1)/(i + 2) + 1) * d * dt
|
| 543 |
+
return x
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
@torch.no_grad()
|
| 547 |
+
def sample_euler_max4(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 548 |
+
# 袛芯斜邪胁褜褌械 蟹写械褋褜 褌械谢芯 褎褍薪泻褑懈懈 懈谢懈 褏芯褌褟 斜褘 pass, 褔褌芯斜褘 懈蟹斜械卸邪褌褜 IndentationError
|
| 549 |
+
pass
|
| 550 |
+
|
| 551 |
+
@torch.no_grad()
|
| 552 |
+
def sample_euler_dy(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 553 |
+
extra_args = {} if extra_args is None else extra_args
|
| 554 |
+
s_in = x.new_ones([x.shape[0]])
|
| 555 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 556 |
+
# print(i)
|
| 557 |
+
# i绗竴姝ヤ负0
|
| 558 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 559 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 560 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 561 |
+
# print(sigma_hat)
|
| 562 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 563 |
+
if gamma > 0:
|
| 564 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 565 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 566 |
+
d = to_d(x, sigma_hat, denoised)
|
| 567 |
+
if callback is not None:
|
| 568 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 569 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 and i % 2 == 0:
|
| 570 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 571 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 572 |
+
dt_2 = sigmas[i + 1] - sigmas[i]
|
| 573 |
+
x_2 = x + d * dt_1
|
| 574 |
+
x_temp = dy_sampling_step(x_2, model, dt_2, sigma_mid, **extra_args)
|
| 575 |
+
x = x_temp - d * dt_1
|
| 576 |
+
# Euler method
|
| 577 |
+
x = x + d * dt
|
| 578 |
+
return x
|
| 579 |
+
|
| 580 |
+
@torch.no_grad()
|
| 581 |
+
def sample_euler_smea_dyn_a(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 582 |
+
extra_args = {} if extra_args is None else extra_args
|
| 583 |
+
s_in = x.new_ones([x.shape[0]])
|
| 584 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 585 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 586 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 587 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 588 |
+
if gamma > 0:
|
| 589 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 590 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 591 |
+
d = to_d(x, sigma_hat, denoised)
|
| 592 |
+
if callback is not None:
|
| 593 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 594 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2:
|
| 595 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 596 |
+
dt_1 = sigma_mid - sigma_hat
|
| 597 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 598 |
+
x_2 = x + d * dt_1
|
| 599 |
+
#scale = (sigma_mid / sigmas[0]) * 0.25
|
| 600 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.15
|
| 601 |
+
#scale = scale.item()
|
| 602 |
+
if i % 2 == 0:
|
| 603 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale, **extra_args)
|
| 604 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args)
|
| 605 |
+
else:
|
| 606 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 607 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 608 |
+
x = x + d_2 * dt_2
|
| 609 |
+
else:
|
| 610 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 611 |
+
# Euler method
|
| 612 |
+
x = x + d * dt
|
| 613 |
+
return x
|
| 614 |
+
|
| 615 |
+
@torch.no_grad()
|
| 616 |
+
def sample_euler_smea_dyn_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 617 |
+
extra_args = {} if extra_args is None else extra_args
|
| 618 |
+
s_in = x.new_ones([x.shape[0]])
|
| 619 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 620 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 621 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 622 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 623 |
+
if gamma > 0:
|
| 624 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 625 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 626 |
+
d = to_d(x, sigma_hat, denoised)
|
| 627 |
+
if callback is not None:
|
| 628 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 629 |
+
if sigmas[i + 1] > 0 and (i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 3 or i < 3):
|
| 630 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 631 |
+
dt_1 = sigma_mid - sigma_hat
|
| 632 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 633 |
+
x_2 = x + d * dt_1
|
| 634 |
+
#scale = (sigma_mid / sigmas[0]) * 0.25
|
| 635 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.2
|
| 636 |
+
#scale = scale.item()
|
| 637 |
+
if i % 4 == 0:
|
| 638 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale, **extra_args)
|
| 639 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - sigma_mid.item() * 0.01, **extra_args)
|
| 640 |
+
elif i % 4 == 2:
|
| 641 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale, **extra_args)
|
| 642 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args)
|
| 643 |
+
else:
|
| 644 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 645 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 646 |
+
x = x + d_2 * dt_2
|
| 647 |
+
else:
|
| 648 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 649 |
+
# Euler method
|
| 650 |
+
x = x + d * dt
|
| 651 |
+
return x
|
| 652 |
+
|
| 653 |
+
@torch.no_grad()
|
| 654 |
+
def sample_euler_smea_dyn_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 655 |
+
extra_args = {} if extra_args is None else extra_args
|
| 656 |
+
s_in = x.new_ones([x.shape[0]])
|
| 657 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 658 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 659 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 660 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 661 |
+
if gamma > 0:
|
| 662 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 663 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 664 |
+
d = to_d(x, sigma_hat, denoised)
|
| 665 |
+
if callback is not None:
|
| 666 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 667 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2:
|
| 668 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 669 |
+
dt_1 = sigma_mid - sigma_hat
|
| 670 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 671 |
+
x_2 = x + d * dt_1
|
| 672 |
+
#scale = (sigma_mid / sigmas[0]) * 0.25
|
| 673 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.25
|
| 674 |
+
#scale = scale.item()
|
| 675 |
+
if i % 2 == 0:
|
| 676 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale, **extra_args)
|
| 677 |
+
#denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args)
|
| 678 |
+
else:
|
| 679 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
| 680 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 681 |
+
x = x + d_2 * dt_2
|
| 682 |
+
else:
|
| 683 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 684 |
+
# Euler method
|
| 685 |
+
x = x + d * dt
|
| 686 |
+
return x
|
| 687 |
+
|
| 688 |
+
@torch.no_grad()
|
| 689 |
+
def sample_euler_smea(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 690 |
+
extra_args = {} if extra_args is None else extra_args
|
| 691 |
+
s_in = x.new_ones([x.shape[0]])
|
