Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +471 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +7 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: setfit
|
| 3 |
+
tags:
|
| 4 |
+
- setfit
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- text-classification
|
| 7 |
+
- generated_from_setfit_trainer
|
| 8 |
+
base_model: sentence-transformers/all-MiniLM-L12-v2
|
| 9 |
+
metrics:
|
| 10 |
+
- accuracy
|
| 11 |
+
widget:
|
| 12 |
+
- text: Quel est le principal litige dans les projets de construction, et quel droit
|
| 13 |
+
de la partie accusee
|
| 14 |
+
- text: Clarifier quels sont les facteurs déterminants dans le choix d'un emplacement
|
| 15 |
+
pour un nouveau magasin
|
| 16 |
+
- text: Compare ces deux documents
|
| 17 |
+
- text: Can you explain the process of wind energy generation and discuss its environmental
|
| 18 |
+
impacts compared to those of hydroelectric power?
|
| 19 |
+
- text: Could you restate the advantages of using project management software that
|
| 20 |
+
were mentioned earlier? Provide a linkedin post about it
|
| 21 |
+
pipeline_tag: text-classification
|
| 22 |
+
inference: true
|
| 23 |
+
model-index:
|
| 24 |
+
- name: SetFit with sentence-transformers/all-MiniLM-L12-v2
|
| 25 |
+
results:
|
| 26 |
+
- task:
|
| 27 |
+
type: text-classification
|
| 28 |
+
name: Text Classification
|
| 29 |
+
dataset:
|
| 30 |
+
name: Unknown
|
| 31 |
+
type: unknown
|
| 32 |
+
split: test
|
| 33 |
+
metrics:
|
| 34 |
+
- type: accuracy
|
| 35 |
+
value: 0.9333333333333333
|
| 36 |
+
name: Accuracy
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
# SetFit with sentence-transformers/all-MiniLM-L12-v2
|
| 40 |
+
|
| 41 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
| 42 |
+
|
| 43 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 44 |
+
|
| 45 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 46 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 47 |
+
|
| 48 |
+
## Model Details
|
| 49 |
+
|
| 50 |
+
### Model Description
|
| 51 |
+
- **Model Type:** SetFit
|
| 52 |
+
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2)
|
| 53 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 54 |
+
- **Maximum Sequence Length:** 128 tokens
|
| 55 |
+
- **Number of Classes:** 5 classes
|
| 56 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 57 |
+
<!-- - **Language:** Unknown -->
|
| 58 |
+
<!-- - **License:** Unknown -->
|
| 59 |
+
|
| 60 |
+
### Model Sources
|
| 61 |
+
|
| 62 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 63 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 64 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 65 |
+
|
| 66 |
+
### Model Labels
|
| 67 |
+
| Label | Examples |
|
| 68 |
+
|:-----------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 69 |
+
| sub_queries | <ul><li>'Could you break down the main factors I should consider when researching market prices and how to effectively communicate our needs to the supplier during negotiations?'</li><li>'Comment faire pousser une plante et le mesurer ?'</li><li>"Quel est le meilleur matériau pour l'isolation phonique et thermique?"</li></ul> |
|
| 70 |
+
| simple_questions | <ul><li>'What are the key strategies for maintaining efficient communication in a remote work environment?'</li><li>'Could you summarize the ways a person can help in adapting to climate change ?'</li><li>'What are the current trends in construction?'</li></ul> |
|
| 71 |
+
| exchange | <ul><li>'Could you please restate your last explanation using simpler terms?'</li><li>'Could you restate the impact of augmented reality on design practices?'</li><li>'Pourriez-vous me donner un résumé des principaux points abordés dans notre conversation précédente ?'</li></ul> |
|
| 72 |
+
| compare | <ul><li>'How do the conclusions differ?'</li><li>'Contrast the main arguments presented in each paper'</li><li>'Quelles sont les principales différences dans les programmes éducatifs décrits dans ces documents ?'</li></ul> |
|
| 73 |
+
| summary | <ul><li>'Que dois-je retenir de ce doc ?'</li><li>'What are the key assertions made within the text'</li><li>'What are the most important argument stated in the document?'</li></ul> |
|
| 74 |
+
|
| 75 |
+
## Evaluation
|
| 76 |
+
|
| 77 |
+
### Metrics
|
| 78 |
+
| Label | Accuracy |
|
| 79 |
+
|:--------|:---------|
|
| 80 |
+
| **all** | 0.9333 |
|
| 81 |
+
|
| 82 |
+
## Uses
|
| 83 |
+
|
| 84 |
+
### Direct Use for Inference
|
| 85 |
+
|
| 86 |
+
First install the SetFit library:
|
| 87 |
+
|
| 88 |
+
```bash
|
| 89 |
+
pip install setfit
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
Then you can load this model and run inference.
