- handler.py +65 -0
handler.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from diffusers import AutoPipelineForText2Image
|
| 4 |
+
import torch
|
| 5 |
+
import base64
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class EndpointHandler():
|
| 11 |
+
def __init__(self, path=""):
|
| 12 |
+
self.pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
| 13 |
+
self.pipe.to("cuda")
|
| 14 |
+
|
| 15 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 16 |
+
"""
|
| 17 |
+
data args:
|
| 18 |
+
inputs (:obj: `str`)
|
| 19 |
+
date (:obj: `str`)
|
| 20 |
+
Return:
|
| 21 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
| 22 |
+
"""
|
| 23 |
+
# get inputs
|
| 24 |
+
inputs = data.pop("inputs", data)
|
| 25 |
+
encoded_image = data.pop("image", None)
|
| 26 |
+
encoded_mask_image = data.pop("mask_image", None)
|
| 27 |
+
|
| 28 |
+
# hyperparamters
|
| 29 |
+
num_inference_steps = data.pop("num_inference_steps", 25)
|
| 30 |
+
guidance_scale = data.pop("guidance_scale", 7.5)
|
| 31 |
+
negative_prompt = data.pop("negative_prompt", None)
|
| 32 |
+
height = data.pop("height", None)
|
| 33 |
+
width = data.pop("width", None)
|
| 34 |
+
|
| 35 |
+
# process image
|
| 36 |
+
if encoded_image is not None and encoded_mask_image is not None:
|
| 37 |
+
image = self.decode_base64_image(encoded_image)
|
| 38 |
+
mask_image = self.decode_base64_image(encoded_mask_image)
|
| 39 |
+
else:
|
| 40 |
+
image = None
|
| 41 |
+
mask_image = None
|
| 42 |
+
|
| 43 |
+
# run inference pipeline
|
| 44 |
+
out = self.pipe(inputs,
|
| 45 |
+
image=image,
|
| 46 |
+
mask_image=mask_image,
|
| 47 |
+
num_inference_steps=num_inference_steps,
|
| 48 |
+
guidance_scale=guidance_scale,
|
| 49 |
+
num_images_per_prompt=1,
|
| 50 |
+
negative_prompt=negative_prompt,
|
| 51 |
+
height=height,
|
| 52 |
+
width=width
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# return first generate PIL image
|
| 56 |
+
return out.images[0]
|
| 57 |
+
|
| 58 |
+
# helper to decode input image
|
| 59 |
+
def decode_base64_image(self, image_string):
|
| 60 |
+
base64_image = base64.b64decode(image_string)
|
| 61 |
+
buffer = BytesIO(base64_image)
|
| 62 |
+
image = Image.open(buffer)
|
| 63 |
+
return image
|
| 64 |
+
|
| 65 |
+
|