Upload finetuned dclm-german model
Browse files- special_tokens_map.json +30 -0
- tiktoken.py +391 -0
- tokenizer_config.json +34 -0
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|endoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<|endoftext|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<|endoftext|>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tiktoken.py
ADDED
|
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 MosaicML LLM Foundry authors
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
from functools import lru_cache
|
| 5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 6 |
+
|
| 7 |
+
from transformers import PreTrainedTokenizer
|
| 8 |
+
|
| 9 |
+
__all__ = [
|
| 10 |
+
'TiktokenTokenizerWrapper',
|
| 11 |
+
]
|
| 12 |
+
|
| 13 |
+
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible."""
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Taken from
|
| 17 |
+
# https://github.com/huggingface/transformers/blob/8aca43bdb3cb9a5020f6d57589d85679dc873b1c/src/transformers/models/gpt2/tokenization_gpt2.py#L62-L84
|
| 18 |
+
@lru_cache()
|
| 19 |
+
def bytes_to_unicode():
|
| 20 |
+
"""Returns list of utf-8 byte and a mapping to unicode strings.
|
| 21 |
+
|
| 22 |
+
We specifically avoids mapping to whitespace/control characters the bpe code
|
| 23 |
+
barfs on.
|
| 24 |
+
|
| 25 |
+
The reversible bpe codes work on unicode strings. This means you need a
|
| 26 |
+
large # of unicode characters in your vocab if you want to avoid UNKs. When
|
| 27 |
+
you're at something like a 10B token dataset you end up needing around 5K
|
| 28 |
+
for decent coverage. This is a significant percentage of your normal, say,
|
| 29 |
+
32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and
|
| 30 |
+
unicode strings.
|
| 31 |
+
"""
|
| 32 |
+
bs = (
|
| 33 |
+
list(range(ord('!'),
|
| 34 |
+
ord('~') + 1)) + list(range(ord('¡'),
|
| 35 |
+
ord('¬') + 1)) +
|
| 36 |
+
list(range(ord('®'),
|
| 37 |
+
ord('ÿ') + 1))
|
| 38 |
+
)
|
| 39 |
+
cs = bs[:]
|
| 40 |
+
n = 0
|
| 41 |
+
for b in range(2**8):
|
| 42 |
+
if b not in bs:
|
| 43 |
+
bs.append(b)
|
| 44 |
+
cs.append(2**8 + n)
|
| 45 |
+
n += 1
|
| 46 |
+
cs = [chr(n) for n in cs]
|
| 47 |
+
return dict(zip(bs, cs))
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
| 51 |
+
"""A thin wrapper around tiktoken to make it compatible with Hugging Face.
|
| 52 |
+
|
| 53 |
+
tokenizers.
|
| 54 |
+
|
| 55 |
+
See HuggingFace for further documentation on general tokenizer methods.
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
model_input_names = ['input_ids', 'attention_mask']
|
| 59 |
+
|
| 60 |
+
def __init__(
|
| 61 |
+
self,
|
| 62 |
+
model_name: Optional[str] = None,
|
| 63 |
+
encoding_name: Optional[str] = None,
|
| 64 |
+
add_bos_token: bool = False,
|
| 65 |
+
add_eos_token: bool = False,
|
| 66 |
+
use_default_system_prompt: bool = False,
|
| 67 |
+
unk_token: Optional[str] = '<|endoftext|>',
|
| 68 |
+
eos_token: Optional[str] = '<|endoftext|>',
|
| 69 |
+
bos_token: Optional[str] = '<|endoftext|>',
|
| 70 |
+
pad_token: Optional[str] = None,
|
| 71 |
+
errors: str = 'replace',
|
| 72 |
+
**kwargs: Any,
|
| 73 |
+
):
|
| 74 |
+
"""Constructor creates a tiktoken tokenizer to use as the underlying.
|
| 75 |
+
|
| 76 |
+
tokenizer.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
model_name (Optional[str], optional): The name of the model to load from tiktoken. Defaults to None.
|
| 80 |
+
Either model_name or encoding_name must be set, but not both.
|
| 81 |
+
encoding_name (Optional[str], optional): The name of the encoding to load from tiktoken. Defaults to None.
|
| 82 |
+
Either model_name or encoding_name must be set, but not both.
|
| 83 |
+
add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False.
