dikdimon commited on
Commit
fcf5483
·
verified ·
1 Parent(s): b3519ad

Upload DeepShrinkHires2.0.fix using SD-Hub

Browse files
DeepShrinkHires2.0.fix/.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ __pycache__
2
+ settings.json
DeepShrinkHires2.0.fix/scripts/DeepShrinkHires.fix.py ADDED
@@ -0,0 +1,706 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Deep Shrink Hires.fix (RU++ v2.3.1 LTS + Experimental, FIXED)
2
+ # Исправления: статические _block_scale/_curve_weight; синхронизация instance→class после process().
3
+
4
+ from dataclasses import dataclass
5
+ from typing import List, Optional, Dict, Any, Tuple
6
+ import json, os
7
+
8
+ import gradio as gr
9
+ import torch
10
+ import torch.nn.functional as F
11
+
12
+ import modules.devices as devices
13
+ import modules.scripts as scripts
14
+ import modules.script_callbacks as script_callbacks
15
+ import modules.sd_unet as sd_unet
16
+ import modules.shared as shared
17
+
18
+ from ldm.modules.diffusionmodules.openaimodel import Upsample, Downsample, ResBlock
19
+ from ldm.modules.diffusionmodules.util import timestep_embedding
20
+
21
+
22
+ # -------------------------- Утилиты --------------------------
23
+
24
+ def _to_scalar(x) -> float:
25
+ if isinstance(x, torch.Tensor):
26
+ return float(x.item())
27
+ try:
28
+ return float(x)
29
+ except Exception:
30
+ return 0.0
31
+
32
+ def _clamp(v: float, lo: float, hi: float) -> float:
33
+ return max(lo, min(hi, v))
34
+
35
+ def _get_or_last(seq: List[float], index: int, default: float) -> float:
36
+ if not seq:
37
+ return default
38
+ return seq[index] if index < len(seq) else seq[-1]
39
+
40
+ def _safe_size(h: torch.Tensor, scale_factor: float, min_feat: int) -> Tuple[int, int]:
41
+ hi, wi = h.shape[-2], h.shape[-1]
42
+ ho = max(2, int(round(hi * scale_factor)))
43
+ wo = max(2, int(round(wi * scale_factor)))
44
+ if ho < min_feat or wo < min_feat:
45
+ return hi, wi
46
+ return ho, wo
47
+
48
+ def _interpolate(img: torch.Tensor, size: Tuple[int, int], mode: str, antialias: bool) -> torch.Tensor:
49
+ if size == img.shape[-2:]:
50
+ return img
51
+ dtype = img.dtype
52
+ try:
53
+ out = F.interpolate(
54
+ img.float(),
55
+ size=size,
56
+ mode=mode,
57
+ align_corners=False if mode in ("bilinear", "bicubic") else None,
58
+ antialias=(antialias if mode in ("bilinear", "bicubic") else False),
59
+ )
60
+ except TypeError:
61
+ out = F.interpolate(
62
+ img.float(),
63
+ size=size,
64
+ mode=mode,
65
+ align_corners=False if mode in ("bilinear", "bicubic") else None,
66
+ )
67
+ return out.to(dtype)
68
+
69
+ def _resize(h: torch.Tensor, scale: float, mode: str, antialias: bool, min_feat: int) -> torch.Tensor:
70
+ if scale == 1.0:
71
+ return h
72
+ size = _safe_size(h, scale, min_feat)
73
+ return _interpolate(h, size, mode, antialias)
74
+
75
+ def _parse_number_list(text: str, as_int: bool = False) -> List[float]:
76
+ text = (text or "").replace("\n", " ")
77
+ vals: List[float] = []
78
+ for chunk in text.split(";"):
79
+ s = chunk.strip()
80
+ if not s:
81
+ continue
82
+ if "/" in s:
83
+ a, b = s.split("/", 1)
84
+ v = float(a.strip()) / float(b.strip())
85
+ else:
86
+ v = float(s)
87
+ vals.append(v)
88
+ if not vals:
89
+ raise ValueError("Список пуст.")
