File size: 27,889 Bytes
c336648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import modules.scripts as scripts
import gradio as gr

import io
import json
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import inspect
import torch
from modules import prompt_parser, devices, sd_samplers_common
import re
from modules.shared import opts, state
import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
import k_diffusion.utils as utils
from k_diffusion.external import CompVisVDenoiser, CompVisDenoiser
from modules.sd_samplers_timesteps import CompVisTimestepsDenoiser, CompVisTimestepsVDenoiser
from modules.sd_samplers_cfg_denoiser import CFGDenoiser, catenate_conds, subscript_cond, pad_cond
from modules import script_callbacks
import copy

try:
    from modules_forge import forge_sampler
    isForge = True
except Exception:
    isForge = False

def solve_least_squares(A, B):
    # print(A.shape)
    # print(B.shape)
    # Compute C = A^T A
    # min_eigenvalues = torch.min( torch.linalg.eigvalsh(C), dim=-1 )
    # eps_e = torch.maximum( min_eigenvalues, min_eigenvalues.new_ones(min_eigenvalues.shape)*1e-3 )[...,]
    C = torch.matmul(A.transpose(-2, -1), A)  # + eps_e*torch.eye(A.shape[-1], device=A.device)
    # Compute the pseudo-inverse of C
    U, S, Vh = torch.linalg.svd(C.float(), full_matrices=False)
    D_inv = torch.diag_embed(1.0 / torch.maximum(S, torch.ones_like(S) * 1e-4))
    C_inv = Vh.transpose(-1,-2).matmul(D_inv).matmul(U.transpose(-1,-2))

    # Compute X = C_inv A^T B
    X = torch.matmul(torch.matmul(C_inv, A.transpose(-2, -1)), B)
    return X


def split_basis(g, n):
    # Define the number of quantiles, n

    # Flatten the last two dimensions of g for easier processing
    g_flat = g.view(g.shape[0], g.shape[1], -1)  # Shape will be (6, 4, 64*64)

    # Calculate quantiles
    quantiles = torch.quantile(g_flat, torch.linspace(0, 1, n + 1, device=g.device), dim=-1).permute(1, 2, 0)

    # Initialize an empty tensor for the output
    output = torch.zeros(*g.shape, n, device=g.device)

    # Use broadcasting and comparisons to fill the output tensor
    for i in range(n):
        lower = quantiles[..., i][..., None, None]
        upper = quantiles[..., i + 1][..., None, None]
        if i < n - 1:
            mask = (g >= lower) & (g < upper)
        else:
            mask = (g >= lower) & (g <= upper)
        output[..., i] = g * mask

    # Reshape output to the desired shape
    output = output.view(*g.shape, n)
    return output

def proj_least_squares(A, B, reg):
    # print(A.shape)
    # print(B.shape)
    # Compute C = A^T A
    C = torch.matmul(A.transpose(-2, -1), A) + reg * torch.eye(A.shape[-1], device=A.device)

    # Compute the eigenvalues and eigenvectors of C
    eigenvalues, eigenvectors = torch.linalg.eigh(C)
    # eigenvalues = torch.maximum( eigenvalues,eigenvalues*0+1e-3  )

    # Diagonal matrix with non-zero eigenvalues in the diagonal
    D_inv = torch.diag_embed(1.0 / torch.maximum(eigenvalues, torch.ones_like(eigenvalues) * 1e-4))

    # Compute the pseudo-inverse of C
    C_inv = torch.matmul(torch.matmul(eigenvectors, D_inv), eigenvectors.transpose(-2, -1))