| 692 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 693 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 694 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 695 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 696 |
+
if gamma > 0:
|
| 697 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 698 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 699 |
+
d = to_d(x, sigma_hat, denoised)
|
| 700 |
+
if callback is not None:
|
| 701 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 702 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 703 |
+
# Euler method
|
| 704 |
+
x = x + d * dt
|
| 705 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 and i % 2 == 0:
|
| 706 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 707 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 708 |
+
dt_2 = sigmas[i + 1] - sigmas[i]
|
| 709 |
+
#print(dt_1, "#", dt_2, "#", dt_3, "#", dt_4)
|
| 710 |
+
x_2 = x + d * dt_1
|
| 711 |
+
x_temp = smea_sampling_step(x, model, dt_2, sigma_mid, **extra_args)
|
| 712 |
+
x = x_temp - d * dt_1
|
| 713 |
+
return x
|
| 714 |
+
|
| 715 |
+
@torch.no_grad()
|
| 716 |
+
def sample_euler_smea_dy(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 717 |
+
extra_args = {} if extra_args is None else extra_args
|
| 718 |
+
s_in = x.new_ones([x.shape[0]])
|
| 719 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 720 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 721 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 722 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 723 |
+
if gamma > 0:
|
| 724 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 725 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 726 |
+
d = to_d(x, sigma_hat, denoised)
|
| 727 |
+
if callback is not None:
|
| 728 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 729 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 730 |
+
# Euler method
|
| 731 |
+
x = x + d * dt
|
| 732 |
+
if sigmas[i + 1] > 0 and (i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 or i < 3) and i % 3 != 2:
|
| 733 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 734 |
+
dt_1 = sigma_mid - sigmas[i]
|
| 735 |
+
dt_2 = sigmas[i + 1] - sigmas[i]
|
| 736 |
+
#print(dt_1, "#", dt_2, "#", dt_3, "#", dt_4)
|
| 737 |
+
x_2 = x + d * dt_1
|
| 738 |
+
if i % 3 == 1:
|
| 739 |
+
x_temp = dy_sampling_step(x, model, dt_2, sigma_mid, **extra_args)
|
| 740 |
+
elif i % 3 == 0:
|
| 741 |
+
x_temp = smea_sampling_step(x, model, dt_2, sigma_mid, **extra_args)
|
| 742 |
+
x = x_temp - d * dt_1
|
| 743 |
+
return x
|
| 744 |
+
|
| 745 |
+
@torch.no_grad()
|
| 746 |
+
def sample_euler_smea_multi_d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 747 |
+
extra_args = {} if extra_args is None else extra_args
|
| 748 |
+
s_in = x.new_ones([x.shape[0]])
|
| 749 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 750 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 751 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 752 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 753 |
+
if gamma > 0:
|
| 754 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 755 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 756 |
+
d = to_d(x, sigma_hat, denoised)
|
| 757 |
+
if callback is not None:
|
| 758 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 759 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 + 2 and i % 2 == 0:
|
| 760 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 761 |
+
dt_1 = sigma_mid - sigma_hat
|
| 762 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 763 |
+
x_2 = x + d * dt_1
|
| 764 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 765 |
+
if i == 0:
|
| 766 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.15, **extra_args)
|
| 767 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 768 |
+
denoised_2 = (denoised_2a + denoised_2c) / 2
|
| 769 |
+
elif i < len(sigmas) * 0.334:
|
| 770 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args)
|
| 771 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args)
|
| 772 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 773 |
+
denoised_2 = (denoised_2a + denoised_2b + denoised_2c) / 3
|
| 774 |
+
else:
|
| 775 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.03, True, **extra_args)
|
| 776 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 777 |
+
denoised_2 = (denoised_2b + denoised_2c) / 2
|
| 778 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 779 |
+
x = x + d_2 * dt_2
|
| 780 |
+
else:
|
| 781 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 782 |
+
# Euler method
|
| 783 |
+
x = x + d * dt
|
| 784 |
+
return x
|
| 785 |
+
|
| 786 |
+
@torch.no_grad()
|
| 787 |
+
def sample_euler_smea_multi_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 788 |
+
extra_args = {} if extra_args is None else extra_args
|
| 789 |
+
s_in = x.new_ones([x.shape[0]])
|
| 790 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 791 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 792 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 793 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 794 |
+
if gamma > 0:
|
| 795 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 796 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 797 |
+
d = to_d(x, sigma_hat, denoised)
|
| 798 |
+
if callback is not None:
|
| 799 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 800 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 801 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 802 |
+
dt_1 = sigma_mid - sigma_hat
|
| 803 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 804 |
+
x_2 = x + d * dt_1
|
| 805 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 806 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args)
|
| 807 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args)
|
| 808 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 809 |
+
denoised_2 = (denoised_2a + denoised_2b + denoised_2c) / 3
|
| 810 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 811 |
+
x = x + d_2 * dt_2
|
| 812 |
+
else:
|
| 813 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 814 |
+
# Euler method
|
| 815 |
+
x = x + d * dt
|
| 816 |
+
return x
|
| 817 |
+
|
| 818 |
+
@torch.no_grad()
|
| 819 |
+
def sample_euler_smea_multi_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 820 |
+
extra_args = {} if extra_args is None else extra_args
|
| 821 |
+
s_in = x.new_ones([x.shape[0]])
|
| 822 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 823 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 824 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 825 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 826 |
+
if gamma > 0:
|
| 827 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 828 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 829 |
+
d = to_d(x, sigma_hat, denoised)
|
| 830 |
+
if callback is not None:
|
| 831 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 832 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 833 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 834 |
+
dt_1 = sigma_mid - sigma_hat
|
| 835 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 836 |
+
x_2 = x + d * dt_1
|
| 837 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 838 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args)