90
+ return [int(round(v)) for v in vals] if as_int else vals
91
+
92
+
93
+ # -------------------------- Данные --------------------------
94
+
95
+ @dataclass
96
+ class DSHFAction:
97
+ enable: bool
98
+ timestep: float
99
+ depth: int
100
+ scale: float
101
+
102
+
103
+ # -------------------------- Скрипт --------------------------
104
+
105
+ class DSHF(scripts.Script):
106
+ # Счётчики текущего прохода (класс-поля нужны U-Net'у)
107
+ currentBlock: int = 0
108
+ currentConv: int = 0
109
+ currentTimestep: float = 1000.0
110
+
111
+ # Глобальные параметры (класс-поля: U-Net читает их как DSHF.*)
112
+ enabled: bool = True
113
+ interp_method: str = "bicubic"
114
+ interp_antialias: bool = True
115
+ channels_last: bool = False
116
+ min_feature_size: int = 8
117
+
118
+ # Кривая
119
+ curve_enable: bool = False
120
+ curve_type: str = "linear"
121
+ curve_t_start: float = 800.0
122
+ curve_t_end: float = 200.0
123
+ curve_scale_start: float = 1.0
124
+ curve_scale_end: float = 1.0
125
+ curve_alpha: float = 0.5
126
+ auto_end_enable: bool = False
127
+ auto_end_strength: float = 0.35
128
+
129
+ # Пороговые правила
130
+ actions: List[DSHFAction] = []
131
+
132
+ # Experimental (класс-поля для доступа из U-Net)
133
+ exp_section_enable: bool = False
134
+ exp_enable: bool = False
135
+ exp_timestep: float = 625.0
136
+ exp_scales: List[float] = [1.0]
137
+ exp_dilations: List[int] = [1]
138
+ exp_in_muls: List[float] = [1.0]
139
+ exp_out_muls: List[float] = [1.0]
140
+ exp_cfg_muls: List[float] = [1.0]
141
+
142
+ # ---------------- UI ----------------
143
+
144
+ def title(self): return "Deep Shrink Hires.fix (RU++ v2.3.1)"
145
+
146
+ def show(self, is_img2img): return scripts.AlwaysVisible
147
+
148
+ def ui(self, is_img2img):
149
+ with gr.Tabs():
150
+ with gr.TabItem("Настройки"):
151
+ Enable_Ext = gr.Checkbox(value=True, label="Включить расширение")
152
+
153
+ with gr.Accordion("Пороги (до 8 правил)", open=True):
154
+ Rule_Count = gr.Slider(1, 8, value=2, step=1, label="Сколько правил использовать")
155
+ rules = []
156
+ defaults = [
157
+ (True, 625, 3, 2.0),
158
+ (True, 0, 3, 2.0),
159
+ (False, 900, 3, 2.0),
160
+ (False, 650, 3, 2.0),
161
+ (False, 900, 3, 2.0),
162
+ (False, 650, 3, 2.0),
163
+ (False, 900, 3, 2.0),
164
+ (False, 650, 3, 2.0),
165
+ ]
166
+ for i, (en, ts, dp, sc) in enumerate(defaults, start=1):
167
+ with gr.Row():
168
+ rules.append((
169
+ gr.Checkbox(value=en, label=f"Правило {i}"),
170
+ gr.Number(value=ts, label=f"Timestep {i}"),
171
+ gr.Number(value=dp, label=f"Глубина блока {i}", precision=0),
172
+ gr.Number(value=sc, label=f"Масштаб {i}"),
173
+ ))
174
+
175
+ with gr.Accordion("Глобальная кривая масштаба", open=False):
176
+ Curve_Enable = gr.Checkbox(value=False, label="Включить кривую")
177
+ Curve_Type = gr.Dropdown(choices=["linear", "cosine", "sigmoid"], value="linear", label="Тип")
178
+ with gr.Row():
179
+ Curve_t_start = gr.Number(value=800, label="t_start")
180
+ Curve_t_end = gr.Number(value=200, label="t_end")
181
+ with gr.Row():
182
+ Curve_scale_start = gr.Number(value=1.0, label="scale_start")
183
+ Curve_scale_end = gr.Number(value=1.0, label="scale_end")
184
+ Curve_alpha = gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="alpha компенсации")
185
+ Min_feature = gr.Slider(2, 64, value=8, step=1, label="Мин. размер фичей")
186
+ with gr.Row():
187
+ Auto_end_enable = gr.Checkbox(value=False, label="Автоподбор scale_end по целевому разрешению")
188
+ Auto_end_strength = gr.Slider(0.0, 1.0, value=0.35, step=0.05, label="Сила автоподбора")
189
+
190
+ with gr.Accordion("Выполнение", open=False):
191
+ Interp_Method = gr.Dropdown(choices=["nearest", "bilinear", "bicubic", "area"], value="bicubic", label="Интерполяция")
192
+ Interp_AA = gr.Checkbox(value=True, label="Антиалиасинг для bilinear/bicubic")
193
+ Channels_Last = gr.Checkbox(value=False, label="Оптимизация channels_last")
194
+
195
+ with gr.Accordion("Экспериментальные (пер-свёрточные)", open=False):
196
+ Exp_Section_Enable = gr.Checkbox(value=False, label="Включить секцию")
197
+ with gr.Group(visible=False) as ExpGrp:
198
+ Exp_Enable = gr.Checkbox(value=False, label="Активировать экспериментальное ядро")
199
+ Exp_Timestep = gr.Number(value=625, label="Пороговой timestep для эксперимента")
200
+ Exp_Scales = gr.Textbox(value="1", lines=2, label="Масштабы по свёрткам")
201
+ Exp_Dilations = gr.Textbox(value="1", lines=1, label="Дилатации по свёрткам (целые)")
202
+ Exp_InMuls = gr.Textbox(value="1", lines=1, label="Входные умножители по блокам")
203
+ Exp_OutMuls = gr.Textbox(value="1", lines=1, label="Выходные умножители по блокам")
204
+ Exp_CFGMuls = gr.Textbox(value="1", lines=1, label="CFG-множители по блокам")
205
+ Exp_Section_Enable.change(lambda v: gr.update(visible=bool(v)), Exp_Section_Enable, ExpGrp)
206
+
207
+ with gr.Accordion("Пресеты", open=False):
208
+ Preset_Action = gr.Dropdown(choices=["Сохранить", "Загрузить"], value="Загрузить", label="Действие")
209
+ Preset_Name = gr.Textbox(value="", label="Имя пресета")
210
+ Preset_JSON = gr.Textbox(value="", lines=6, label="Профиль в JSON (для импорта/экспорта)")
211
+
212
+ with gr.TabItem("Справка"):
213
+ gr.Markdown("""
214
+ **LTS** — безопасное масштабирование только на границах блоков.