    # Compute X = C_inv A^T B
    B_proj = torch.matmul(A, torch.matmul(torch.matmul(C_inv, A.transpose(-2, -1)), B))
    return B_proj


def Chara_iteration(self, *args, **kwargs):
    # print('Chara_iteration Working')
    if not isForge:
        dxs, x_in, sigma_in, tensor, uncond, cond_scale, image_cond_in, is_edit_model, skip_uncond, make_condition_dict, batch_cond_uncond, batch_size = args 
        cond_in=kwargs["cond_in"]
        x_out = kwargs["x_out"]
        # function being evaluated must have x_in and cond_in as first and second input
        def x_out_evaluation(x_in, cond_in, sigma_in, image_cond_in):
            return self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
        def eps_evaluation(x_in, cond_in, t_in, image_cond_in):
            return self.inner_model.get_eps(x_in, t_in, cond=make_condition_dict(cond_in, image_cond_in))
        def v_evaluation(x_in, cond_in, t_in, image_cond_in):
            return self.inner_model.get_v(x_in, t_in, cond=make_condition_dict(cond_in, image_cond_in))
        def eps_legacy_evaluation(x_in, cond_in, t_in, image_cond_in):
            return self.inner_model(x_in, t_in, cond=make_condition_dict(cond_in, image_cond_in))
        if tensor.shape[1] == uncond.shape[1] or skip_uncond:
            if batch_cond_uncond:
                def evaluation(func, x_in, conds, *args, **kwargs):
                    tensor, uncond, cond_in = conds
                    return func(x_in, cond_in, *args, **kwargs)
            else:
                def evaluation(func, x_in, conds, *args, **kwargs):
                    x_out = torch.zeros_like(x_in)
                    tensor, uncond, cond_in = conds
                    for batch_offset in range(0, x_out.shape[0], batch_size):
                        a = batch_offset
                        b = a + batch_size
                        x_out[a:b] = func(x_in[a:b],subscript_cond(cond_in, a, b), *[arg[a:b] for arg in args], **kwargs)
                    return x_out
        else:
            def evaluation(func, x_in, conds, *args, **kwargs):
                x_out = torch.zeros_like(x_in)
                tensor, uncond, cond_in = conds
                batch_Size = batch_size*2 if batch_cond_uncond else batch_size
                for batch_offset in range(0, tensor.shape[0], batch_Size):
                    a = batch_offset
                    b = min(a + batch_Size, tensor.shape[0])

                    if not is_edit_model:
                        c_crossattn = subscript_cond(tensor, a, b)
                    else:
                        c_crossattn = torch.cat([tensor[a:b]], uncond)

                    x_out[a:b] = func(x_in[a:b], c_crossattn, *[arg[a:b] for arg in args], **kwargs)

                if not skip_uncond:
                    x_out[-uncond.shape[0]:] = func(x_in[-uncond.shape[0]:], uncond, *[arg[-uncond.shape[0]:] for arg in args], **kwargs)

                return x_out
        if is_edit_model or skip_uncond:
            return evaluation(x_out_evaluation, x_in, (tensor, uncond, cond_in), sigma_in, image_cond_in)
        else:
            evaluations = [eps_evaluation, v_evaluation, eps_legacy_evaluation, evaluation]
            ite_paras = [dxs, x_in, sigma_in, tensor, uncond, cond_scale, image_cond_in, is_edit_model, skip_uncond, make_condition_dict, batch_cond_uncond, batch_size, cond_in, x_out]
            dxs_add = chara_ite_inner_loop(self, evaluations, ite_paras)
            return evaluation(x_out_evaluation, x_in + dxs_add, (tensor, uncond, cond_in), sigma_in, image_cond_in)
    else:
        model,dxs,x_in, sigma_in,cond_scale,uncond, c = args
        # print('dxs', dxs)
        # print('x_in', (x_in.dtype))
        # print('x_in',(x_in))
        # print('sigma_in',sigma_in)
        # print('cond_scale',cond_scale)
        # print('uncond',uncond)
        def evaluation(func, x_in, t_in, c):
            # tensor, uncond, cond_in = conds
            # print('x_in eval',x_in.shape)
            return func(x_in, t_in, c)