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
from setfit import SetFitModel
|
| 96 |
+
|
| 97 |
+
# Download from the 🤗 Hub
|
| 98 |
+
model = SetFitModel.from_pretrained("egis-group/router_mini_lm_l12")
|
| 99 |
+
# Run inference
|
| 100 |
+
preds = model("Compare ces deux documents")
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
<!--
|
| 104 |
+
### Downstream Use
|
| 105 |
+
|
| 106 |
+
*List how someone could finetune this model on their own dataset.*
|
| 107 |
+
-->
|
| 108 |
+
|
| 109 |
+
<!--
|
| 110 |
+
### Out-of-Scope Use
|
| 111 |
+
|
| 112 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 113 |
+
-->
|
| 114 |
+
|
| 115 |
+
<!--
|
| 116 |
+
## Bias, Risks and Limitations
|
| 117 |
+
|
| 118 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 119 |
+
-->
|
| 120 |
+
|
| 121 |
+
<!--
|
| 122 |
+
### Recommendations
|
| 123 |
+
|
| 124 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 125 |
+
-->
|
| 126 |
+
|
| 127 |
+
## Training Details
|
| 128 |
+
|
| 129 |
+
### Training Set Metrics
|
| 130 |
+
| Training set | Min | Median | Max |
|
| 131 |
+
|:-------------|:----|:--------|:----|
|
| 132 |
+
| Word count | 4 | 13.4389 | 48 |
|
| 133 |
+
|
| 134 |
+
| Label | Training Sample Count |
|
| 135 |
+
|:---------|:----------------------|
|
| 136 |
+
| negative | 0 |
|
| 137 |
+
| positive | 0 |
|
| 138 |
+
|
| 139 |
+
### Training Hyperparameters
|
| 140 |
+
- batch_size: (16, 16)
|
| 141 |
+
- num_epochs: (4, 4)
|
| 142 |
+
- max_steps: -1
|
| 143 |
+
- sampling_strategy: oversampling
|
| 144 |
+
- body_learning_rate: (2e-05, 1e-05)
|
| 145 |
+
- head_learning_rate: 0.01
|
| 146 |
+
- loss: CosineSimilarityLoss
|
| 147 |
+
- distance_metric: cosine_distance
|
| 148 |
+
- margin: 0.25
|
| 149 |
+
- end_to_end: False
|
| 150 |
+
- use_amp: False
|
| 151 |
+
- warmup_proportion: 0.1
|
| 152 |
+
- seed: 42
|
| 153 |
+
- eval_max_steps: -1
|
| 154 |
+
- load_best_model_at_end: True
|
| 155 |
+
|
| 156 |
+
### Training Results
|
| 157 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 158 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
| 159 |
+
| 0.0003 | 1 | 0.4073 | - |
|
| 160 |
+
| 0.0151 | 50 | 0.3054 | - |
|
| 161 |
+
| 0.0303 | 100 | 0.2066 | - |