215
+ **Experimental** — опционально: пер-свёрточные масштабы, дилатации, In/Out и CFG-мультипликаторы.
216
+ """)
217
+
218
+ flat = [Enable_Ext, Rule_Count]
219
+ for row in rules:
220
+ flat += list(row)
221
+ flat += [
222
+ Curve_Enable, Curve_Type, Curve_t_start, Curve_t_end,
223
+ Curve_scale_start, Curve_scale_end, Curve_alpha, Min_feature,
224
+ Auto_end_enable, Auto_end_strength,
225
+ Interp_Method, Interp_AA, Channels_Last,
226
+ Exp_Section_Enable, Exp_Enable, Exp_Timestep,
227
+ Exp_Scales, Exp_Dilations, Exp_InMuls, Exp_OutMuls, Exp_CFGMuls,
228
+ Preset_Action, Preset_Name, Preset_JSON,
229
+ ]
230
+ return flat
231
+
232
+ # ---------------- Исполнение ----------------
233
+
234
+ def _reset_instance_defaults(self):
235
+ # только для локальной сборки входных значений; класс-поля перезапишем ниже
236
+ self._inst_actions: List[DSHFAction] = []
237
+ self._inst_curve_enable = False
238
+ self._inst_curve_type = "linear"
239
+ self._inst_curve_t_start = 800.0
240
+ self._inst_curve_t_end = 200.0
241
+ self._inst_curve_scale_start = 1.0
242
+ self._inst_curve_scale_end = 1.0
243
+ self._inst_curve_alpha = 0.5
244
+ self._inst_auto_end_enable = False
245
+ self._inst_auto_end_strength = 0.35
246
+ self._inst_interp_method = "bicubic"
247
+ self._inst_interp_antialias = True
248
+ self._inst_channels_last = False
249
+ self._inst_min_feature_size = 8
250
+ self._inst_exp_section_enable = False
251
+ self._inst_exp_enable = False
252
+ self._inst_exp_timestep = 625.0
253
+ self._inst_exp_scales = [1.0]
254
+ self._inst_exp_dilations = [1]
255
+ self._inst_exp_in_muls = [1.0]
256
+ self._inst_exp_out_muls = [1.0]
257
+ self._inst_exp_cfg_muls = [1.0]
258
+
259
+ @staticmethod
260
+ def _curve_weight(ts: float) -> Optional[float]:
261
+ if not DSHF.curve_enable:
262
+ return None
263
+ t0, t1 = DSHF.curve_t_start, DSHF.curve_t_end
264
+ if t0 == t1:
265
+ return DSHF.curve_scale_end
266
+ x = _clamp((ts - t1) / (t0 - t1), 0.0, 1.0)
267
+ if DSHF.curve_type == "linear":
268
+ w = x
269
+ elif DSHF.curve_type == "cosine":
270
+ w = 0.5 - 0.5 * torch.cos(torch.tensor(x) * torch.pi).item()
271
+ else:
272
+ w = 1.0 / (1.0 + torch.exp(torch.tensor(-10.0 * (x - 0.5)))).item()
273
+ s = DSHF.curve_scale_start + (DSHF.curve_scale_end - DSHF.curve_scale_start) * w
274
+ return _clamp(float(s), 0.25, 4.0)
275
+
276
+ @staticmethod
277
+ def _block_scale(depth: int, ts: float) -> Optional[float]:
278
+ rule_scale: Optional[float] = None
279
+ for a in DSHF.actions:
280
+ if a.enable and a.depth == depth and a.timestep <= ts:
281
+ rule_scale = a.scale
282
+ break
283
+ curve_scale = DSHF._curve_weight(ts)
284
+ if rule_scale is None and curve_scale is None:
285
+ return None
286
+ if rule_scale is None:
287
+ return curve_scale
288
+ if curve_scale is None:
289
+ return rule_scale
290
+ return _clamp(rule_scale * curve_scale, 0.25, 4.0)
291
+
292
+ def _auto_scale_end(self, p) -> Optional[float]:
293
+ if not self._inst_auto_end_enable or not self._inst_curve_enable:
294
+ return None
295
+ try:
296
+ bw, bh = int(getattr(p, "width", 0)), int(getattr(p, "height", 0))
297
+ if bw <= 0 or bh <= 0:
298
+ return None
299
+ tw, th = bw, bh
300
+ if getattr(p, "enable_hr", False):
301
+ hrx = int(getattr(p, "hr_resize_x", 0))
302
+ hry = int(getattr(p, "hr_resize_y", 0))
303
+ hrs = float(getattr(p, "hr_scale", 0.0) or 0.0)
304
+ if hrx > 0 and hry > 0:
305
+ tw, th = hrx, hry
306
+ elif hrs > 0.0:
307
+ tw, th = int(round(bw * hrs)), int(round(bh * hrs))
308
+ r = ((max(1, tw * th)) / max(1, bw * bh)) ** 0.5
309
+ if r <= 1.0:
310
+ return None
311
+ return _clamp(1.0 + _clamp(self._inst_auto_end_strength, 0.0, 1.0) * (r - 1.0), 1.0, 1.7)
312
+ except Exception:
313
+ return None
314
+