        def eps_evaluation(x_in, t_in, c):
            # print('x_in',x_in.dtype)
            # print('t_in',t_in.dtype)
            x_out = model.apply_model(x_in,t_in,**c)
            # print('x_out',x_out.dtype)
            t_in_expand = t_in.view(t_in.shape[:1] + (1,) * (x_in.ndim - 1))
            eps_out = (x_in - x_out)#/t_in_expand.half() # t_in_expand = ((1- abt)/abt)**0.5
            # This eps_out here is actually ((1- abt)/abt)**0.5*eps
            return eps_out

        def v_evaluation(x_in, t_in, c):
            #print('model v evaluation')
            x_out = model.apply_model(x_in, t_in, **c)
            t_in_expand = t_in.view(t_in.shape[:1] + (1,) * (x_in.ndim - 1))
            sigma_data = model.model_sampling.sigma_data
            v_out = (x_in* sigma_data**2 - (sigma_data**2 + t_in_expand**2)*x_out)/(t_in_expand*sigma_data*(t_in_expand**2+sigma_data**2)** 0.5)
            return v_out

        def x_out_evaluation(x_in, t_in, c):
            # t_in_expand = t_in.view(t_in.shape[:1] + (1,) * (x_in.ndim - 1))
            # x_in =  x_in*((t_in_expand ** 2 + 1 ** 2) ** 0.5)
            # print('x out evaluation control', c['control']['middle'])
            x_out = model.apply_model(x_in, t_in,**c)
            return x_out

        def eps_legacy_evaluation(x_in, t_in, c):
            return self.inner_model(x_in, t_in, **c)
            # return self.inner_model.get_eps(x_in, t_in, cond=make_condition_dict(cond_in, image_cond_in))
        evaluations = [eps_evaluation, v_evaluation, None, evaluation]
        ite_paras = [model,dxs,x_in, sigma_in,cond_scale,uncond, c]
        dxs_add = chara_ite_inner_loop(self, evaluations, ite_paras)
        # print('dxs_add',dxs_add)
        return evaluation(x_out_evaluation, x_in + dxs_add, sigma_in, c)

def chara_ite_inner_loop(self, evaluations, ite_paras):
    eps_evaluation, v_evaluation, eps_legacy_evaluation, evaluation = evaluations
    if isForge:
        model,dxs,x_in, sigma_in,cond_scale,uncond, c = ite_paras
        # print('inside inner loop control',c['control']['middle'])
        sigma_in = sigma_in.to(x_in.device)
    else:
        dxs, x_in, sigma_in, tensor, uncond, cond_scale, image_cond_in, is_edit_model, skip_uncond, make_condition_dict, batch_cond_uncond, batch_size, cond_in, x_out = ite_paras
    if dxs is None:
        dxs = torch.zeros_like(x_in[-uncond.shape[0]:])
    if self.radio_controlnet == "More Prompt":
        control_net_weights = []
        for script in self.process_p.scripts.scripts:
            if script.title() == "ControlNet":
                try:
                    for param in script.latest_network.control_params:
                        control_net_weights.append(param.weight)
                        param.weight = 0.
                except:
                    pass

    res_thres = self.res_thres
    
    num_x_in_cond = len(x_in[:-uncond.shape[0]])//len(dxs)
    # print('x_in',x_in.shape)
    # print('uncond',uncond.shape[0])
    h = cond_scale*num_x_in_cond