|
| 84 |
+
add_eos_token (bool, optional): Whether to add eos tokens. Defaults to False.
|
| 85 |
+
use_default_system_prompt (bool, optional): Use the default system prompt or not. Defaults to False.
|
| 86 |
+
unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'.
|
| 87 |
+
eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'.
|
| 88 |
+
bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'.
|
| 89 |
+
pad_token (Optional[str], optional): The pad token. Defaults to None.
|
| 90 |
+
errors (str, optional): Paradigm to follow when decoding bytes to UTF-8. See
|
| 91 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
| 92 |
+
Defaults to `"replace"`.
|
| 93 |
+
"""
|
| 94 |
+
try:
|
| 95 |
+
import tiktoken
|
| 96 |
+
except:
|
| 97 |
+
raise ImportError(
|
| 98 |
+
'You need to install tiktoken to use TiktokenTokenizerWrapper.',
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Workaround to make tiktokenizer picklable.
|
| 102 |
+
# https://github.com/huggingface/datasets/issues/5536#issuecomment-1682309347
|
| 103 |
+
# There is an open PR from HF to add this to tiktoken: https://github.com/openai/tiktoken/pull/181
|
| 104 |
+
import copyreg
|
| 105 |
+
import functools
|
| 106 |
+
|
| 107 |
+
from tiktoken import Encoding # type: ignore (thirdParty)
|
| 108 |
+
|
| 109 |
+
def pickle_Encoding(enc: Encoding):
|
| 110 |
+
return (
|
| 111 |
+
functools.partial(
|
| 112 |
+
Encoding,
|
| 113 |
+
enc.name,
|
| 114 |
+
pat_str=enc._pat_str,
|
| 115 |
+
mergeable_ranks=enc._mergeable_ranks,
|
| 116 |
+
special_tokens=enc._special_tokens,
|
| 117 |
+
),
|
| 118 |
+
(),
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
copyreg.pickle(Encoding, pickle_Encoding)
|
| 122 |
+
|
| 123 |
+
if model_name is not None and encoding_name is not None:
|
| 124 |
+
raise ValueError(
|
| 125 |
+
'You need to specify either model_name or encoding_name, not both.',
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
self.model_name = model_name
|
| 129 |
+
self.encoding_name = encoding_name
|
| 130 |
+
|
| 131 |
+
if self.model_name is not None:
|
| 132 |
+
self.encoding = tiktoken.encoding_for_model( # type: ignore (thirdParty)
|
| 133 |
+
self.model_name)
|
| 134 |
+
elif self.encoding_name is not None:
|
| 135 |
+
self.encoding = tiktoken.get_encoding( # type: ignore (thirdParty)
|
| 136 |
+
self.encoding_name)
|
| 137 |
+
else:
|
| 138 |
+
raise ValueError(
|
| 139 |
+
'You need to specify either model_name or encoding_name.',
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
self.add_bos_token = add_bos_token
|
| 143 |
+
self.add_eos_token = add_eos_token
|
| 144 |
+
self.use_default_system_prompt = use_default_system_prompt
|
| 145 |
+
|
| 146 |
+
self.byte_encoder = bytes_to_unicode()
|
| 147 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 148 |
+
self.errors = errors
|
| 149 |
+
|
| 150 |
+
self.decoder: Dict[int, str] = {}
|
| 151 |
+
for i in range(self.encoding.n_vocab):
|
| 152 |
+
try:
|
| 153 |
+
self.encoding.decode_single_token_bytes(i)
|
| 154 |
+
except KeyError:
|
| 155 |
+
continue
|
| 156 |
+
# Taken from
|
| 157 |
+
# https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
|
| 158 |
+
decoding = ''.join([
|
| 159 |
+
bytes_to_unicode()[ord(char)] for char in
|
| 160 |
+
self.encoding.decode_single_token_bytes(i).decode('latin-1')
|
| 161 |
+
])
|
| 162 |
+
self.decoder[i] = decoding
|
| 163 |
+
|
| 164 |
+
self.encoder: Dict[str, int] = {}
|
| 165 |
+
for i in range(self.encoding.n_vocab):
|
| 166 |
+
if i in self.decoder:
|
| 167 |
+
self.encoder[self.decoder[i]] = i
|
| 168 |
+
|
| 169 |
+
super().__init__(
|
| 170 |
+
model_name=model_name,
|
| 171 |
+
encoding_name=encoding_name,
|
| 172 |
+
add_bos_token=add_bos_token,
|
| 173 |
+
add_eos_token=add_eos_token,
|
| 174 |
+
use_default_system_prompt=use_default_system_prompt,
|
| 175 |
+
unk_token=unk_token,
|
| 176 |
+
eos_token=eos_token,
|
| 177 |
+
bos_token=bos_token,
|
| 178 |
+
pad_token=pad_token,
|
| 179 |
+
errors=errors,
|
| 180 |
+
**kwargs,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
@property
|
| 184 |
+
def vocab_size(self) -> int:
|
| 185 |
+
"""Returns vocab size."""