315
+ def process(self, p, *args):
316
+ # Используем только с нашим UNet
317
+ if not isinstance(sd_unet.current_unet, DSHF.DeepShrinkHiresFixUNet):
318
+ return
319
+
320
+ it = iter(args)
321
+ def nxt(): return next(it)
322
+
323
+ # Глобальный тумблер
324
+ enabled = bool(nxt())
325
+ if not enabled:
326
+ DSHF.enabled = False
327
+ return
328
+
329
+ # Сбор значений в instance-поле, чтобы не держать мусор в классе
330
+ self._reset_instance_defaults()
331
+
332
+ # ---- Правила ----
333
+ rule_count = int(_clamp(_to_scalar(nxt()), 1, 8))
334
+ tmp_rules: List[DSHFAction] = []
335
+ for _ in range(8):
336
+ en = bool(nxt()); ts = _to_scalar(nxt()); dp = int(_to_scalar(nxt())); sc = float(_to_scalar(nxt()))
337
+ tmp_rules.append(DSHFAction(en, ts, dp, sc))
338
+ self._inst_actions = tmp_rules[:rule_count]
339
+
340
+ # ---- Кривая ----
341
+ self._inst_curve_enable = bool(nxt())
342
+ self._inst_curve_type = str(nxt())
343
+ self._inst_curve_t_start = _to_scalar(nxt())
344
+ self._inst_curve_t_end = _to_scalar(nxt())
345
+ self._inst_curve_scale_start = float(_to_scalar(nxt()))
346
+ self._inst_curve_scale_end = float(_to_scalar(nxt()))
347
+ self._inst_curve_alpha = float(_clamp(_to_scalar(nxt()), 0.0, 1.0))
348
+ self._inst_min_feature_size = int(_clamp(_to_scalar(nxt()), 2, 256))
349
+ self._inst_auto_end_enable = bool(nxt())
350
+ self._inst_auto_end_strength = float(_clamp(_to_scalar(nxt()), 0.0, 1.0))
351
+
352
+ # ---- Выполнение ----
353
+ self._inst_interp_method = str(nxt())
354
+ self._inst_interp_antialias = bool(nxt())
355
+ self._inst_channels_last = bool(nxt())
356
+
357
+ # ---- Experimental ----
358
+ self._inst_exp_section_enable = bool(nxt())
359
+ self._inst_exp_enable = bool(nxt())
360
+ self._inst_exp_timestep = _to_scalar(nxt())
361
+ try: self._inst_exp_scales = list(map(float, _parse_number_list(str(nxt()), as_int=False)))
362
+ except Exception: self._inst_exp_scales = [1.0]
363
+ try: self._inst_exp_dilations = list(map(int, _parse_number_list(str(nxt()), as_int=True)))
364
+ except Exception: self._inst_exp_dilations = [1]
365
+ try: self._inst_exp_in_muls = list(map(float, _parse_number_list(str(nxt()), as_int=False)))
366
+ except Exception: self._inst_exp_in_muls = [1.0]
367
+ try: self._inst_exp_out_muls = list(map(float, _parse_number_list(str(nxt()), as_int=False)))
368
+ except Exception: self._inst_exp_out_muls = [1.0]
369
+ try: self._inst_exp_cfg_muls = list(map(float, _parse_number_list(str(nxt()), as_int=False)))
370
+ except Exception: self._inst_exp_cfg_muls = [1.0]
371
+
372
+ # ---- Пресеты ----
373
+ preset_action = str(nxt() or "")
374
+ preset_name = str(nxt() or "").strip()
375
+ preset_json = str(nxt() or "").strip()
376
+ preset_path = os.path.join(os.path.dirname(__file__), "dshf_presets.json")
377
+ if preset_action == "Сохранить" and preset_name:
378
+ data = self._export_profile_instance()
379
+ try:
380
+ cur = {"version": 1, "presets": {}}
381
+ if os.path.exists(preset_path):
382
+ with open(preset_path, "r", encoding="utf-8") as f:
383
+ cur = json.load(f)
384
+ cur["presets"][preset_name] = data
385
+ with open(preset_path, "w", encoding="utf-8") as f:
386
+ json.dump(cur, f, ensure_ascii=False, indent=2)
387
+ print(f"[DSHF] Пресет сохранён: {preset_name}")
388
+ except Exception as e:
389
+ print(f"[DSHF] Не удалось сохранить пресет: {e}")
390
+ elif preset_action == "Загрузить":
391
+ if preset_json:
392
+ try:
393
+ prof = json.loads(preset_json)
394
+ self._apply_profile_instance(prof)
395
+ print("[DSHF] Профиль применён из JSON")
396
+ except Exception as e:
397
+ print(f"[DSHF] Ошибка JSON: {e}")
398
+ elif preset_name:
399
+ try:
400
+ with open(preset_path, "r", encoding="utf-8") as f:
401
+ cur = json.load(f)