    if isinstance(self.inner_model, CompVisDenoiser):
        # print('sigma_in',sigma_in.device)
        # print('inner model log sigma',self.inner_model.log_sigmas.device)
        t_in = self.inner_model.sigma_to_t(sigma_in.to(self.inner_model.log_sigmas.device),quantize=True)
        abt = self.inner_model.inner_model.alphas_cumprod.to(t_in.device)[t_in.long()]
        c_out, c_in = [utils.append_dims(x, x_in.ndim) for x in self.inner_model.get_scalings(sigma_in)]
    elif isinstance(self.inner_model, CompVisVDenoiser):
        t_in = self.inner_model.sigma_to_t(sigma_in.to(self.inner_model.log_sigmas.device),quantize=True)
        abt = self.inner_model.inner_model.alphas_cumprod.to(t_in.device)[t_in.long()]
        c_skip, c_out, c_in = [utils.append_dims(x, x_in.ndim) for x in self.inner_model.get_scalings(sigma_in)]
    elif isinstance(self.inner_model, CompVisTimestepsDenoiser) or isinstance(self.inner_model,
                                                                                CompVisTimestepsVDenoiser):
        if isForge:
            abt_table = self.alphas
            def timestep(sigma,abt_table):
                abt = (1/(1+sigma**2)).to(sigma.device)
                dists = abt - abt_table.to(sigma.device)[:, None]
                return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
            t_in = timestep(sigma_in,abt_table)
            print('timestep t_in',t_in)
        else:
            t_in = sigma_in
        abt = self.alphas.to(t_in.device)[t_in.long()]
    else:
        raise NotImplementedError()


    scale = ((1 - abt) ** 0.5)[-uncond.shape[0]:, None, None, None].to(x_in.device)
    scale_f = ((abt) ** 0.5)[-uncond.shape[0]:, None, None, None].to(x_in.device)
    abt_current = abt[-uncond.shape[0]:, None, None, None].to(x_in.device)
    abt_smallest = self.inner_model.inner_model.alphas_cumprod[-1].to(x_in.device)
    # x_in_cond = x_in[:-uncond.shape[0]]
    # x_in_uncond = x_in[-uncond.shape[0]:]
    # print("alphas_cumprod",-torch.log(self.inner_model.inner_model.alphas_cumprod))
    # print("betas",torch.sum(self.inner_model.inner_model.betas))

    dxs_Anderson = []
    g_Anderson = []

    def AndersonAccR(dxs, g, reg_level, reg_target, pre_condition=None, m=3):
        batch = dxs.shape[0]
        x_shape = dxs.shape[1:]
        reg_residual_form = reg_level
        g_flat = g.reshape(batch, -1)
        dxs_flat = dxs.reshape(batch, -1)
        res_g = self.reg_size * (reg_residual_form[:, None] - reg_target[:, None])
        res_dxs = reg_residual_form[:, None]
        g_Anderson.append(torch.cat((g_flat, res_g), dim=-1))
        dxs_Anderson.append(torch.cat((dxs_flat, res_dxs), dim=-1))

        if len(g_Anderson) < 2:
            return dxs, g, res_dxs[:, 0], res_g[:, 0]
        else:
            g_Anderson[-2] = g_Anderson[-1] - g_Anderson[-2]
            dxs_Anderson[-2] = dxs_Anderson[-1] - dxs_Anderson[-2]
            if len(g_Anderson) > m:
                del dxs_Anderson[0]
                del g_Anderson[0]
            gA = torch.cat([g[..., None] for g in g_Anderson[:-1]], dim=-1)
            gB = g_Anderson[-1][..., None]

            gA_norm = torch.maximum(torch.sum(gA ** 2, dim=-2, keepdim=True) ** 0.5, torch.ones_like(gA) * 1e-4)
            # print("gA_norm ",gA_norm.shape)
            # gB_norm = torch.sum( gB**2, dim = -2 , keepdim=True )**0.5 + 1e-6
            # gamma = solve_least_squares(gA/gA_norm, gB)
            gamma = torch.linalg.lstsq(gA / gA_norm, gB).solution
            if torch.sum( torch.isnan(gamma) ) > 0:
                gamma = solve_least_squares(gA/gA_norm, gB)
            xA = torch.cat([x[..., None] for x in dxs_Anderson[:-1]], dim=-1)
            xB = dxs_Anderson[-1][..., None]
            # print("xO print",xB.shape, xA.shape, gA_norm.shape, gamma.shape)
            xO = xB - (xA / gA_norm).matmul(gamma)
            gO = gB - (gA / gA_norm).matmul(gamma)
            dxsO = xO[:, :-1].reshape(batch, *x_shape)
            dgO = gO[:, :-1].reshape(batch, *x_shape)
            resxO = xO[:, -1, 0]
            resgO = gO[:, -1, 0]
            # print("xO",xO.shape)
            # print("gO",gO.shape)
            # print("gamma",gamma.shape)
            return dxsO, dgO, resxO, resgO