|
| 839 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 840 |
+
denoised_2 = (denoised_2a + denoised_2c) / 2
|
| 841 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 842 |
+
x = x + d_2 * dt_2
|
| 843 |
+
else:
|
| 844 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 845 |
+
# Euler method
|
| 846 |
+
x = x + d * dt
|
| 847 |
+
return x
|
| 848 |
+
|
| 849 |
+
@torch.no_grad()
|
| 850 |
+
def sample_euler_smea_multi_a(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 851 |
+
extra_args = {} if extra_args is None else extra_args
|
| 852 |
+
s_in = x.new_ones([x.shape[0]])
|
| 853 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 854 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 855 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 856 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 857 |
+
if gamma > 0:
|
| 858 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 859 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 860 |
+
d = to_d(x, sigma_hat, denoised)
|
| 861 |
+
if callback is not None:
|
| 862 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 863 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 864 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 865 |
+
dt_1 = sigma_mid - sigma_hat
|
| 866 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 867 |
+
x_2 = x + d * dt_1
|
| 868 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 869 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args)
|
| 870 |
+
denoised_2c = model(x_2, sigma_mid * s_in, **extra_args)
|
| 871 |
+
denoised_2 = (denoised_2b + denoised_2c) / 2
|
| 872 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 873 |
+
x = x + d_2 * dt_2
|
| 874 |
+
else:
|
| 875 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 876 |
+
# Euler method
|
| 877 |
+
x = x + d * dt
|
| 878 |
+
return x
|
| 879 |
+
|
| 880 |
+
|
| 881 |
+
@torch.no_grad()
|
| 882 |
+
def sample_euler_smea_multi_ds(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 883 |
+
extra_args = {} if extra_args is None else extra_args
|
| 884 |
+
s_in = x.new_ones([x.shape[0]])
|
| 885 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 886 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 887 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 888 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 889 |
+
if gamma > 0:
|
| 890 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 891 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 892 |
+
d = to_d(x, sigma_hat, denoised)
|
| 893 |
+
if callback is not None:
|
| 894 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 895 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 896 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 897 |
+
dt_1 = sigma_mid - sigma_hat
|
| 898 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 899 |
+
x_2 = x + d * dt_1
|
| 900 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 901 |
+
if i == 0:
|
| 902 |
+
sa = 1 - scale * 0.15
|
| 903 |
+
sb = 1 + scale * 0.09
|
| 904 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 905 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, **extra_args)
|
| 906 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375) / (0.97**2)
|
| 907 |
+
elif i < len(sigmas) * 0.167:
|
| 908 |
+
sa = 1 - scale * 0.25
|
| 909 |
+
sb = 1 + scale * 0.15
|
| 910 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 911 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb , **extra_args)
|
| 912 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375) / (0.95**2)
|
| 913 |
+
else:
|
| 914 |
+
sb = 1 + scale * 0.06
|
| 915 |
+
sc = 1 - scale * 0.1
|
| 916 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, True, **extra_args)
|
| 917 |
+
denoised_2c = smea_sampling_step_denoised(x_2, model, sigma_mid, sc, **extra_args)
|
| 918 |
+
denoised_2 = (denoised_2b * (sb ** 2) * 0.375 + denoised_2c * (sc ** 2) * 0.625) / (0.98**2)
|
| 919 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 920 |
+
x = x + d_2 * dt_2
|
| 921 |
+
else:
|
| 922 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 923 |
+
# Euler method
|
| 924 |
+
x = x + d * dt
|
| 925 |
+
return x
|
| 926 |
+
|
| 927 |
+
@torch.no_grad()
|
| 928 |
+
def sample_euler_smea_multi_ds2_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 929 |
+
sample = sample_euler_smea_multi_ds2(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 930 |
+
return sample
|
| 931 |
+
|
| 932 |
+
@torch.no_grad()
|
| 933 |
+
def sample_euler_smea_multi_ds2_s_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 934 |
+
sample = sample_euler_smea_multi_ds2_m(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 935 |
+
return sample
|
| 936 |
+
|
| 937 |
+
@torch.no_grad()
|
| 938 |
+
def sample_euler_smea_multi_ds2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 939 |
+
extra_args = {} if extra_args is None else extra_args
|
| 940 |
+
s_in = x.new_ones([x.shape[0]])
|
| 941 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 942 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 943 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 944 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 945 |
+
if gamma > 0:
|
| 946 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 947 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 948 |
+
d = to_d(x, sigma_hat, denoised)
|
| 949 |
+
if callback is not None:
|
| 950 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 951 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 952 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 953 |
+
dt_1 = sigma_mid - sigma_hat
|
| 954 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 955 |
+
x_2 = x + d * dt_1
|
| 956 |
+
scale = (sigmas[i] / sigmas[0]) ** 2
|
| 957 |
+
scale = scale.item()
|
| 958 |
+
if i == 0:
|
| 959 |
+
sa = 1 - scale * 0.15
|
| 960 |
+
sb = 1 + scale * 0.09
|
| 961 |
+
sigA = sigma_mid / (sa ** 2)
|
| 962 |
+
sigB = sigma_mid / (sb ** 2)
|
| 963 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 964 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 965 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.97**2) # 1 - (sa * sb ) / 2 + 1
|
| 966 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 967 |
+
elif i < len(sigmas) * 0.167:
|
| 968 |
+
sa = 1 - scale * 0.25
|
| 969 |
+
sb = 1 + scale * 0.15
|
| 970 |
+
sigA = sigma_mid / (sa ** 2)
|
| 971 |
+
sigB = sigma_mid / (sb ** 2)
|
| 972 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 973 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 974 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.95**2)
|
| 975 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 976 |
+
else:
|
| 977 |
+
sb = 1 + scale * 0.06
|
| 978 |
+
sc = 1 - scale * 0.1
|
| 979 |
+
sigB = sigma_mid / (sb ** 2)
|
| 980 |
+
sigC = sigma_mid / (sc ** 2)
|
| 981 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 982 |
+
denoised_2c = smea_sampling_step_denoised(x_2, model, sigC, sc, smooth, **extra_args)
|
| 983 |
+
denoised_2 = (denoised_2b * (sb ** 2) * 0.5 * sc ** 2 + denoised_2c * (sc ** 2) * 0.5 * sb ** 2) #/ (0.98**2)
|
| 984 |
+
d_2 = to_d(x_2, sigB * 0.5 * sc ** 2 + sigC * 0.5 * sb ** 2, denoised_2)
|
| 985 |
+
x = x + d_2 * dt_2