402
+ prof = cur.get("presets", {}).get(preset_name)
403
+ if prof:
404
+ self._apply_profile_instance(prof)
405
+ print(f"[DSHF] Профиль загружен: {preset_name}")
406
+ except Exception as e:
407
+ print(f"[DSHF] Не удалось загрузить пресет: {e}")
408
+
409
+ # Автоподбор конца кривой
410
+ auto = self._auto_scale_end(p)
411
+ if auto is not None:
412
+ self._inst_curve_scale_end = float(auto)
413
+
414
+ # -------- СИНХРОНИЗАЦИЯ instance → class (то, что читает U-Net) --------
415
+ DSHF.enabled = True
416
+ DSHF.actions = list(self._inst_actions)
417
+ DSHF.curve_enable = bool(self._inst_curve_enable)
418
+ DSHF.curve_type = str(self._inst_curve_type)
419
+ DSHF.curve_t_start = float(self._inst_curve_t_start)
420
+ DSHF.curve_t_end = float(self._inst_curve_t_end)
421
+ DSHF.curve_scale_start = float(self._inst_curve_scale_start)
422
+ DSHF.curve_scale_end = float(self._inst_curve_scale_end)
423
+ DSHF.curve_alpha = float(self._inst_curve_alpha)
424
+ DSHF.min_feature_size = int(self._inst_min_feature_size)
425
+ DSHF.auto_end_enable = bool(self._inst_auto_end_enable)
426
+ DSHF.auto_end_strength = float(self._inst_auto_end_strength)
427
+ DSHF.interp_method = str(self._inst_interp_method)
428
+ DSHF.interp_antialias = bool(self._inst_interp_antialias)
429
+ DSHF.channels_last = bool(self._inst_channels_last)
430
+ # experimental
431
+ DSHF.exp_section_enable = bool(self._inst_exp_section_enable)
432
+ DSHF.exp_enable = bool(self._inst_exp_section_enable and self._inst_exp_enable)
433
+ DSHF.exp_timestep = float(self._inst_exp_timestep)
434
+ DSHF.exp_scales = list(self._inst_exp_scales)
435
+ DSHF.exp_dilations = list(self._inst_exp_dilations)
436
+ DSHF.exp_in_muls = list(self._inst_exp_in_muls)
437
+ DSHF.exp_out_muls = list(self._inst_exp_out_muls)
438
+ DSHF.exp_cfg_muls = list(self._inst_exp_cfg_muls)
439
+
440
+ # --------- Профили (instance-вариант, чтобы сохранять то, что в UI) ---------
441
+
442
+ def _export_profile_instance(self) -> Dict[str, Any]:
443
+ return {
444
+ "actions": [a.__dict__ for a in self._inst_actions],
445
+ "curve": dict(
446
+ enable=self._inst_curve_enable, type=self._inst_curve_type,
447
+ t_start=self._inst_curve_t_start, t_end=self._inst_curve_t_end,
448
+ scale_start=self._inst_curve_scale_start, scale_end=self._inst_curve_scale_end,
449
+ alpha=self._inst_curve_alpha, min_feature=self._inst_min_feature_size,
450
+ auto_end_enable=self._inst_auto_end_enable, auto_end_strength=self._inst_auto_end_strength,
451
+ ),
452
+ "runtime": dict(
453
+ interp_method=self._inst_interp_method, interp_antialias=self._inst_interp_antialias,
454
+ channels_last=self._inst_channels_last
455
+ ),
456
+ "experimental": dict(
457
+ section_enable=self._inst_exp_section_enable, enable=self._inst_exp_enable, timestep=self._inst_exp_timestep,
458
+ scales=self._inst_exp_scales, dilations=self._inst_exp_dilations,
459
+ in_muls=self._inst_exp_in_muls, out_muls=self._inst_exp_out_muls, cfg_muls=self._inst_exp_cfg_muls
460
+ ),
461
+ }
462
+
463
+ def _apply_profile_instance(self, data: Dict[str, Any]) -> None:
464
+ try:
465
+ self._inst_actions = [DSHFAction(bool(a.get("enable", True)),
466
+ float(a.get("timestep", 0)),
467
+ int(a.get("depth", 0)),
468
+ float(a.get("scale", 1.0)))
469
+ for a in data.get("actions", [])]
470
+ c = data.get("curve", {})
471
+ self._inst_curve_enable = bool(c.get("enable", False))
472
+ self._inst_curve_type = str(c.get("type", "linear"))
473
+ self._inst_curve_t_start = float(c.get("t_start", 800))
474
+ self._inst_curve_t_end = float(c.get("t_end", 200))
475
+ self._inst_curve_scale_start = float(c.get("scale_start", 1.0))
476
+ self._inst_curve_scale_end = float(c.get("scale_end", 1.0))
477