|
| 162 |
+
| 0.0454 | 150 | 0.2664 | - |
|
| 163 |
+
| 0.0606 | 200 | 0.2463 | - |
|
| 164 |
+
| 0.0757 | 250 | 0.214 | - |
|
| 165 |
+
| 0.0909 | 300 | 0.1892 | - |
|
| 166 |
+
| 0.1060 | 350 | 0.1402 | - |
|
| 167 |
+
| 0.1212 | 400 | 0.1804 | - |
|
| 168 |
+
| 0.1363 | 450 | 0.0571 | - |
|
| 169 |
+
| 0.1515 | 500 | 0.0979 | - |
|
| 170 |
+
| 0.1666 | 550 | 0.1775 | - |
|
| 171 |
+
| 0.1818 | 600 | 0.0377 | - |
|
| 172 |
+
| 0.1969 | 650 | 0.0398 | - |
|
| 173 |
+
| 0.2121 | 700 | 0.0423 | - |
|
| 174 |
+
| 0.2272 | 750 | 0.0036 | - |
|
| 175 |
+
| 0.2424 | 800 | 0.0079 | - |
|
| 176 |
+
| 0.2575 | 850 | 0.0049 | - |
|
| 177 |
+
| 0.2726 | 900 | 0.0018 | - |
|
| 178 |
+
| 0.2878 | 950 | 0.0018 | - |
|
| 179 |
+
| 0.3029 | 1000 | 0.0032 | - |
|
| 180 |
+
| 0.3181 | 1050 | 0.0019 | - |
|
| 181 |
+
| 0.3332 | 1100 | 0.0008 | - |
|
| 182 |
+
| 0.3484 | 1150 | 0.0006 | - |
|
| 183 |
+
| 0.3635 | 1200 | 0.0006 | - |
|
| 184 |
+
| 0.3787 | 1250 | 0.0011 | - |
|
| 185 |
+
| 0.3938 | 1300 | 0.0005 | - |
|
| 186 |
+
| 0.4090 | 1350 | 0.001 | - |
|
| 187 |
+
| 0.4241 | 1400 | 0.0009 | - |
|
| 188 |
+
| 0.4393 | 1450 | 0.0004 | - |
|
| 189 |
+
| 0.4544 | 1500 | 0.0003 | - |
|
| 190 |
+
| 0.4696 | 1550 | 0.0003 | - |
|
| 191 |
+
| 0.4847 | 1600 | 0.0006 | - |
|
| 192 |
+
| 0.4998 | 1650 | 0.0003 | - |
|
| 193 |
+
| 0.5150 | 1700 | 0.0002 | - |
|
| 194 |
+
| 0.5301 | 1750 | 0.0002 | - |
|
| 195 |
+
| 0.5453 | 1800 | 0.0005 | - |
|
| 196 |
+
| 0.5604 | 1850 | 0.0003 | - |
|
| 197 |
+
| 0.5756 | 1900 | 0.0002 | - |
|
| 198 |
+
| 0.5907 | 1950 | 0.0002 | - |
|
| 199 |
+
| 0.6059 | 2000 | 0.0001 | - |
|
| 200 |
+
| 0.6210 | 2050 | 0.0002 | - |
|
| 201 |
+
| 0.6362 | 2100 | 0.0002 | - |
|
| 202 |
+
| 0.6513 | 2150 | 0.0001 | - |
|
| 203 |
+
| 0.6665 | 2200 | 0.0002 | - |
|
| 204 |
+
| 0.6816 | 2250 | 0.0002 | - |
|
| 205 |
+
| 0.6968 | 2300 | 0.0002 | - |
|
| 206 |
+
| 0.7119 | 2350 | 0.0002 | - |
|
| 207 |
+
| 0.7271 | 2400 | 0.0002 | - |
|
| 208 |
+
| 0.7422 | 2450 | 0.0002 | - |
|
| 209 |
+
| 0.7573 | 2500 | 0.0001 | - |
|
| 210 |
+
| 0.7725 | 2550 | 0.0001 | - |
|
| 211 |
+
| 0.7876 | 2600 | 0.0002 | - |
|
| 212 |
+
| 0.8028 | 2650 | 0.0001 | - |
|
| 213 |
+
| 0.8179 | 2700 | 0.0002 | - |
|
| 214 |