    def downsample_reg_g(dx, g_1, reg):
        # DDec_dx = DDec(dx)
        # down_DDec_dx = downsample(DDec_dx, factor=factor)
        # DEnc_dx = DEnc(down_DDec_dx)
        # return DEnc_dx

        if g_1 is None:
            return dx
        elif self.noise_base >= 1:
            # return g_1*torch.sum(g_1*dx, dim = (-1,-2), keepdim=True )/torch.sum( g_1**2, dim = (-1,-2) , keepdim=True )
            A = g_1.reshape(g_1.shape[0] * g_1.shape[1], g_1.shape[2] * g_1.shape[3], g_1.shape[4])
            B = dx.reshape(dx.shape[0] * dx.shape[1], -1, 1)
            regl = reg[:, None].expand(-1, dx.shape[1]).reshape(dx.shape[0] * dx.shape[1], 1, 1)
            dx_proj = proj_least_squares(A, B, regl)

            return dx_proj.reshape(*dx.shape)
        else:
            # return g_1*torch.sum(g_1*dx, dim = (-1,-2), keepdim=True )/torch.sum( g_1**2, dim = (-1,-2) , keepdim=True )
            A = g_1.reshape(g_1.shape[0], g_1.shape[1]* g_1.shape[2] * g_1.shape[3], g_1.shape[4])
            B = dx.reshape(dx.shape[0], -1, 1)
            regl = reg[:, None].reshape(dx.shape[0], 1, 1)
            dx_proj = proj_least_squares(A, B, regl)

            return dx_proj.reshape(*dx.shape)
    g_1 = None

    reg_level = torch.zeros(dxs.shape[0], device=dxs.device) + max(5,self.reg_ini)
    reg_target_level = self.reg_ini * (abt_smallest / abt_current[:, 0, 0, 0]) ** (1 / self.reg_range)
    Converged = False
    eps0_ch, eps1_ch = torch.zeros_like(dxs), torch.zeros_like(dxs)
    best_res_el = torch.mean(dxs, dim=(-1, -2, -3), keepdim=True) + 100
    best_res = 100
    best_dxs = torch.zeros_like(dxs)
    res_max = torch.zeros(dxs.shape[0], device=dxs.device)
    n_iterations = self.ite