+ self._inst_curve_alpha = float(_clamp(float(c.get("alpha", 0.5)), 0.0, 1.0))
478
+ self._inst_min_feature_size = int(_clamp(float(c.get("min_feature", 8)), 2, 256))
479
+ self._inst_auto_end_enable = bool(c.get("auto_end_enable", False))
480
+ self._inst_auto_end_strength = float(_clamp(float(c.get("auto_end_strength", 0.35)), 0.0, 1.0))
481
+ r = data.get("runtime", {})
482
+ self._inst_interp_method = str(r.get("interp_method", self._inst_interp_method))
483
+ self._inst_interp_antialias = bool(r.get("interp_antialias", self._inst_interp_antialias))
484
+ self._inst_channels_last = bool(r.get("channels_last", self._inst_channels_last))
485
+ e = data.get("experimental", {})
486
+ self._inst_exp_section_enable = bool(e.get("section_enable", False))
487
+ self._inst_exp_enable = bool(e.get("enable", False))
488
+ self._inst_exp_timestep = float(e.get("timestep", 625))
489
+ self._inst_exp_scales = list(map(float, e.get("scales", [1.0])))
490
+ self._inst_exp_dilations = list(map(int, e.get("dilations", [1])))
491
+ self._inst_exp_in_muls = list(map(float, e.get("in_muls", [1.0])))
492
+ self._inst_exp_out_muls = list(map(float, e.get("out_muls", [1.0])))
493
+ self._inst_exp_cfg_muls = list(map(float, e.get("cfg_muls", [1.0])))
494
+ except Exception as ex:
495
+ print(f"[DSHF] Ошибка применения профиля: {ex}")
496
+
497
+ # --------- Обёртки Conv2d (работают только при включённом experimental) ---------
498
+
499
+ class DSHF_Scale(torch.nn.Module):
500
+ def __init__(self, conv2d_ref: List[torch.nn.Conv2d], get_rt):
501
+ super().__init__()
502
+ self.conv2d_ref = conv2d_ref
503
+ self.get_rt = get_rt # -> (mode, aa, min_feat)
504
+
505
+ def forward(self, h: torch.Tensor):
506
+ if not DSHF.exp_enable or DSHF.currentTimestep < DSHF.exp_timestep:
507
+ return h
508
+ mode, aa, min_feat = self.get_rt()
509
+ idx = DSHF.currentConv
510
+ pre_scale = 1.0 / _get_or_last(DSHF.exp_scales, idx, 1.0)
511
+ if pre_scale != 1.0:
512
+ h = _resize(h, pre_scale, mode, aa, min_feat)
513
+ conv = self.conv2d_ref[0]
514
+ k = conv.kernel_size if isinstance(conv.kernel_size, tuple) else (conv.kernel_size, conv.kernel_size)
515
+ if max(k) > 1:
516
+ dil = int(_get_or_last(DSHF.exp_dilations, idx, 1))
517
+ conv.dilation = (dil, dil); conv.padding = (dil, dil)
518
+ else:
519
+ conv.dilation = (1, 1); conv.padding = (0, 0)
520
+ return h
521
+
522
+ class DSHF_Unscale(torch.nn.Module):
523
+ def __init__(self, get_rt):
524
+ super().__init__()
525
+ self.get_rt = get_rt
526
+
527
+ def forward(self, h: torch.Tensor):
528
+ if not DSHF.exp_enable or DSHF.currentTimestep < DSHF.exp_timestep:
529
+ DSHF.currentConv += 1; return h
530
+ mode, aa, min_feat = self.get_rt()
531
+ idx = DSHF.currentConv
532
+ post_scale = _get_or_last(DSHF.exp_scales, idx, 1.0)
533
+ if post_scale != 1.0:
534
+ h = _resize(h, post_scale, mode, aa, min_feat)
535
+ alpha = float(DSHF.curve_alpha)
536
+ if alpha != 0.0:
537
+ h = h * (post_scale ** alpha)
538
+ DSHF.currentConv += 1
539
+ return h
540
+
541
+ class DSHF_InMul(torch.nn.Module):
542
+ def forward(self, h: torch.Tensor):
543
+ if not DSHF.exp_enable or DSHF.currentTimestep < DSHF.exp_timestep:
544
+ return h
545
+ mul = _get_or_last(DSHF.exp_in_muls, DSHF.currentBlock, 1.0)
546
+ return h if mul == 1.0 else h * float(mul)
547
+
548
+ class DSHF_OutMul(torch.nn.Module):
549
+ def forward(self, h: torch.Tensor):
550
+ if not DSHF.exp_enable or DSHF.currentTimestep < DSHF.exp_timestep:
551
+ return h
552
+ mul = _get_or_last(DSHF.exp_out_muls, DSHF.currentBlock, 1.0)
553
+ return h if mul == 1.0 else h * float(mul)
554
+
555
+ # ---------------- Подменённый U-Net ----------------
556
+
557
+ class DeepShrinkHiresFixUNet(sd_unet.SdUnet):
558
+ def __init__(self, _model):
559
+ super().__init__()