|
| 986 |
+
else:
|
| 987 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 988 |
+
# Euler method
|
| 989 |
+
x = x + d * dt
|
| 990 |
+
return x
|
| 991 |
+
|
| 992 |
+
@torch.no_grad()
|
| 993 |
+
def sample_euler_smea_multi_ds2_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 994 |
+
extra_args = {} if extra_args is None else extra_args
|
| 995 |
+
s_in = x.new_ones([x.shape[0]])
|
| 996 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 997 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 998 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 999 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1000 |
+
if gamma > 0:
|
| 1001 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1002 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1003 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1004 |
+
if callback is not None:
|
| 1005 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1006 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 1007 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1008 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1009 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1010 |
+
x_2 = x + d * dt_1
|
| 1011 |
+
scale = (sigmas[i] / sigmas[0]) ** 2
|
| 1012 |
+
#scale = dt_1 ** 2 * 0.01
|
| 1013 |
+
scale = scale.item()
|
| 1014 |
+
if i == 0:
|
| 1015 |
+
sa = 1 - scale * 0.15 #15
|
| 1016 |
+
sb = 1 + scale * 0.09 #09
|
| 1017 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1018 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1019 |
+
#delta = sa * sb
|
| 1020 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1021 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1022 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.97**2) # 1 - (sa * sb ) / 2 + 1
|
| 1023 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 1024 |
+
elif i < len(sigmas) * 0.167:
|
| 1025 |
+
sa = 1 - scale * 0.25 #25
|
| 1026 |
+
sb = 1 + scale * 0.15 #15
|
| 1027 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1028 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1029 |
+
#delta = sa * sb
|
| 1030 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1031 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1032 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.95**2)
|
| 1033 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 1034 |
+
else:
|
| 1035 |
+
sb = 1 + scale * 0.06
|
| 1036 |
+
sc = 1 - scale * 0.1
|
| 1037 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1038 |
+
sigC = sigma_mid / (sc ** 2)
|
| 1039 |
+
#delta = sb * sc
|
| 1040 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1041 |
+
denoised_2c = smea_sampling_step_denoised(x_2, model, sigC, sc, smooth, **extra_args)
|
| 1042 |
+
denoised_2 = (denoised_2b * (sb ** 2) * 0.5 * sc ** 2+ denoised_2c * (sc ** 2) * 0.5 * sb ** 2) #/ (0.98**2)
|
| 1043 |
+
d_2 = to_d(x_2, sigB * 0.5 * sc ** 2 + sigC * 0.5 * sb ** 2, denoised_2)
|
| 1044 |
+
x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d_2 * dt_2
|
| 1045 |
+
else:
|
| 1046 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1047 |
+
# Euler method
|
| 1048 |
+
x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d * dt
|
| 1049 |
+
return x
|
| 1050 |
+
|
| 1051 |
+
@torch.no_grad()
|
| 1052 |
+
def sample_euler_h_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1053 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1054 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1055 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1056 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1057 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1058 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1059 |
+
gamma = min((2 ** 0.5 - 1) - wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1060 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler == None else noise_sampler
|
| 1061 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1062 |
+
if gamma > 0:
|
| 1063 |
+
x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1064 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1065 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1066 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1067 |
+
if callback is not None:
|
| 1068 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1069 |
+
if sigmas[i + 1] > 0:
|
| 1070 |
+
x_2 = x + d * dt
|
| 1071 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1072 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1073 |
+
x = x + d_prime * dt
|
| 1074 |
+
else:
|
| 1075 |
+
# Euler method
|
| 1076 |
+
x = x + d * dt
|
| 1077 |
+
return x
|
| 1078 |
+
|
| 1079 |
+
@torch.no_grad()
|
| 1080 |
+
def sample_euler_h_m_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1081 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1082 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1083 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1084 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1085 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1086 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1087 |
+
gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1088 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1089 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1090 |
+
if gamma > 0:
|
| 1091 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1092 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1093 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1094 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1095 |
+
if callback is not None:
|
| 1096 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1097 |
+
if sigmas[i + 1] > 0:
|
| 1098 |
+
x_2 = x + d * dt
|
| 1099 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1100 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1101 |
+
x = x + d_prime * dt
|
| 1102 |
+
else:
|
| 1103 |
+
# Euler method
|
| 1104 |
+
x = x + d * dt
|
| 1105 |
+
return x
|
| 1106 |
+
|
| 1107 |
+
@torch.no_grad()
|
| 1108 |
+
def sample_euler_h_m_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1109 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1110 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1111 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1112 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1113 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1114 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1115 |
+
gamma = max((2 ** 0.5 - 1) + wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1116 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1117 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1118 |
+
if gamma > 0:
|
| 1119 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1120 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1121 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1122 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1123 |
+
if callback is not None:
|
| 1124 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1125 |
+
if sigmas[i + 1] > 0:
|
| 1126 |
+
x_2 = x + d * dt
|
| 1127 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1128 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1129 |
+
x = x + d_prime * dt
|
| 1130 |
+
else:
|
| 1131 |
+