    if self.dxs_buffer is not None:
        abt_prev = self.abt_buffer
        dxs = self.dxs_buffer
        # if self.CFGdecayS:
        dxs = dxs * ((abt_prev - abt_current * abt_prev) / (abt_current - abt_current * abt_prev))
        # print(abt_prev.shape, abt_current.shape, self.dxs_buffer.shape)
        dxs = self.chara_decay * dxs
    iteration_counts = 0
    for iteration in range(n_iterations):
        # print(f'********* ite {iteration} *********')
        # important to keep iteration content consistent
        # Supoort AND prompt combination by using multiple dxs for condition part
        def compute_correction_direction(dxs):
            if isForge:
                c_copy = copy.deepcopy(c)
            # print('num_x_in_cond',num_x_in_cond)
            # print('(h - 1) * dxs[:,None,...]', ((h - 1) * dxs[:,None,...]).shape)
            dxs_cond_part = torch.cat( [*( [(h - 1) * dxs[:,None,...]]*num_x_in_cond )], axis=1 ).view( (dxs.shape[0]*num_x_in_cond, *dxs.shape[1:]) )
            dxs_add = torch.cat([ dxs_cond_part, h * dxs], axis=0)
            if isinstance(self.inner_model, CompVisDenoiser):
                if isForge:
                    eps_out = evaluation(eps_evaluation, x_in + dxs_add, sigma_in,c_copy)
                    pred_eps_uncond = eps_out[:-uncond.shape[0]] # forge: c_crossatten[0]: uncondition
                    eps_cond_batch = eps_out[-uncond.shape[0]:] # forge: c_crossatten[1]: condition
                    # print('pred_eps_uncond', pred_eps_uncond.dtype)
                    # print('eps_cond_batch', eps_cond_batch.dtype)
                    eps_cond_batch_target_shape = ( len(eps_cond_batch)//num_x_in_cond, num_x_in_cond, *(eps_cond_batch.shape[1:]) )
                    pred_eps_cond = torch.mean( eps_cond_batch.view(eps_cond_batch_target_shape), dim=1, keepdim=False )
                    # print("scale_f", scale_f)
                    # print('(pred_eps_uncond - pred_eps_cond)',(pred_eps_uncond - pred_eps_cond))
                    # print('pred_eps_cond', pred_eps_cond)
                    # print('scale/c_in',scale / c_in[-uncond.shape[0]:])
                    # print("c_in", c_in[-uncond.shape[0]:])
                    ggg = (pred_eps_uncond - pred_eps_cond) #* (scale / c_in[-uncond.shape[0]:])
                    # print('ggg',ggg)
                else:
                    eps_out = evaluation(eps_evaluation, x_in * c_in + dxs_add * c_in, (tensor, uncond, cond_in), t_in, image_cond_in)
                    pred_eps_uncond = eps_out[-uncond.shape[0]:]
                    eps_cond_batch = eps_out[:-uncond.shape[0]]
                    eps_cond_batch_target_shape = ( len(eps_cond_batch)//num_x_in_cond, num_x_in_cond, *(eps_cond_batch.shape[1:]) )
                    pred_eps_cond = torch.mean( eps_cond_batch.view(eps_cond_batch_target_shape), dim=1, keepdim=False )
                    ggg = (pred_eps_uncond - pred_eps_cond) * scale / c_in[-uncond.shape[0]:]
            elif isinstance(self.inner_model, CompVisVDenoiser):
                if isForge:
                    v_out = evaluation(v_evaluation, x_in+dxs_add,sigma_in,c_copy)
                    eps_out = -c_out*x_in + c_skip**0.5*v_out
                    pred_eps_uncond = eps_out[:-uncond.shape[0]] # forge: c_crossatten[0]: uncondition
                    eps_cond_batch = eps_out[-uncond.shape[0]:] # forge: c_crossatten[1]: condition
                else:
                    v_out = evaluation(v_evaluation, x_in * c_in + dxs_add * c_in, (tensor, uncond, cond_in), t_in, image_cond_in)
                    eps_out = -c_out*x_in + c_skip**0.5*v_out
                    pred_eps_uncond = eps_out[-uncond.shape[0]:]
                    eps_cond_batch = eps_out[:-uncond.shape[0]]
                eps_cond_batch_target_shape = ( len(eps_cond_batch)//num_x_in_cond, num_x_in_cond, *(eps_cond_batch.shape[1:]) )
                pred_eps_cond = torch.mean( eps_cond_batch.view(eps_cond_batch_target_shape), dim=1, keepdim=False )
                ggg = (pred_eps_uncond - pred_eps_cond) * scale / c_in[-uncond.shape[0]:]
            elif isinstance(self.inner_model, CompVisTimestepsDenoiser) or isinstance(self.inner_model,
                                                                                    CompVisTimestepsVDenoiser):
                #eps_out = self.inner_model(x_in + dxs_add, t_in, cond=cond)
                if isForge:
                    eps_out = evaluation(eps_evaluation, x_in + dxs_add, sigma_in, c_copy)
                    pred_eps_uncond = eps_out[:-uncond.shape[0]]  # forge: c_crossatten[0]: uncondition
                    eps_cond_batch = eps_out[-uncond.shape[0]:]  # forge: c_crossatten[1]: condition
                    # print('pred_eps_uncond', pred_eps_uncond.dtype)
                    # print('eps_cond_batch', eps_cond_batch.dtype)
                    eps_cond_batch_target_shape = (
                    len(eps_cond_batch) // num_x_in_cond, num_x_in_cond, *(eps_cond_batch.shape[1:]))
                    pred_eps_cond = torch.mean(eps_cond_batch.view(eps_cond_batch_target_shape), dim=1, keepdim=False)
                    ggg = (pred_eps_uncond - pred_eps_cond)  # * (scale / c_in[-uncond.shape[0]:])
                else:
                    eps_out = evaluation(eps_legacy_evaluation, x_in + dxs_add, (tensor, uncond, cond_in), t_in, image_cond_in)
                    pred_eps_uncond = eps_out[-uncond.shape[0]:]
                    eps_cond_batch = eps_out[:-uncond.shape[0]]
                    eps_cond_batch_target_shape = ( len(eps_cond_batch)//num_x_in_cond, num_x_in_cond, *(eps_cond_batch.shape[1:]) )
                    pred_eps_cond = torch.mean( eps_cond_batch.view(eps_cond_batch_target_shape), dim=1, keepdim=False )
                    ggg = (pred_eps_uncond - pred_eps_cond) * scale
            else:
                raise NotImplementedError()
            return ggg

