Delete handler.py
Browse files- handler.py +0 -42
handler.py
DELETED
|
@@ -1,42 +0,0 @@
|
|
| 1 |
-
from typing import Dict, List, Any
|
| 2 |
-
import torch
|
| 3 |
-
from torch import autocast
|
| 4 |
-
from diffusers import StableDiffusionPipeline
|
| 5 |
-
import base64
|
| 6 |
-
from io import BytesIO
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
# set device
|
| 10 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 11 |
-
|
| 12 |
-
if device.type != 'cuda':
|
| 13 |
-
raise ValueError("need to run on GPU")
|
| 14 |
-
|
| 15 |
-
class EndpointHandler():
|
| 16 |
-
def __init__(self, path=""):
|
| 17 |
-
# load the optimized model
|
| 18 |
-
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
| 19 |
-
self.pipe = self.pipe.to(device)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
| 23 |
-
"""
|
| 24 |
-
Args:
|
| 25 |
-
data (:obj:):
|
| 26 |
-
includes the input data and the parameters for the inference.
|
| 27 |
-
Return:
|
| 28 |
-
A :obj:`dict`:. base64 encoded image
|
| 29 |
-
"""
|
| 30 |
-
inputs = data.pop("inputs", data)
|
| 31 |
-
|
| 32 |
-
# run inference pipeline
|
| 33 |
-
with autocast(device.type):
|
| 34 |
-
image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
|
| 35 |
-
|
| 36 |
-
# encode image as base 64
|
| 37 |
-
buffered = BytesIO()
|
| 38 |
-
image.save(buffered, format="JPEG")
|
| 39 |
-
img_str = base64.b64encode(buffered.getvalue())
|
| 40 |
-
|
| 41 |
-
# postprocess the prediction
|
| 42 |
-
return {"image": img_str.decode()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|