File size: 10,151 Bytes
2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 c3f8f15 2a3a1e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
---
library_name: transformers
license: apache-2.0
base_model: google/pegasus-xsum
datasets:
- eilamc14/wikilarge-clean
language:
- en
tags:
- pegasus
- text-simplification
- WikiLarge
model-index:
- name: pegasus-xsum-text-simplification
results:
- task:
type: text2text-generation
name: Text Simplification
dataset:
name: ASSET
type: facebook/asset
url: https://huggingface.co/datasets/facebook/asset
split: test
metrics:
- type: SARI
value: 33.80
- type: FKGL
value: 9.23
- type: BERTScore
value: 87.54
- type: LENS
value: 62.46
- type: Identical ratio
value: 0.29
- type: Identical ratio (ci)
value: 0.29
- task:
type: text2text-generation
name: Text Simplification
dataset:
name: MEDEASI
type: cbasu/Med-EASi
url: https://huggingface.co/datasets/cbasu/Med-EASi
split: test
metrics:
- type: SARI
value: 32.68
- type: FKGL
value: 10.98
- type: BERTScore
value: 45.14
- type: LENS
value: 50.55
- type: Identical ratio
value: 0.30
- type: Identical ratio (ci)
value: 0.30
- task:
type: text2text-generation
name: Text Simplification
dataset:
name: OneStopEnglish
type: OneStopEnglish
url: https://github.com/nishkalavallabhi/OneStopEnglishCorpus
split: advanced→elementary
metrics:
- type: SARI
value: 37.07
- type: FKGL
value: 8.66
- type: BERTScore
value: 77.77
- type: LENS
value: 60.97
- type: Identical ratio
value: 0.40
- type: Identical ratio (ci)
value: 0.40
---
# Model Card for Model ID
This is one of the models fine-tuned on text simplification for [Simplify This](https://github.com/eilamc14/Simplify-This) project.
## Model Details
### Model Description
Fine-tuned **sequence-to-sequence (encoder–decoder) Transformer** for **English text simplification**.
Trained on the dataset **`eilamc14/wikilarge-clean`** (cleaned WikiLarge-style pairs).
- **Model type:** Seq2Seq Transformer (encoder–decoder)
- **Language (NLP):** English
- **License:** `apache-2.0`
- **Finetuned from model:** `google/pegasus-xsum`
### Model Sources
- **Repository (code):** https://github.com/eilamc14/Simplify-This
- **Dataset:** https://huggingface.co/datasets/eilamc14/wikilarge-clean
- **Paper [optional]:** —
- **Demo [optional]:** —
## Uses
### Direct Use
The model is intended for **English text simplification**.
- **Input format:** `Simplify: <complex sentence>`
- **Output:** `<simplified sentence>`
**Typical uses**
- Research on automatic text simplification
- Benchmarking against other simplification systems
- Demos/prototypes that require simpler English rewrites
### Downstream Use
This repository already contains a **fine-tuned** model specialized for text simplification.
Further fine-tuning is **optional** and mainly relevant when:
- Adapting to a markedly different domain (e.g., medical/legal/news)
- Addressing specific failure modes (e.g., over/under-simplification, factual drops)
- Distilling/quantizing for deployment constraints
When fine-tuning further, keep the same input convention: `Simplify: <...>`.
### Out-of-Scope Use
Not intended for:
- Tasks unrelated to simplification (dialogue, translation etc.)
- Production use without additional safety filtering (no toxicity/bias mitigation)
- Languages other than English
- High-stakes settings (legal/medical advice, safety-critical decisions)
## Bias, Risks, and Limitations
The model was trained on **Wikipedia and Simple English Wikipedia** alignments (via WikiLarge).
As a result, it inherits the characteristics and limitations of this data:
- **Domain bias:** Simplifications may reflect encyclopedic style; performance may degrade on informal, technical, or domain-specific text (e.g., medical/legal/news).
- **Content bias:** Wikipedia content itself contains biases in coverage, cultural perspective, and phrasing. Simplified outputs may reflect or amplify these.
- **Simplification quality:** The model may:
- Over-simplify (drop important details)
- Under-simplify (retain complex phrasing)
- Produce ungrammatical or awkward rephrasings
- **Language limitation:** Only suitable for English. Applying to other languages is unsupported.
- **Safety limitation:** The model has not been aligned to avoid toxic, biased, or harmful content. If the input text contains such content, the output may reproduce or modify it without safeguards.
### Recommendations
- **Evaluation required:** Always evaluate the model in the target domain before deployment. Benchmark simplification quality (e.g., with SARI, FKGL, BERTScore, LENS, human evaluation).
- **Human oversight:** Use human-in-the-loop review for applications where meaning preservation is critical (education, accessibility tools, etc.).
- **Attribution:** Preserve source attribution where required (Wikipedia → CC BY-SA).