# Euler method
|
| 1132 |
+
x = x + d * dt
|
| 1133 |
+
return x
|
| 1134 |
+
|
| 1135 |
+
@torch.no_grad()
|
| 1136 |
+
def sample_euler_h_m_d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1137 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1138 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1139 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1140 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1141 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1142 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1143 |
+
gamma = min((2 ** 0.5 - 1) - wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1144 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1145 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1146 |
+
if gamma > 0:
|
| 1147 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1148 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1149 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1150 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1151 |
+
if callback is not None:
|
| 1152 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1153 |
+
if sigmas[i + 1] > 0:
|
| 1154 |
+
x_2 = x + d * dt
|
| 1155 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1156 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1157 |
+
x = x + d_prime * dt
|
| 1158 |
+
else:
|
| 1159 |
+
# Euler method
|
| 1160 |
+
x = x + d * dt
|
| 1161 |
+
return x
|
| 1162 |
+
|
| 1163 |
+
@torch.no_grad()
|
| 1164 |
+
def sample_euler_h_m_e(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1165 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1166 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1167 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1168 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1169 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1170 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1171 |
+
gamma = max((2 ** 0.5 - 1) + wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1172 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1173 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1174 |
+
if gamma > 0:
|
| 1175 |
+
x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1176 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1177 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1178 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1179 |
+
if callback is not None:
|
| 1180 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1181 |
+
if sigmas[i + 1] > 0:
|
| 1182 |
+
x_2 = x + d * dt
|
| 1183 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1184 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1185 |
+
x = x + d_prime * dt
|
| 1186 |
+
else:
|
| 1187 |
+
# Euler method
|
| 1188 |
+
x = x + d * dt
|
| 1189 |
+
return x
|
| 1190 |
+
|
| 1191 |
+
@torch.no_grad()
|
| 1192 |
+
def sample_euler_h_m_f(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1193 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1194 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1195 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1196 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1197 |
+
wave_max = math.cos(0)/1.5 + 1
|
| 1198 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1199 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1200 |
+
gamma = min((wave_max - wave) * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1201 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1202 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1203 |
+
if gamma > 0:
|
| 1204 |
+
x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1205 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1206 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1207 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1208 |
+
if callback is not None:
|
| 1209 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1210 |
+
if sigmas[i + 1] > 0:
|
| 1211 |
+
x_2 = x + d * dt
|
| 1212 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1213 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1214 |
+
x = x + d_prime * dt
|
| 1215 |
+
else:
|
| 1216 |
+
# Euler method
|
| 1217 |
+
x = x + d * dt
|
| 1218 |
+
return x
|
| 1219 |
+
|
| 1220 |
+
@torch.no_grad()
|
| 1221 |
+
def sample_euler_h_m_g(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1222 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1223 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1224 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1225 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1226 |
+
wave_max = math.cos(0)/1.5 + 1
|
| 1227 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1228 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1229 |
+
gamma = min((wave_max - wave) * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1230 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1231 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1232 |
+
if gamma > 0:
|
| 1233 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1234 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1235 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1236 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1237 |
+
if callback is not None:
|
| 1238 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1239 |
+
if sigmas[i + 1] > 0:
|
| 1240 |
+
x_2 = x + d * dt
|
| 1241 |
+
d_2 = to_d(x_2, sigmas[i + 1] * (gamma + 1), denoised)
|
| 1242 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1243 |
+
x = x + d_prime * dt
|
| 1244 |
+
else:
|
| 1245 |
+
# Euler method
|
| 1246 |
+
x = x + d * dt
|
| 1247 |
+
return x
|
| 1248 |
+
|
| 1249 |
+
@torch.no_grad()
|
| 1250 |
+
def sample_euler_h_m_b_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1251 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1252 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1253 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1254 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1255 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1256 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1257 |
+
gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1258 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1259 |
+
gammaup = gamma + 1
|
| 1260 |
+
sigma_hat = sigmas[i] * gammaup
|
| 1261 |
+
if gamma > 0:
|
| 1262 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1263 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1264 |
+
last_noise_uncond = model.last_noise_uncond
|
| 1265 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1266 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1267 |
+
if callback is not None:
|
| 1268 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1269 |
+
if i == 0:
|
| 1270 |
+
x = x + d * dt
|
| 1271 |
+
elif i <= len(sigmas) - 4:
|
| 1272 |
+
x_2 = x + d * dt
|
| 1273 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1274 |
+
x_3 = x_2 + d_2 * dt
|
| 1275 |
+
d_3 = to_d(x_3, sigmas[i + 2] * gammaup, denoised)
|
| 1276 |
+
d_prime = d * 0.5 + d_2 * 0.375 + d_3 * 0.125
|
| 1277 |
+
x = x + d_prime * dt
|
| 1278 |
+
elif sigmas[i + 1] > 0:
|
| 1279 |
+
x_2 = x + d * dt
|
| 1280 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1281 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1282 |