560
+ self.model = _model.to(devices.device)
561
+ getter = lambda: (DSHF.interp_method, DSHF.interp_antialias, DSHF.min_feature_size)
562
+
563
+ # Оборачивание слоёв
564
+ for i, input_block in enumerate(self.model.input_blocks):
565
+ for j, layer in enumerate(input_block):
566
+ if isinstance(layer, ResBlock):
567
+ for k, in_layer in enumerate(layer.in_layers):
568
+ if isinstance(in_layer, torch.nn.Conv2d):
569
+ self.model.input_blocks[i][j].in_layers[k] = torch.nn.Sequential(
570
+ DSHF.DSHF_Scale([in_layer], getter), in_layer, DSHF.DSHF_Unscale(getter), DSHF.DSHF_InMul()
571
+ )
572
+ for k, out_layer in enumerate(layer.out_layers):
573
+ if isinstance(out_layer, torch.nn.Conv2d):
574
+ self.model.input_blocks[i][j].out_layers[k] = torch.nn.Sequential(
575
+ DSHF.DSHF_Scale([out_layer], getter), out_layer, DSHF.DSHF_Unscale(getter), DSHF.DSHF_OutMul()
576
+ )
577
+ else:
578
+ if isinstance(layer, torch.nn.Conv2d):
579
+ self.model.input_blocks[i][j] = torch.nn.Sequential(
580
+ DSHF.DSHF_Scale([layer], getter), layer, DSHF.DSHF_Unscale(getter)
581
+ )
582
+ if isinstance(layer, Downsample):
583
+ layer.op = torch.nn.Sequential(DSHF.DSHF_Scale([layer.op], getter), layer.op, DSHF.DSHF_Unscale(getter))
584
+ if isinstance(layer, Upsample) and hasattr(layer, "conv") and isinstance(layer.conv, torch.nn.Conv2d):
585
+ layer.conv = torch.nn.Sequential(DSHF.DSHF_Scale([layer.conv], getter), layer.conv, DSHF.DSHF_Unscale(getter))
586
+
587
+ for j, layer in enumerate(self.model.middle_block):
588
+ if isinstance(layer, ResBlock):
589
+ for k, in_layer in enumerate(layer.in_layers):
590
+ if isinstance(in_layer, torch.nn.Conv2d):
591
+ self.model.middle_block[j].in_layers[k] = torch.nn.Sequential(
592
+ DSHF.DSHF_Scale([in_layer], getter), in_layer, DSHF.DSHF_Unscale(getter), DSHF.DSHF_InMul()
593
+ )
594
+ for k, out_layer in enumerate(layer.out_layers):
595
+ if isinstance(out_layer, torch.nn.Conv2d):
596
+ self.model.middle_block[j].out_layers[k] = torch.nn.Sequential(
597
+ DSHF.DSHF_Scale([out_layer], getter), out_layer, DSHF.DSHF_Unscale(getter), DSHF.DSHF_OutMul()
598
+ )
599
+ else:
600
+ if isinstance(layer, torch.nn.Conv2d):
601
+ self.model.middle_block[j] = torch.nn.Sequential(
602
+ DSHF.DSHF_Scale([layer], getter), layer, DSHF.DSHF_Unscale(getter)
603
+ )
604
+ if isinstance(layer, Downsample):
605
+ layer.op = torch.nn.Sequential(DSHF.DSHF_Scale([layer.op], getter), layer.op, DSHF.DSHF_Unscale(getter))
606
+ if isinstance(layer, Upsample) and hasattr(layer, "conv") and isinstance(layer.conv, torch.nn.Conv2d):
607
+ layer.conv = torch.nn.Sequential(DSHF.DSHF_Scale([layer.conv], getter), layer.conv, DSHF.DSHF_Unscale(getter))
608
+
609
+ for i, output_block in enumerate(self.model.output_blocks):
610
+ for j, layer in enumerate(output_block):
611
+ if isinstance(layer, ResBlock):
612
+ for k, in_layer in enumerate(layer.in_layers):
613
+ if isinstance(in_layer, torch.nn.Conv2d):
614
+ self.model.output_blocks[i][j].in_layers[k] = torch.nn.Sequential(
615
+ DSHF.DSHF_Scale([in_layer], getter), in_layer, DSHF.DSHF_Unscale(getter), DSHF.DSHF_InMul()
616
+ )
617
+ for k, out_layer in enumerate(layer.out_layers):
618
+ if isinstance(out_layer, torch.nn.Conv2d):
619
+ self.model.output_blocks[i][j].out_layers[k] = torch.nn.Sequential(
620
+ DSHF.DSHF_Scale([out_layer], getter), out_layer, DSHF.DSHF_Unscale(getter), DSHF.DSHF_OutMul()
621
+ )
622
+ else:
623
+ if isinstance(layer, torch.nn.Conv2d):
624
+ self.model.output_blocks[i][j] = torch.nn.Sequential(
625
+ DSHF.DSHF_Scale([layer], getter), layer, DSHF.DSHF_Unscale(getter)
626
+ )
627
+ if isinstance(layer, Downsample):
628
+ layer.op = torch.nn.Sequential(DSHF.DSHF_Scale([layer.op], getter), layer.op, DSHF.DSHF_Unscale(getter))