- **Not for high-stakes use:** Avoid legal, medical, or safety-critical applications without extensive validation and domain adaptation.
## How to Get Started with the Model
Load the model and tokenizer directly from the Hugging Face Hub:
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model_id = "eilamc14/bart-base-text-simplification"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
# Example input
PREFIX = "Simplify: "
text = "The committee deemed the proposal unnecessarily complicated."
# Tokenize and generate
inputs = tokenizer(PREFIX+text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=64, num_beams=4)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Details
### Training Data
[WikiLarge-clean](https://huggingface.co/datasets/eilamc14/wikilarge-clean) Dataset
### Training Procedure
- **Hardware:** NVIDIA L4 GPU on Google Colab
- **Objective:** Standard sequence-to-sequence cross-entropy loss
- **Training type:** Full fine-tuning of all parameters (no LoRA/PEFT used)
- **Batching:** Dynamic padding with Hugging Face `Trainer` / PyTorch DataLoader
- **Evaluation:** Monitored on the `validation` split with metrics (SARI and identical_ratio)
- **Stopping criteria:** Early stopping CallBack based on validation performance
#### Preprocessing
The dataset was preprocessed by prefixing each source sentence with **"Simplify: "** and tokenizing both the source (inputs) and target (labels).
#### Memory & Checkpointing
To reduce VRAM during training, gradient checkpointing was enabled and the KV cache was disabled:
```python
model.config.use_cache = False # required when using gradient checkpointing
model.gradient_checkpointing_enable() # saves memory at the cost of extra compute
```
**Notes**
- Disabling `use_cache` avoids warnings/conflicts with gradient checkpointing and reduces memory usage in the forward pass.
- Gradient checkpointing trades **GPU memory ↓** for **training speed ↓** (extra recomputation).
- For **inference/evaluation**, re-enable the cache for faster generation:
```python
model.config.use_cache = True
```
#### Training Hyperparameters
The models were trained with Hugging Face `Seq2SeqTrainingArguments`.
Hyperparameters varied slightly across models and runs to optimize, and full logs (batch size, steps, exact LR schedule) were not preserved.
Below are the **typical defaults** used:
- **Epochs:** 5
- **Evaluation strategy:** every 300 steps
- **Save strategy:** every 300 steps (keep best model, `eval_loss` as criterion)
- **Learning rate:** ~3e-5
- **Batch size:** ~8-64 , depends on model size
- **Optimizer:** `adamw_torch_fused`
- **Precision:** bf16
- **Generation config (during eval):** `max_length=128`, `num_beams=4`, `predict_with_generate=True`
- **Other settings:**
- Weight decay: 0.01
- Label smoothing: 0.1
- Warmup ratio: 0.1
- Max grad norm: 0.5
- Dataloader workers: 8 (L4 GPU)
> Because hyperparameters were adjusted between runs and not all were logged, exact reproduction may differ slightly.
## Evaluation
### Testing Data
- [**ASSET**](https://huggingface.co/datasets/facebook/asset) (test subset)
- [**MEDEASI**](https://huggingface.co/datasets/cbasu/Med-EASi) (test subset)
- [**OneStopEnglish**](https://github.com/nishkalavallabhi/OneStopEnglishCorpus) (advanced → elementary)
### Metrics
- **Identical ratio** — share of outputs identical to the source, both normalized by basic, language-agnostic: strip, NFKC, collapse spaces
- **Identical ratio (ci)** — case insensitive identical ratio
- **SARI** — main simplification metric (higher is better)
- **FKGL** — readability grade level (lower is simpler)
- **BERTScore (F1)** — semantic similarity (higher is better)
- **LENS** — composite simplification quality score (higher is better)
### Generation Arguments
```python
gen_args = dict(
max_new_tokens=64,
num_beams=4,
length_penalty=1.0,
no_repeat_ngram_size=3,
early_stopping=True,
do_sample=False,
)
```
### Results
| Dataset | Identical ratio | Identical ratio (ci) | SARI | FKGL | BERTScore | LENS |
|--------------------|----------------:|---------------------:|------:|-----:|----------:|------:|
| **ASSET** | 0.29 | 0.29 | 33.80 | 9.23 | 87.54 | 62.46 |
| **MEDEASI** | 0.30 | 0.30 | 32.68 | 10.98| 45.14 | 50.55 |
| **OneStopEnglish** | 0.40 | 0.40 | 37.07 | 8.66 | 77.77 | 60.97 |
## Environmental Impact
- **Hardware Type:** Single NVIDIA L4 GPU (Google Colab)
- **Hours used:** Approx. 5–10
- **Cloud Provider:** Google Cloud (via Colab)
- **Compute Region:** Unknown (Google Colab dynamic allocation)
- **Carbon Emitted:** Estimated to be very low (< a few kg CO₂eq), since training was limited to a single GPU for a small number of hours.
## Citation
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed] |