+
x = x + d_prime * dt
|
| 1283 |
+
else:
|
| 1284 |
+
# Euler method
|
| 1285 |
+
x = x + d * dt
|
| 1286 |
+
return x
|
| 1287 |
+
|
| 1288 |
+
@torch.no_grad()
|
| 1289 |
+
def sample_euler_h_m_b_c_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
| 1290 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1291 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1292 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1293 |
+
wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1
|
| 1294 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1295 |
+
s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax
|
| 1296 |
+
gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1297 |
+
eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler
|
| 1298 |
+
gammaup = gamma + 1
|
| 1299 |
+
sigma_hat = sigmas[i] * gammaup
|
| 1300 |
+
if gamma > 0:
|
| 1301 |
+
x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1302 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1303 |
+
last_noise_uncond = model.last_noise_uncond
|
| 1304 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1305 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1306 |
+
if callback is not None:
|
| 1307 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1308 |
+
if i == 0:
|
| 1309 |
+
x = x + d * dt
|
| 1310 |
+
elif i <= len(sigmas) - 4:
|
| 1311 |
+
x_2 = x + d * dt
|
| 1312 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1313 |
+
x_3 = x_2 + d_2 * dt
|
| 1314 |
+
d_3 = to_d(x_3, sigmas[i + 2] * gammaup, last_noise_uncond)
|
| 1315 |
+
d_prime = d * 0.5 + d_2 * 0.375 + d_3 * 0.125
|
| 1316 |
+
x = x + d_prime * dt
|
| 1317 |
+
elif sigmas[i + 1] > 0:
|
| 1318 |
+
x_2 = x + d * dt
|
| 1319 |
+
d_2 = to_d(x_2, sigmas[i + 1] * gammaup, denoised)
|
| 1320 |
+
d_prime = d * 0.5 + d_2 * 0.5
|
| 1321 |
+
x = x + d_prime * dt
|
| 1322 |
+
else:
|
| 1323 |
+
# Euler method
|
| 1324 |
+
x = x + d * dt
|
| 1325 |
+
return x
|
| 1326 |
+
|
| 1327 |
+
@torch.no_grad()
|
| 1328 |
+
def sample_euler_smea_max(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 1329 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1330 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1331 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1332 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1333 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1334 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1335 |
+
sa = math.cos(i + 1)/(1.5 * i + 1.75) + 1
|
| 1336 |
+
if gamma > 0:
|
| 1337 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1338 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1339 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1340 |
+
if callback is not None:
|
| 1341 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1342 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0:
|
| 1343 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1344 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1345 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1346 |
+
x_2 = x + d * dt_1
|
| 1347 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1348 |
+
sigB = sigma_mid
|
| 1349 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1350 |
+
denoised_2b = model(x_2, sigma_mid * s_in, **extra_args)
|
| 1351 |
+
denoised_2 = (denoised_2a * 0.5 * (sa ** 2) + denoised_2b * 0.5 / (sa ** 2))
|
| 1352 |
+
d_2 = to_d(x_2, sigA * 0.5 * (sa ** 2) + sigB * 0.5 / (sa ** 2), denoised_2)
|
| 1353 |
+
x = x + d_2 * dt_2
|
| 1354 |
+
else:
|
| 1355 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1356 |
+
# Euler method
|
| 1357 |
+
x = x + sa * d * dt
|
| 1358 |
+
return x
|
| 1359 |
+
|
| 1360 |
+
|
| 1361 |
+
@torch.no_grad()
|
| 1362 |
+
def sample_euler_smea_max_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1363 |
+
sample = sample_euler_smea_max(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 1364 |
+
return sample
|
| 1365 |
+
|
| 1366 |
+
@torch.no_grad()
|
| 1367 |
+
def sample_euler_smea_multi_bs(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1368 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1369 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1370 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1371 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1372 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1373 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1374 |
+
if gamma > 0:
|
| 1375 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1376 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1377 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1378 |
+
if callback is not None:
|
| 1379 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1380 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1381 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1382 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1383 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1384 |
+
x_2 = x + d * dt_1
|
| 1385 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 1386 |
+
sa = 1 - scale * 0.25
|
| 1387 |
+
sb = 1 + scale * 0.15
|
| 1388 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 1389 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, **extra_args)
|
| 1390 |
+
denoised_2 = denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375 / (0.95**2)
|
| 1391 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
| 1392 |
+
x = x + d_2 * dt_2
|
| 1393 |
+
else:
|
| 1394 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1395 |
+
# Euler method
|
| 1396 |
+
x = x + d * dt
|
| 1397 |
+
return x
|
| 1398 |
+
|
| 1399 |
+
@torch.no_grad()
|
| 1400 |
+
def sample_euler_smea_multi_bs2_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1401 |
+
sample = sample_euler_smea_multi_bs2(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True)
|
| 1402 |
+
return sample
|
| 1403 |
+
|
| 1404 |
+
@torch.no_grad()
|
| 1405 |
+
def sample_euler_smea_multi_bs2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False):
|
| 1406 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1407 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1408 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1409 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1410 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1411 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1412 |
+
if gamma > 0:
|
| 1413 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1414 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1415 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1416 |
+
if callback is not None:
|
| 1417 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1418 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1419 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1420 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1421 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1422 |
+
x_2 = x + d * dt_1
|
| 1423 |
+
scale = (sigmas[i] / sigmas[0]) ** 2
|
| 1424 |
+
scale = scale.item()
|
| 1425 |
+
sa = 1 - scale * 0.25
|
| 1426 |
+
sb = 1 + scale * 0.15
|
| 1427 |
+
sigA = sigma_mid / (sa ** 2)
|
| 1428 |
+
sigB = sigma_mid / (sb ** 2)
|
| 1429 |
+
denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args)