629
+ if isinstance(layer, Upsample) and hasattr(layer, "conv") and isinstance(layer.conv, torch.nn.Conv2d):
630
+ layer.conv = torch.nn.Sequential(DSHF.DSHF_Scale([layer.conv], getter), layer.conv, DSHF.DSHF_Unscale(getter))
631
+
632
+ for i, module in enumerate(self.model.out):
633
+ if isinstance(module, torch.nn.Conv2d):
634
+ self.model.out[i] = torch.nn.Sequential(DSHF.DSHF_Scale([module], getter), module, DSHF.DSHF_Unscale(getter))
635
+
636
+ def forward(self, x, timesteps, context, y=None, **kwargs):
637
+ assert (y is not None) == (self.model.num_classes is not None), "must specify y iff class-conditional"
638
+ if DSHF.channels_last:
639
+ x = x.contiguous(memory_format=torch.channels_last)
640
+
641
+ hs = []
642
+ emb = self.model.time_embed(timestep_embedding(timesteps, self.model.model_channels, repeat_only=False))
643
+ if self.model.num_classes is not None:
644
+ assert y.shape[0] == x.shape[0]
645
+ emb = emb + self.model.label_emb(y)
646
+
647
+ h = x.type(self.model.dtype)
648
+ depth = 0
649
+ DSHF.currentBlock = 0
650
+ DSHF.currentConv = 0
651
+ DSHF.currentTimestep = float(timesteps.detach().float().min().item())
652
+
653
+ # Входные блоки
654
+ for module in self.model.input_blocks:
655
+ s = DSHF._block_scale(depth, DSHF.currentTimestep)
656
+ if s is not None:
657
+ h = _resize(h, 1.0 / float(s), DSHF.interp_method, DSHF.interp_antialias, DSHF.min_feature_size)
658
+ context_tmp = context
659
+ if DSHF.exp_enable and DSHF.currentTimestep >= DSHF.exp_timestep:
660
+ cfg_mul = _get_or_last(DSHF.exp_cfg_muls, DSHF.currentBlock, 1.0)
661
+ if cfg_mul != 1.0:
662
+ context_tmp = context * float(cfg_mul)
663
+ h = module(h, emb, context_tmp)
664
+ hs.append(h)
665
+ depth += 1
666
+ DSHF.currentBlock += 1
667
+
668
+ # Средний блок
669
+ s = DSHF._block_scale(depth, DSHF.currentTimestep)
670
+ if s is not None:
671
+ h = _resize(h, 1.0 / float(s), DSHF.interp_method, DSHF.interp_antialias, DSHF.min_feature_size)
672
+ context_tmp = context
673
+ if DSHF.exp_enable and DSHF.currentTimestep >= DSHF.exp_timestep:
674
+ cfg_mul = _get_or_last(DSHF.exp_cfg_muls, DSHF.currentBlock, 1.0)
675
+ if cfg_mul != 1.0:
676
+ context_tmp = context * float(cfg_mul)
677
+ h = self.model.middle_block(h, emb, context_tmp)
678
+ s = DSHF._block_scale(depth, DSHF.currentTimestep)
679
+ if s is not None:
680
+ h = _resize(h, float(s), DSHF.interp_method, DSHF.interp_antialias, DSHF.min_feature_size)
681
+ DSHF.currentBlock += 1
682
+
683
+ # Выходные блоки
684
+ for module in self.model.output_blocks:
685
+ depth -= 1
686
+ h = torch.cat([h, hs.pop()], dim=1)
687
+ context_tmp = context
688
+ if DSHF.exp_enable and DSHF.currentTimestep >= DSHF.exp_timestep:
689
+ cfg_mul = _get_or_last(DSHF.exp_cfg_muls, DSHF.currentBlock, 1.0)
690
+ if cfg_mul != 1.0:
691
+ context_tmp = context * float(cfg_mul)
692
+ h = module(h, emb, context_tmp)
693
+ s = DSHF._block_scale(depth, DSHF.currentTimestep)
694
+ if s is not None:
695
+ h = _resize(h, float(s), DSHF.interp_method, DSHF.interp_antialias, DSHF.min_feature_size)
696
+ DSHF.currentBlock += 1
697
+
698
+ h = h.type(x.dtype)
699
+ return self.model.id_predictor(h) if self.model.predict_codebook_ids else self.model.out(h)
700
+
701
+
702
+ # Регистрация варианта U-Net
703
+ DeepShrinkHiresFixUNetOption = sd_unet.SdUnetOption()
704
+ DeepShrinkHiresFixUNetOption.label = "Deep Shrink Hires.fix"
705
+ DeepShrinkHiresFixUNetOption.create_unet = lambda: DSHF.DeepShrinkHiresFixUNet(shared.sd_model.model.diffusion_model)
706
+ script_callbacks.on_list_unets(lambda unets: unets.append(DeepShrinkHiresFixUNetOption))
DeepShrinkHires2.0.fix/scripts/__pycache__/DeepShrinkHires.fix.cpython-310.pyc ADDED
Binary file (23.6 kB). View file