+
| 0.8331 | 2750 | 0.0007 | - |
|
| 215 |
+
| 0.8482 | 2800 | 0.0001 | - |
|
| 216 |
+
| 0.8634 | 2850 | 0.0001 | - |
|
| 217 |
+
| 0.8785 | 2900 | 0.0001 | - |
|
| 218 |
+
| 0.8937 | 2950 | 0.0001 | - |
|
| 219 |
+
| 0.9088 | 3000 | 0.0001 | - |
|
| 220 |
+
| 0.9240 | 3050 | 0.0002 | - |
|
| 221 |
+
| 0.9391 | 3100 | 0.0001 | - |
|
| 222 |
+
| 0.9543 | 3150 | 0.0001 | - |
|
| 223 |
+
| 0.9694 | 3200 | 0.0001 | - |
|
| 224 |
+
| 0.9846 | 3250 | 0.0001 | - |
|
| 225 |
+
| 0.9997 | 3300 | 0.0002 | - |
|
| 226 |
+
| 1.0 | 3301 | - | 0.0001 |
|
| 227 |
+
| 1.0148 | 3350 | 0.0003 | - |
|
| 228 |
+
| 1.0300 | 3400 | 0.0002 | - |
|
| 229 |
+
| 1.0451 | 3450 | 0.0001 | - |
|
| 230 |
+
| 1.0603 | 3500 | 0.0001 | - |
|
| 231 |
+
| 1.0754 | 3550 | 0.0001 | - |
|
| 232 |
+
| 1.0906 | 3600 | 0.0001 | - |
|
| 233 |
+
| 1.1057 | 3650 | 0.0001 | - |
|
| 234 |
+
| 1.1209 | 3700 | 0.0002 | - |
|
| 235 |
+
| 1.1360 | 3750 | 0.0001 | - |
|
| 236 |
+
| 1.1512 | 3800 | 0.0001 | - |
|
| 237 |
+
| 1.1663 | 3850 | 0.0001 | - |
|
| 238 |
+
| 1.1815 | 3900 | 0.0001 | - |
|
| 239 |
+
| 1.1966 | 3950 | 0.001 | - |
|
| 240 |
+
| 1.2118 | 4000 | 0.0001 | - |
|
| 241 |
+
| 1.2269 | 4050 | 0.0001 | - |
|
| 242 |
+
| 1.2420 | 4100 | 0.0001 | - |
|
| 243 |
+
| 1.2572 | 4150 | 0.0001 | - |
|
| 244 |
+
| 1.2723 | 4200 | 0.0001 | - |
|
| 245 |
+
| 1.2875 | 4250 | 0.0001 | - |
|
| 246 |
+
| 1.3026 | 4300 | 0.0001 | - |
|
| 247 |
+
| 1.3178 | 4350 | 0.0 | - |
|
| 248 |
+
| 1.3329 | 4400 | 0.0001 | - |
|
| 249 |
+
| 1.3481 | 4450 | 0.0001 | - |
|
| 250 |
+
| 1.3632 | 4500 | 0.0001 | - |
|
| 251 |
+
| 1.3784 | 4550 | 0.0001 | - |
|
| 252 |
+
| 1.3935 | 4600 | 0.0001 | - |
|
| 253 |
+
| 1.4087 | 4650 | 0.0001 | - |
|
| 254 |
+
| 1.4238 | 4700 | 0.0001 | - |
|
| 255 |
+
| 1.4390 | 4750 | 0.0001 | - |
|
| 256 |
+
| 1.4541 | 4800 | 0.0 | - |
|
| 257 |
+
| 1.4693 | 4850 | 0.0 | - |
|
| 258 |
+
| 1.4844 | 4900 | 0.0001 | - |
|
| 259 |
+
| 1.4995 | 4950 | 0.0001 | - |
|
| 260 |
+
| 1.5147 | 5000 | 0.0001 | - |
|
| 261 |
+
| 1.5298 | 5050 | 0.0001 | - |
|
| 262 |
+
| 1.5450 | 5100 | 0.0 | - |
|
| 263 |
+
| 1.5601 | 5150 | 0.0001 | - |
|
| 264 |
+
| 1.5753 | 5200 | 0.0 | - |
|
| 265 |
+
| 1.5904 | 5250 | 0.0 | - |
|
| 266 |
+