|
| 1430 |
+
denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args)
|
| 1431 |
+
denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2)
|
| 1432 |
+
d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2)
|
| 1433 |
+
x = x + d_2 * dt_2
|
| 1434 |
+
else:
|
| 1435 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1436 |
+
# Euler method
|
| 1437 |
+
x = x + d * dt
|
| 1438 |
+
return x
|
| 1439 |
+
|
| 1440 |
+
@torch.no_grad()
|
| 1441 |
+
def sample_euler_smea_multi_cs(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1442 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1443 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1444 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1445 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1446 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1447 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1448 |
+
if gamma > 0:
|
| 1449 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1450 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1451 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1452 |
+
if callback is not None:
|
| 1453 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1454 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1455 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1456 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1457 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1458 |
+
x_2 = x + d * dt_1
|
| 1459 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 1460 |
+
sa = 1 - scale * 0.25
|
| 1461 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 1462 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2 * (sa ** 2) * 1.25)
|
| 1463 |
+
x = x + d_2 * dt_2
|
| 1464 |
+
else:
|
| 1465 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1466 |
+
# Euler method
|
| 1467 |
+
x = x + d * dt
|
| 1468 |
+
return x
|
| 1469 |
+
|
| 1470 |
+
@torch.no_grad()
|
| 1471 |
+
def sample_euler_smea_multi_as(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1472 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1473 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1474 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1475 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1476 |
+
eps = k_diffusion.sampling.torch.randn_like(x) * s_noise
|
| 1477 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1478 |
+
if gamma > 0:
|
| 1479 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1480 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1481 |
+
d = to_d(x, sigma_hat, denoised)
|
| 1482 |
+
if callback is not None:
|
| 1483 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1484 |
+
if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167:
|
| 1485 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
| 1486 |
+
dt_1 = sigma_mid - sigma_hat
|
| 1487 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
| 1488 |
+
x_2 = x + d * dt_1
|
| 1489 |
+
scale = ((len(sigmas) - i) / len(sigmas)) ** 2
|
| 1490 |
+
sa = 1 + scale * 0.15
|
| 1491 |
+
denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args)
|
| 1492 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2 * (sa ** 2) * 0.75)
|
| 1493 |
+
x = x + d_2 * dt_2
|
| 1494 |
+
else:
|
| 1495 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1496 |
+
# Euler method
|
| 1497 |
+
x = x + d * dt
|
| 1498 |
+
return x
|
| 1499 |
+
|
| 1500 |
+
## og sampler
|
| 1501 |
+
@torch.no_grad()
|
| 1502 |
+
def sample_euler_dy_og(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1503 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1504 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1505 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1506 |
+
# print(i)
|
| 1507 |
+
# i绗竴姝ヤ负0
|
| 1508 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1509 |
+
eps = torch.randn_like(x) * s_noise
|
| 1510 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1511 |
+
# print(sigma_hat)
|
| 1512 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1513 |
+
if gamma > 0:
|
| 1514 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1515 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1516 |
+
d = sampling.to_d(x, sigma_hat, denoised)
|
| 1517 |
+
if sigmas[i + 1] > 0:
|
| 1518 |
+
if i // 2 == 1:
|
| 1519 |
+
x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args)
|
| 1520 |
+
if callback is not None:
|
| 1521 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1522 |
+
# Euler method
|
| 1523 |
+
x = x + d * dt
|
| 1524 |
+
return x
|
| 1525 |
+
|
| 1526 |
+
@torch.no_grad()
|
| 1527 |
+
def sample_euler_smea_dy_og(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
| 1528 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1529 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1530 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1531 |
+
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
| 1532 |
+
eps = torch.randn_like(x) * s_noise
|
| 1533 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
| 1534 |
+
dt = sigmas[i + 1] - sigma_hat
|
| 1535 |
+
if gamma > 0:
|
| 1536 |
+
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
| 1537 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
| 1538 |
+
d = sampling.to_d(x, sigma_hat, denoised)
|
| 1539 |
+
# Euler method
|
| 1540 |
+
x = x + d * dt
|
| 1541 |
+
if sigmas[i + 1] > 0:
|
| 1542 |
+
if i + 1 // 2 == 1:
|
| 1543 |
+
x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args)
|
| 1544 |
+
if i + 1 // 2 == 0:
|
| 1545 |
+
x = smea_sampling_step(x, model, dt, sigma_hat, **extra_args)
|
| 1546 |
+
if callback is not None:
|
| 1547 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
| 1548 |
+
return x
|
| 1549 |
+
|
| 1550 |
+
## TCD
|
| 1551 |
+
|
| 1552 |
+
def sample_tcd_euler_a(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, gamma=0.3):
|
| 1553 |
+
# TCD sampling using modified Euler Ancestral sampler. by @laksjdjf
|
| 1554 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1555 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
| 1556 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1557 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1558 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 1559 |
+
if callback is not None:
|
| 1560 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1561 |
+
|
| 1562 |
+
#d = to_d(x, sigmas[i], denoised)
|
| 1563 |
+
sigma_from = sigmas[i]
|
| 1564 |
+
sigma_to = sigmas[i + 1]
|
| 1565 |
+
|
| 1566 |
+
t = model.inner_model.sigma_to_t(sigma_from)
|
| 1567 |
+
down_t = (1 - gamma) * t
|
| 1568 |
+
sigma_down = model.inner_model.t_to_sigma(down_t)
|
| 1569 |
+
|
| 1570 |
+
if sigma_down > sigma_to:
|
| 1571 |
+
sigma_down = sigma_to
|
| 1572 |
+
sigma_up = (sigma_to ** 2 - sigma_down ** 2) ** 0.5
|
| 1573 |
+
|
| 1574 |
+
# same as euler ancestral
|
| 1575 |
+
d = to_d(x, sigma_from, denoised)
|
| 1576 |
+
dt = sigma_down - sigma_from
|
| 1577 |
+
x += d * dt
|
| 1578 |
+
|
| 1579 |
+
if sigma_to > 0 and gamma > 0:
|
| 1580 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigma_up
|
| 1581 |
+
return x
|
| 1582 |
+
|
| 1583 |
+
@torch.no_grad()
|
| 1584 |
+
def sample_tcd(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, gamma=0.3):