        # dxs = 0*dxs # for debug, need to command
        ggg = compute_correction_direction(dxs)
        # print('ggg',ggg)
        # print("print(reg_level.shape)", reg_level.shape)
        g = dxs - downsample_reg_g(ggg, g_1, reg_level)
        if g_1 is None:
            g_basis = -compute_correction_direction(dxs*0)
            g_1 = split_basis(g_basis, max( self.noise_base,1 ) )
            # if self.Projg:
            #        g_1 = split_basis( g, self.noise_base)
            # else:
            #        g_1 = split_basis( ggg, self.noise_base)
            # if self.CFGdecayS and self.dxs_buffer is not None:
            #     g_1 = torch.cat( [g_1, self.dxs_buffer[:,:,:,:,None]], dim=-1 )
            # if self.noise_base > 0:
            #    noise_base = torch.randn(g_1.shape[0],g_1.shape[1],g_1.shape[2],g_1.shape[3],self.noise_base, device=g_1.device)
            #    g_1 = torch.cat([g_1, noise_base], dim=-1)
            if self.noise_base >=1:
                g_1_norm = torch.sum(g_1 ** 2, dim=(-2, -3), keepdim=True) ** 0.5
                g_1 = g_1 / torch.maximum(g_1_norm, torch.ones_like(
                    g_1_norm) * 1e-4)  # + self.noise_level*noise/torch.sum( noise**2, dim = (-1,-2) , keepdim=True )
            else:
                g_1_norm = torch.sum(g_1 ** 2, dim=(-2, -3, -4), keepdim=True) ** 0.5
                g_1 = g_1 / torch.maximum(g_1_norm, torch.ones_like(
                    g_1_norm) * 1e-4)  # + self.noise_level*noise/torch.sum( noise**2, dim = (-1,-2) , keepdim=True )
        # Compute regularization level
        reg_Acc = (reg_level * self.reg_w) ** 0.5
        reg_target = (reg_target_level * self.reg_w) ** 0.5
        # Compute residual
        g_flat_res = g.reshape(dxs.shape[0], -1)
        reg_g = self.reg_size * (reg_Acc[:, None] - reg_target[:, None])
        g_flat_res_reg = torch.cat((g_flat_res, reg_g), dim=-1)

        res_x = ((torch.mean((g_flat_res) ** 2, dim=(-1), keepdim=False)) ** 0.5)[:, None, None, None]
        res_el = ((torch.mean((g_flat_res_reg) ** 2, dim=(-1), keepdim=False)) ** 0.5)[:, None, None, None]
        # reg_res = torch.mean( (self.reg_size*torch.abs(reg_level - reg_target))**2 )**0.5
        # reg_res = torch.mean( self.reg_size*torch.abs(reg_level - self.reg_level)/g.shape[-1]/g.shape[-2] )**0.5