| 1.6056 | 5300 | 0.0001 | - |
|
| 267 |
+
| 1.6207 | 5350 | 0.0 | - |
|
| 268 |
+
| 1.6359 | 5400 | 0.0001 | - |
|
| 269 |
+
| 1.6510 | 5450 | 0.0 | - |
|
| 270 |
+
| 1.6662 | 5500 | 0.0001 | - |
|
| 271 |
+
| 1.6813 | 5550 | 0.0001 | - |
|
| 272 |
+
| 1.6965 | 5600 | 0.0 | - |
|
| 273 |
+
| 1.7116 | 5650 | 0.0 | - |
|
| 274 |
+
| 1.7267 | 5700 | 0.0 | - |
|
| 275 |
+
| 1.7419 | 5750 | 0.0001 | - |
|
| 276 |
+
| 1.7570 | 5800 | 0.0001 | - |
|
| 277 |
+
| 1.7722 | 5850 | 0.0 | - |
|
| 278 |
+
| 1.7873 | 5900 | 0.0 | - |
|
| 279 |
+
| 1.8025 | 5950 | 0.0001 | - |
|
| 280 |
+
| 1.8176 | 6000 | 0.0002 | - |
|
| 281 |
+
| 1.8328 | 6050 | 0.0 | - |
|
| 282 |
+
| 1.8479 | 6100 | 0.0001 | - |
|
| 283 |
+
| 1.8631 | 6150 | 0.0001 | - |
|
| 284 |
+
| 1.8782 | 6200 | 0.0001 | - |
|
| 285 |
+
| 1.8934 | 6250 | 0.0 | - |
|
| 286 |
+
| 1.9085 | 6300 | 0.0001 | - |
|
| 287 |
+
| 1.9237 | 6350 | 0.0 | - |
|
| 288 |
+
| 1.9388 | 6400 | 0.0001 | - |
|
| 289 |
+
| 1.9540 | 6450 | 0.0001 | - |
|
| 290 |
+
| 1.9691 | 6500 | 0.0 | - |
|
| 291 |
+
| 1.9842 | 6550 | 0.0 | - |
|
| 292 |
+
| 1.9994 | 6600 | 0.0 | - |
|
| 293 |
+
| 2.0 | 6602 | - | 0.0 |
|
| 294 |
+
| 2.0145 | 6650 | 0.0 | - |
|
| 295 |
+
| 2.0297 | 6700 | 0.0 | - |
|
| 296 |
+
| 2.0448 | 6750 | 0.0 | - |
|
| 297 |
+
| 2.0600 | 6800 | 0.0 | - |
|
| 298 |
+
| 2.0751 | 6850 | 0.0 | - |
|
| 299 |
+
| 2.0903 | 6900 | 0.0001 | - |
|
| 300 |
+
| 2.1054 | 6950 | 0.0 | - |
|
| 301 |
+
| 2.1206 | 7000 | 0.0 | - |
|
| 302 |
+
| 2.1357 | 7050 | 0.0 | - |
|
| 303 |
+
| 2.1509 | 7100 | 0.0001 | - |
|
| 304 |
+
| 2.1660 | 7150 | 0.0 | - |
|
| 305 |
+
| 2.1812 | 7200 | 0.0 | - |
|
| 306 |
+
| 2.1963 | 7250 | 0.0 | - |
|
| 307 |
+
| 2.2115 | 7300 | 0.0 | - |
|
| 308 |
+
| 2.2266 | 7350 | 0.0001 | - |
|
| 309 |
+
| 2.2417 | 7400 | 0.0 | - |
|
| 310 |
+
| 2.2569 | 7450 | 0.0 | - |
|
| 311 |
+
| 2.2720 | 7500 | 0.0001 | - |
|
| 312 |
+
| 2.2872 | 7550 | 0.0001 | - |
|
| 313 |
+
| 2.3023 | 7600 | 0.0 | - |
|
| 314 |
+
| 2.3175 | 7650 | 0.0 | - |
|
| 315 |
+
| 2.3326 | 7700 | 0.0 | - |
|
| 316 |
+
| 2.3478 | 7750 | 0.0 | - |
|
| 317 |
+
| 2.3629 | 7800 | 0.0 | - |
|
| 318 |
+
| 2.3781 | 7850 | 0.0 | - |
|
| 319 |
+
| 2.3932 | 7900 | 0.0 | - |
|
| 320 |
+
| 2.4084 | 7950 | 0.0 | - |
|