|
| 1585 |
+
# TCD sampling using modified DDPM.
|
| 1586 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1587 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
| 1588 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1589 |
+
|
| 1590 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1591 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 1592 |
+
if callback is not None:
|
| 1593 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1594 |
+
|
| 1595 |
+
sigma_from, sigma_to = sigmas[i], sigmas[i+1]
|
| 1596 |
+
|
| 1597 |
+
# TCD offset, based on gamma, and conversion between sigma and timestep
|
| 1598 |
+
t = model.inner_model.sigma_to_t(sigma_from)
|
| 1599 |
+
t_s = (1 - gamma) * t
|
| 1600 |
+
sigma_to_s = model.inner_model.t_to_sigma(t_s)
|
| 1601 |
+
|
| 1602 |
+
# if sigma_to_s > sigma_to:
|
| 1603 |
+
# sigma_to_s = sigma_to
|
| 1604 |
+
# if sigma_to_s < 0:
|
| 1605 |
+
# sigma_to_s = torch.tensor(1.0)
|
| 1606 |
+
#print(f"sigma_from: {sigma_from}, sigma_to: {sigma_to}, sigma_to_s: {sigma_to_s}")
|
| 1607 |
+
|
| 1608 |
+
|
| 1609 |
+
# The following is equivalent to the comfy DDPM implementation
|
| 1610 |
+
# x = DDPMSampler_step(x / torch.sqrt(1.0 + sigma_from ** 2.0), sigma_from, sigma_to, (x - denoised) / sigma_from, noise_sampler)
|
| 1611 |
+
|
| 1612 |
+
noise_est = (x - denoised) / sigma_from
|
| 1613 |
+
x /= torch.sqrt(1.0 + sigma_from ** 2.0)
|
| 1614 |
+
|
| 1615 |
+
alpha_cumprod = 1 / ((sigma_from * sigma_from) + 1) # _t
|
| 1616 |
+
alpha_cumprod_prev = 1 / ((sigma_to * sigma_to) + 1) # _t_prev
|
| 1617 |
+
alpha = (alpha_cumprod / alpha_cumprod_prev)
|
| 1618 |
+
|
| 1619 |
+
## These values should approach 1.0?
|
| 1620 |
+
# print(f"alpha_cumprod: {alpha_cumprod}")
|
| 1621 |
+
# print(f"alpha_cumprod_prev: {alpha_cumprod_prev}")
|
| 1622 |
+
# print(f"alpha: {alpha}")
|
| 1623 |
+
|
| 1624 |
+
|
| 1625 |
+
# alpha_cumprod_down = 1 / ((sigma_to_s * sigma_to_s) + 1) # _s
|
| 1626 |
+
# alpha_d = (alpha_cumprod_prev / alpha_cumprod_down)
|
| 1627 |
+
# alpha2 = (alpha_cumprod / alpha_cumprod_down)
|
| 1628 |
+
# print(f"** alpha_cumprod_down: {alpha_cumprod_down}")
|
| 1629 |
+
# print(f"** alpha_d: {alpha_d}, alpha2: #{alpha2}")
|
| 1630 |
+
|
| 1631 |
+
# epsilon noise prediction from comfy DDPM implementation
|
| 1632 |
+
x = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise_est / (1 - alpha_cumprod).sqrt())
|
| 1633 |
+
# x = (1.0 / alpha_d).sqrt() * (x - (1 - alpha) * noise_est / (1 - alpha_cumprod).sqrt())
|
| 1634 |
+
|
| 1635 |
+
first_step = sigma_to == 0
|
| 1636 |
+
last_step = i == len(sigmas) - 2
|
| 1637 |
+
|
| 1638 |
+
if not first_step:
|
| 1639 |
+
if gamma > 0 and not last_step:
|
| 1640 |
+
noise = noise_sampler(sigma_from, sigma_to)
|
| 1641 |
+
|
| 1642 |
+
# x += ((1 - alpha_d) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise
|
| 1643 |
+
variance = ((1 - alpha_cumprod_prev) / (1 - alpha_cumprod)) * (1 - alpha_cumprod / alpha_cumprod_prev)
|
| 1644 |
+
x += variance.sqrt() * noise # scale noise by std deviation
|
| 1645 |
+
|
| 1646 |
+
# relevant diffusers code from scheduling_tcd.py
|
| 1647 |
+
# prev_sample = (alpha_prod_t_prev / alpha_prod_s).sqrt() * pred_noised_sample + (
|
| 1648 |
+
# 1 - alpha_prod_t_prev / alpha_prod_s
|
| 1649 |
+
# ).sqrt() * noise
|
| 1650 |
+
|
| 1651 |
+
x *= torch.sqrt(1.0 + sigma_to ** 2.0)
|
| 1652 |
+
|
| 1653 |
+
# beta_cumprod_t = 1 - alpha_cumprod
|
| 1654 |
+
# beta_cumprod_s = 1 - alpha_cumprod_down
|
| 1655 |
+
|
| 1656 |
+
|
| 1657 |
+
return x
|