|
| 186 |
+
return self.encoding.n_vocab
|
| 187 |
+
|
| 188 |
+
@property
|
| 189 |
+
def is_fast(self) -> bool:
|
| 190 |
+
return False
|
| 191 |
+
|
| 192 |
+
@property
|
| 193 |
+
def default_chat_template(self):
|
| 194 |
+
"""Chat ML Template for User/Assistant.
|
| 195 |
+
|
| 196 |
+
Pinning default Chat ML template in case defaults change.
|
| 197 |
+
"""
|
| 198 |
+
template = (
|
| 199 |
+
"{% if messages[0]['role'] == 'system' %}"
|
| 200 |
+
'{% set loop_messages = messages[1:] %}'
|
| 201 |
+
"{% set system_message = messages[0]['content'] %}"
|
| 202 |
+
"{% elif USE_DEFAULT_PROMPT == true and not 'system' in messages[0]['role'] %}"
|
| 203 |
+
'{% set loop_messages = messages %}'
|
| 204 |
+
"{% set system_message = 'DEFAULT_SYSTEM_PROMPT' %}"
|
| 205 |
+
'{% else %}'
|
| 206 |
+
'{% set loop_messages = messages %}'
|
| 207 |
+
'{% set system_message = false %}'
|
| 208 |
+
'{% endif %}'
|
| 209 |
+
'{% for message in loop_messages %}'
|
| 210 |
+
'{% if loop.index0 == 0 %}'
|
| 211 |
+
'{% if system_message != false %}'
|
| 212 |
+
"{{ '<|im_start|>system\n' + system_message.strip() + '<|im_end|>\n'}}"
|
| 213 |
+
'{% endif %}'
|
| 214 |
+
"{{ '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' }}"
|
| 215 |
+
'{% else %}'
|
| 216 |
+
"{{ '\n' + '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' }}"
|
| 217 |
+
'{% endif %}'
|
| 218 |
+
'{% if (add_generation_prompt == true and loop.last) %}'
|
| 219 |
+
"{{ '\n' + '<|im_start|>' + 'assistant' + '\n' }}"
|
| 220 |
+
'{% endif %}'
|
| 221 |
+
'{% endfor %}'
|
| 222 |
+
)
|
| 223 |
+
template = template.replace(
|
| 224 |
+
'USE_DEFAULT_PROMPT',
|
| 225 |
+
'true' if self.use_default_system_prompt else 'false',
|
| 226 |
+
)
|
| 227 |
+
template = template.replace(
|
| 228 |
+
'DEFAULT_SYSTEM_PROMPT',
|
| 229 |
+
DEFAULT_SYSTEM_PROMPT,
|
| 230 |
+
)
|
| 231 |
+
return template
|
| 232 |
+
|
| 233 |
+
def get_vocab(self) -> Dict[str, int]:
|
| 234 |
+
"""Returns vocab as a dict."""