| 321 |
+
| 2.4235 | 8000 | 0.0 | - |
|
| 322 |
+
| 2.4387 | 8050 | 0.0 | - |
|
| 323 |
+
| 2.4538 | 8100 | 0.0001 | - |
|
| 324 |
+
| 2.4689 | 8150 | 0.0 | - |
|
| 325 |
+
| 2.4841 | 8200 | 0.0001 | - |
|
| 326 |
+
| 2.4992 | 8250 | 0.0 | - |
|
| 327 |
+
| 2.5144 | 8300 | 0.0 | - |
|
| 328 |
+
| 2.5295 | 8350 | 0.0001 | - |
|
| 329 |
+
| 2.5447 | 8400 | 0.0 | - |
|
| 330 |
+
| 2.5598 | 8450 | 0.0 | - |
|
| 331 |
+
| 2.5750 | 8500 | 0.0 | - |
|
| 332 |
+
| 2.5901 | 8550 | 0.0001 | - |
|
| 333 |
+
| 2.6053 | 8600 | 0.0001 | - |
|
| 334 |
+
| 2.6204 | 8650 | 0.0 | - |
|
| 335 |
+
| 2.6356 | 8700 | 0.0 | - |
|
| 336 |
+
| 2.6507 | 8750 | 0.0 | - |
|
| 337 |
+
| 2.6659 | 8800 | 0.0 | - |
|
| 338 |
+
| 2.6810 | 8850 | 0.0 | - |
|
| 339 |
+
| 2.6962 | 8900 | 0.0 | - |
|
| 340 |
+
| 2.7113 | 8950 | 0.0 | - |
|
| 341 |
+
| 2.7264 | 9000 | 0.0 | - |
|
| 342 |
+
| 2.7416 | 9050 | 0.0001 | - |
|
| 343 |
+
| 2.7567 | 9100 | 0.0001 | - |
|
| 344 |
+
| 2.7719 | 9150 | 0.0 | - |
|
| 345 |
+
| 2.7870 | 9200 | 0.0001 | - |
|
| 346 |
+
| 2.8022 | 9250 | 0.0 | - |
|
| 347 |
+
| 2.8173 | 9300 | 0.0 | - |
|
| 348 |
+
| 2.8325 | 9350 | 0.0 | - |
|
| 349 |
+
| 2.8476 | 9400 | 0.0 | - |
|
| 350 |
+
| 2.8628 | 9450 | 0.0 | - |
|
| 351 |
+
| 2.8779 | 9500 | 0.0 | - |
|
| 352 |
+
| 2.8931 | 9550 | 0.0 | - |
|
| 353 |
+
| 2.9082 | 9600 | 0.0 | - |
|
| 354 |
+
| 2.9234 | 9650 | 0.0 | - |
|
| 355 |
+
| 2.9385 | 9700 | 0.0 | - |
|
| 356 |
+
| 2.9537 | 9750 | 0.0 | - |
|
| 357 |
+
| 2.9688 | 9800 | 0.0 | - |
|
| 358 |
+
| 2.9839 | 9850 | 0.0 | - |
|
| 359 |
+
| 2.9991 | 9900 | 0.0 | - |
|
| 360 |
+
| 3.0 | 9903 | - | 0.0 |
|
| 361 |
+
| 3.0142 | 9950 | 0.0 | - |
|
| 362 |
+
| 3.0294 | 10000 | 0.0 | - |
|
| 363 |
+
| 3.0445 | 10050 | 0.0 | - |
|
| 364 |
+
| 3.0597 | 10100 | 0.0 | - |
|
| 365 |
+
| 3.0748 | 10150 | 0.0 | - |
|
| 366 |
+
| 3.0900 | 10200 | 0.0 | - |
|
| 367 |
+
| 3.1051 | 10250 | 0.0001 | - |
|
| 368 |
+
| 3.1203 | 10300 | 0.0001 | - |
|
| 369 |
+
| 3.1354 | 10350 | 0.0 | - |
|
| 370 |
+
| 3.1506 | 10400 | 0.0 | - |
|
| 371 |
+
| 3.1657 | 10450 | 0.0 | - |
|
| 372 |
+
| 3.1809 | 10500 | 0.0 | - |
|
| 373 |
+
| 3.1960 | 10550 | 0.0 | - |
|
| 374 |
+
| 3.2111 | 10600 | 0.0 | - |
|
| 375 |
+
| 3.2263 | 10650 | 0.0 | - |
