Melissa Roemmele
commited on
Commit
·
11f10ff
1
Parent(s):
f948afb
Updated handler.py
Browse files- handler.py +52 -30
handler.py
CHANGED
|
@@ -1,38 +1,60 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
from typing import Any, Dict
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
|
| 5 |
|
| 6 |
-
class EndpointHandler:
|
| 7 |
def __init__(self, path=""):
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
| 18 |
inputs = data.pop("inputs", data)
|
| 19 |
parameters = data.pop("parameters", {})
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import transformers
|
| 3 |
from typing import Any, Dict
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
|
| 6 |
|
| 7 |
+
class EndpointHandler():
|
| 8 |
def __init__(self, path=""):
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(path,
|
| 10 |
+
torch_dtype=torch.float16,
|
| 11 |
+
trust_remote_code=True)
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
| 13 |
+
#device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
self.pipeline = transformers.pipeline('text-generation',
|
| 15 |
+
model=model,
|
| 16 |
+
tokenizer=tokenizer,
|
| 17 |
+
device_map="auto")
|
| 18 |
+
|
| 19 |
+
def __call__(self, data: Dict[str, Any]):
|
| 20 |
inputs = data.pop("inputs", data)
|
| 21 |
parameters = data.pop("parameters", {})
|
| 22 |
+
with torch.autocast(self.pipeline.device.type, dtype=torch.float16):
|
| 23 |
+
outputs = self.pipeline(inputs,
|
| 24 |
+
**parameters)
|
| 25 |
+
return outputs
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# class EndpointHandler:
|
| 29 |
+
# def __init__(self, path=""):
|
| 30 |
+
# # load model and tokenizer from path
|
| 31 |
+
# self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 32 |
+
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
+
# self.model = AutoModelForCausalLM.from_pretrained(path,
|
| 34 |
+
# device_map="auto",
|
| 35 |
+
# torch_dtype=torch.float16,
|
| 36 |
+
# trust_remote_code=True)
|
| 37 |
+
|
| 38 |
+
# def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
| 39 |
+
# # process input
|
| 40 |
+
# inputs = data.pop("inputs", data)
|
| 41 |
+
# parameters = data.pop("parameters", {})
|
| 42 |
+
# return_full_text = parameters.pop("return_full_text", True)
|
| 43 |
+
|
| 44 |
+
# # preprocess
|
| 45 |
+
# inputs = self.tokenizer(inputs,
|
| 46 |
+
# return_tensors="pt",
|
| 47 |
+
# return_token_type_ids=False)
|
| 48 |
+
# inputs = inputs.to(self.device)
|
| 49 |
+
# input_len = len(inputs[0])
|
| 50 |
+
|
| 51 |
+
# outputs = self.model.generate(**inputs, **parameters)[0]
|
| 52 |
+
|
| 53 |
+
# if not return_full_text:
|
| 54 |
+
# outputs = outputs[input_len:]
|
| 55 |
+
|
| 56 |
+
# # postprocess the prediction
|
| 57 |
+
# prediction = self.tokenizer.decode(outputs,
|
| 58 |
+
# skip_special_tokens=True)
|
| 59 |
+
|
| 60 |
+
# return [{"generated_text": prediction}]
|