        res = torch.mean(res_el)  # + reg_res
        # if res < best_res:
        #    best_res = res
        #    best_dxs = dxs

        if iteration == 0:
            best_res_el = res_el
            best_dxs = dxs
            not_converged = torch.ones_like(res_el).bool()
        # update eps if residual is better
        res_mask = torch.logical_and(res_el < best_res_el, not_converged).int()
        best_res_el = res_mask * res_el + (1 - res_mask) * best_res_el
        # print(res_mask.shape, dxs.shape, best_dxs.shape)
        best_dxs = res_mask * dxs + (1 - res_mask) * best_dxs
        # eps0_ch, eps1_ch = res_mask*pred_eps_uncond + (1-res_mask)*eps0_ch, res_mask*pred_eps_cond + (1-res_mask)*eps1_ch

        res_max = torch.max(best_res_el)
        # print("res_x",  torch.max( res_x ), "reg", torch.max( reg_level), "reg_target", reg_target, "res", res_max )
        not_converged = torch.logical_and(res_el >= res_thres, not_converged)
        # print("not_converged", not_converged.shape)
        # torch._dynamo.graph_break()
        if res_max < res_thres:
            Converged = True
            break
        # v = beta*v + (1-beta)*g**2
        # m = beta_m*m + (1-beta_m)*g
        # g/(v**0.5+eps_delta)
        if self.noise_base >=1:
            aa_dim = self.aa_dim
        else:
            aa_dim = 1
        dxs_Acc, g_Acc, reg_dxs_Acc, reg_g_Acc = AndersonAccR(dxs, g, reg_Acc, reg_target, pre_condition=None,
                                                            m=aa_dim + 1)
        # print(Accout)
        #
        dxs = dxs_Acc - self.lr_chara * g_Acc
        reg_Acc = reg_dxs_Acc - self.lr_chara * reg_g_Acc
        reg_level = reg_Acc ** 2 / self.reg_w

        # reg_target_level = (1+self.reg_level)**( iteration//int(5/self.lr_chara) ) - 1
        # reg_level_mask = (reg_level >= reg_target_level).long()
        # reg_level = reg_level_mask*reg_level + (1-reg_level_mask)*reg_target_level
        # if iteration%int(5) == 0:
        #    dxs_Anderson = []
        #    g_Anderson = []
        iteration_counts = iteration_counts * (1 - not_converged.long()) + iteration * not_converged.long()
    self.ite_infos[0].append(best_res_el)
    # print(iteration_counts[:,0,0,0].shape)
    self.ite_infos[1].append(iteration_counts[:, 0, 0, 0])
    self.ite_infos[2].append(reg_target_level)
    print("Characteristic iteration happens", iteration_counts[:, 0, 0, 0] , "times")
    final_dxs = best_dxs * (1 - not_converged.long())
    dxs_cond_part = torch.cat( [*( [(h - 1) * final_dxs[:,None,...]]*num_x_in_cond )], axis=1 ).view( (dxs.shape[0]*num_x_in_cond, *dxs.shape[1:]) )
    dxs_add = torch.cat([ dxs_cond_part, h * final_dxs], axis=0)
    #dxs_add = torch.cat([ *( [(h - 1) * final_dxs,]*num_x_in_cond ), h * final_dxs], axis=0)
    self.dxs_buffer = final_dxs
    self.abt_buffer = abt_current

    if self.radio_controlnet == "More Prompt":
        controlnet_count = 0
        for script in self.process_p.scripts.scripts:
            if script.title() == "ControlNet":
                try:
                    for param in script.latest_network.control_params:
                        param.weight = control_net_weights[controlnet_count]
                        controlnet_count += 1
                except:
                    pass          
    return dxs_add