|
| 376 |
+
| 3.2414 | 10700 | 0.0 | - |
|
| 377 |
+
| 3.2566 | 10750 | 0.0 | - |
|
| 378 |
+
| 3.2717 | 10800 | 0.0 | - |
|
| 379 |
+
| 3.2869 | 10850 | 0.0 | - |
|
| 380 |
+
| 3.3020 | 10900 | 0.0 | - |
|
| 381 |
+
| 3.3172 | 10950 | 0.0 | - |
|
| 382 |
+
| 3.3323 | 11000 | 0.0 | - |
|
| 383 |
+
| 3.3475 | 11050 | 0.0 | - |
|
| 384 |
+
| 3.3626 | 11100 | 0.0 | - |
|
| 385 |
+
| 3.3778 | 11150 | 0.0 | - |
|
| 386 |
+
| 3.3929 | 11200 | 0.0 | - |
|
| 387 |
+
| 3.4081 | 11250 | 0.0001 | - |
|
| 388 |
+
| 3.4232 | 11300 | 0.0 | - |
|
| 389 |
+
| 3.4384 | 11350 | 0.0 | - |
|
| 390 |
+
| 3.4535 | 11400 | 0.0 | - |
|
| 391 |
+
| 3.4686 | 11450 | 0.0 | - |
|
| 392 |
+
| 3.4838 | 11500 | 0.0 | - |
|
| 393 |
+
| 3.4989 | 11550 | 0.0 | - |
|
| 394 |
+
| 3.5141 | 11600 | 0.0 | - |
|
| 395 |
+
| 3.5292 | 11650 | 0.0 | - |
|
| 396 |
+
| 3.5444 | 11700 | 0.0 | - |
|
| 397 |
+
| 3.5595 | 11750 | 0.0 | - |
|
| 398 |
+
| 3.5747 | 11800 | 0.0 | - |
|
| 399 |
+
| 3.5898 | 11850 | 0.0 | - |
|
| 400 |
+
| 3.6050 | 11900 | 0.0 | - |
|
| 401 |
+
| 3.6201 | 11950 | 0.0 | - |
|
| 402 |
+
| 3.6353 | 12000 | 0.0 | - |
|
| 403 |
+
| 3.6504 | 12050 | 0.0 | - |
|
| 404 |
+
| 3.6656 | 12100 | 0.0001 | - |
|
| 405 |
+
| 3.6807 | 12150 | 0.0 | - |
|
| 406 |
+
| 3.6958 | 12200 | 0.0 | - |
|
| 407 |
+
| 3.7110 | 12250 | 0.0 | - |
|
| 408 |
+
| 3.7261 | 12300 | 0.0 | - |
|
| 409 |
+
| 3.7413 | 12350 | 0.0 | - |
|
| 410 |
+
| 3.7564 | 12400 | 0.0 | - |
|
| 411 |
+
| 3.7716 | 12450 | 0.0 | - |
|
| 412 |
+
| 3.7867 | 12500 | 0.0 | - |
|
| 413 |
+
| 3.8019 | 12550 | 0.0 | - |
|
| 414 |
+
| 3.8170 | 12600 | 0.0 | - |
|
| 415 |
+
| 3.8322 | 12650 | 0.0 | - |
|
| 416 |
+
| 3.8473 | 12700 | 0.0 | - |
|
| 417 |
+
| 3.8625 | 12750 | 0.0 | - |
|
| 418 |
+
| 3.8776 | 12800 | 0.0 | - |
|
| 419 |
+
| 3.8928 | 12850 | 0.0 | - |
|
| 420 |
+
| 3.9079 | 12900 | 0.0 | - |
|
| 421 |
+
| 3.9231 | 12950 | 0.0 | - |
|
| 422 |
+
| 3.9382 | 13000 | 0.0 | - |
|
| 423 |
+
| 3.9533 | 13050 | 0.0 | - |
|
| 424 |
+
| 3.9685 | 13100 | 0.0 | - |
|
| 425 |
+
| 3.9836 | 13150 | 0.0 | - |
|
| 426 |
+
| 3.9988 | 13200 | 0.0 | - |
|
| 427 |
+
| **4.0** | **13204** | **-** | **0.0** |
|
| 428 |
+
|
| 429 |
+
* The bold row denotes the saved checkpoint.
