Create model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# model.py
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import math
|
| 5 |
+
|
| 6 |
+
class SelfAttention(nn.Module):
|
| 7 |
+
def __init__(self, embed_dim, num_heads):
|
| 8 |
+
super().__init__()
|
| 9 |
+
assert embed_dim % num_heads == 0
|
| 10 |
+
self.head_dim = embed_dim // num_heads
|
| 11 |
+
self.num_heads = num_heads
|
| 12 |
+
|
| 13 |
+
self.query = nn.Linear(embed_dim, embed_dim)
|
| 14 |
+
self.key = nn.Linear(embed_dim, embed_dim)
|
| 15 |
+
self.value = nn.Linear(embed_dim, embed_dim)
|
| 16 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim)
|
| 17 |
+
|
| 18 |
+
def forward(self, x):
|
| 19 |
+
B, T, C = x.size()
|
| 20 |
+
q = self.query(x).view(B, T, self.num_heads, self.head_dim).transpose(1, 2) # (B, heads, T, head_dim)
|
| 21 |
+
k = self.key(x).view(B, T, self.num_heads, self.head_dim).transpose(1, 2)
|
| 22 |
+
v = self.value(x).view(B, T, self.num_heads, self.head_dim).transpose(1, 2)
|
| 23 |
+
|
| 24 |
+
scores = (q @ k.transpose(-2, -1)) / math.sqrt(self.head_dim) # (B, heads, T, T)
|
| 25 |
+
mask = torch.tril(torch.ones(T, T)).to(x.device)
|
| 26 |
+
scores = scores.masked_fill(mask == 0, float('-inf'))
|
| 27 |
+
attn = torch.softmax(scores, dim=-1)
|
| 28 |
+
|
| 29 |
+
out = attn @ v # (B, heads, T, head_dim)
|
| 30 |
+
out = out.transpose(1, 2).contiguous().view(B, T, C)
|
| 31 |
+
return self.out_proj(out)
|
| 32 |
+
|
| 33 |
+
class TransformerBlock(nn.Module):
|
| 34 |
+
def __init__(self, embed_dim, num_heads):
|
| 35 |
+
super().__init__()
|
| 36 |
+
self.attn = SelfAttention(embed_dim, num_heads)
|
| 37 |
+
self.ln1 = nn.LayerNorm(embed_dim)
|
| 38 |
+
self.ff = nn.Sequential(
|
| 39 |
+
nn.Linear(embed_dim, embed_dim * 4),
|
| 40 |
+
nn.GELU(),
|
| 41 |
+
nn.Linear(embed_dim * 4, embed_dim)
|
| 42 |
+
)
|
| 43 |
+
self.ln2 = nn.LayerNorm(embed_dim)
|
| 44 |
+
|
| 45 |
+
def forward(self, x):
|
| 46 |
+
x = x + self.attn(self.ln1(x))
|
| 47 |
+
x = x + self.ff(self.ln2(x))
|
| 48 |
+
return x
|
| 49 |
+
|
| 50 |
+
class TinyTransformer(nn.Module):
|
| 51 |
+
def __init__(self, vocab_size, max_len, embed_dim=128, num_heads=2, num_layers=1):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.token_embed = nn.Embedding(vocab_size, embed_dim)
|
| 54 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, max_len, embed_dim))
|
| 55 |
+
self.blocks = nn.ModuleList([
|
| 56 |
+
TransformerBlock(embed_dim, num_heads) for _ in range(num_layers)
|
| 57 |
+
])
|
| 58 |
+
self.ln_final = nn.LayerNorm(embed_dim)
|
| 59 |
+
self.head = nn.Linear(embed_dim, vocab_size)
|
| 60 |
+
|
| 61 |
+
def forward(self, x):
|
| 62 |
+
B, T = x.size()
|
| 63 |
+
tok_emb = self.token_embed(x) # (B, T, C)
|
| 64 |
+
pos_emb = self.pos_embed[:, :T, :] # (1, T, C)
|
| 65 |
+
x = tok_emb + pos_emb # (B, T, C)
|
| 66 |
+
|
| 67 |
+
for block in self.blocks:
|
| 68 |
+
x = block(x)
|
| 69 |
+
|
| 70 |
+
x = self.ln_final(x)
|
| 71 |
+
logits = self.head(x) # (B, T, vocab_size)
|
| 72 |
+
return logits
|