|
| 430 |
+
### Framework Versions
|
| 431 |
+
- Python: 3.10.12
|
| 432 |
+
- SetFit: 1.0.3
|
| 433 |
+
- Sentence Transformers: 3.0.1
|
| 434 |
+
- Transformers: 4.39.0
|
| 435 |
+
- PyTorch: 2.3.0+cu121
|
| 436 |
+
- Datasets: 2.19.2
|
| 437 |
+
- Tokenizers: 0.15.2
|
| 438 |
+
|
| 439 |
+
## Citation
|
| 440 |
+
|
| 441 |
+
### BibTeX
|
| 442 |
+
```bibtex
|
| 443 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 444 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 445 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 446 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 447 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 448 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 449 |
+
publisher = {arXiv},
|
| 450 |
+
year = {2022},
|
| 451 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 452 |
+
}
|
| 453 |
+
```
|
| 454 |
+
|
| 455 |
+
<!--
|
| 456 |
+
## Glossary
|
| 457 |
+
|
| 458 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 459 |
+
-->
|
| 460 |
+
|
| 461 |
+
<!--
|
| 462 |
+
## Model Card Authors
|
| 463 |
+
|
| 464 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 465 |
+
-->
|
| 466 |
+
|
| 467 |
+
<!--
|
| 468 |
+
## Model Card Contact
|
| 469 |
+
|
| 470 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 471 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "checkpoints/step_13204",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 384,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 1536,
|
| 14 |
+
"layer_norm_eps": 1e-12,
|
| 15 |
+
"max_position_embeddings": 512,
|
| 16 |
+
"model_type": "bert",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 12,
|
| 19 |
+
"pad_token_id": 0,
|
| 20 |
+
"position_embedding_type": "absolute",
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.39.0",
|
| 23 |
+
"type_vocab_size": 2,
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"vocab_size": 30522
|
| 26 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.0.1",
|
| 4 |
+
"transformers": "4.39.0",
|
| 5 |
+
"pytorch": "2.3.0+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
config_setfit.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"normalize_embeddings": false,
|
| 3 |
+
"labels": [
|
| 4 |
+
"negative",
|
| 5 |
+
"positive"
|
| 6 |
+
]
|
| 7 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:40e4cc7db0adcc18ad2ffb99b2b10140583b345bcfc9069ad9dbaac3ab83b733
|
| 3 |
+
size 133462128
|
model_head.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:878280bcf58d6869d7a31c866e31de59e398374d8008422dae0b780102ab3a97
|
| 3 |
+
size 16559
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 128,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"max_length": 128,
|
| 50 |
+
"model_max_length": 128,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_to_multiple_of": null,
|
| 53 |
+
"pad_token": "[PAD]",
|
| 54 |
+
"pad_token_type_id": 0,
|
| 55 |
+
"padding_side": "right",
|
| 56 |
+
"sep_token": "[SEP]",
|
| 57 |
+
"stride": 0,
|
| 58 |
+
"strip_accents": null,
|
| 59 |
+
"tokenize_chinese_chars": true,
|
| 60 |
+
"tokenizer_class": "BertTokenizer",
|
| 61 |
+
"truncation_side": "right",
|
| 62 |
+
"truncation_strategy": "longest_first",
|
| 63 |
+
"unk_token": "[UNK]"
|
| 64 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|