|
| 235 |
+
# As far as I can tell, we don't require get_vocab to completely work,
|
| 236 |
+
# but when using additional_special_tokens, Hugging Face determines the next
|
| 237 |
+
# token index to add with len(self.get_vocab()) so we need the _size_ of this dictionary to be correct.
|
| 238 |
+
vocab_clone = self.encoder.copy()
|
| 239 |
+
extra_id_index = 0
|
| 240 |
+
candidate_extra_id = f'<extra_id_{extra_id_index}>'
|
| 241 |
+
indices_to_fill_in = (
|
| 242 |
+
set(range(self.vocab_size)) - set(vocab_clone.values())
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
# Add enough indices to make get_vocab() the right length
|
| 246 |
+
for index_to_add in indices_to_fill_in:
|
| 247 |
+
# Make sure we don't overwrite a token that already exists
|
| 248 |
+
while candidate_extra_id in vocab_clone:
|
| 249 |
+
extra_id_index += 1
|
| 250 |
+
candidate_extra_id = f'<extra_id_{extra_id_index}>'
|
| 251 |
+
|
| 252 |
+
# Get an index to add and add the item
|
| 253 |
+
vocab_clone[candidate_extra_id] = index_to_add
|
| 254 |
+
|
| 255 |
+
return dict(vocab_clone, **self.added_tokens_encoder)
|
| 256 |
+
|
| 257 |
+
def _tokenize(self, text: str) -> List[str]:
|
| 258 |
+
"""Returns a tokenized string."""
|
| 259 |
+
if not isinstance(text, str):
|
| 260 |
+
raise ValueError(
|
| 261 |
+
f'Expected a string input to _tokenize but got {type(text)}.',
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
tokens = [
|
| 265 |
+
self.decoder[t]
|
| 266 |
+
for t in self.encoding.encode(text, allowed_special='all')
|
| 267 |
+
]
|
| 268 |
+
|
| 269 |
+
return tokens
|
| 270 |
+
|
| 271 |
+
def _convert_token_to_id(self, token: str) -> Optional[int]:
|
| 272 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 273 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
| 274 |
+
|
| 275 |
+
def _convert_id_to_token(self, index: int) -> Optional[str]:
|
| 276 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 277 |
+
# For tokens in either the gap in ids in the tokenizer, or beyond the range of the tokenizer,
|
| 278 |
+
# we return empty string. This matches the behavior of Hugging Face fast tokenizers,
|
| 279 |
+
# but not slow tokenizers.
|
| 280 |
+
return self.decoder.get(index, '')
|
| 281 |
+
|
| 282 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 283 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 284 |
+
text = ''.join(tokens)
|
| 285 |
+
text = bytearray([self.byte_decoder[c] for c in text
|
| 286 |
+
],).decode('utf-8', errors=self.errors)
|
| 287 |
+
return text
|
| 288 |
+
|
| 289 |
+
def build_inputs_with_special_tokens(
|
| 290 |
+
self,
|
| 291 |
+
token_ids_0: List[int],
|
| 292 |
+
token_ids_1: Optional[List[int]] = None,
|
| 293 |
+
) -> List[int]:
|
| 294 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
| 295 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 296 |
+
|
| 297 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
| 298 |
+
|
| 299 |
+
if token_ids_1 is not None:
|
| 300 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
| 301 |
+
|
| 302 |
+
return output
|
| 303 |
+
|
| 304 |
+
def get_special_tokens_mask(
|
| 305 |
+
self,
|
| 306 |
+
token_ids_0: List[int],
|
| 307 |
+
token_ids_1: Optional[List[int]] = None,
|
| 308 |
+
already_has_special_tokens: bool = False,
|
| 309 |
+
) -> List[int]:
|
| 310 |
+
"""Retrieves sequence ids from a token list that has no special tokens.
|
| 311 |
+
|
| 312 |
+
Function copied from
|
| 313 |
+
https://github.com/huggingface/transformers/blob/e3a4bd2bee212a2d0fd9f03b27fe7bfc1debe42d/src/transformers/models/gpt2/tokenization_gpt2.py#L265-L295
|
| 314 |
+
|
| 315 |
+
added. This method is called when adding special tokens using the
|
| 316 |
+
tokenizer `prepare_for_model` or `encode_plus` methods.
|
| 317 |
+
|
| 318 |
+
Args:
|
| 319 |
+
token_ids_0 (`List[int]`):
|
| 320 |
+
List of IDs.
|
| 321 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 322 |
+
Optional second list of IDs for sequence pairs.
|
| 323 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 324 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 325 |
+
|
| 326 |
+
Returns:
|
| 327 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 328 |
+
"""
|
| 329 |
+
if already_has_special_tokens:
|
| 330 |
+
return super().get_special_tokens_mask(
|
| 331 |
+
token_ids_0=token_ids_0,
|
| 332 |
+
token_ids_1=token_ids_1,
|
| 333 |
+
already_has_special_tokens=True,
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
bos_token_id = [1] if self.add_bos_token else []
|
| 337 |
+
eos_token_id = [1] if self.add_eos_token else []
|
| 338 |
+
|
| 339 |
+
if token_ids_1 is None:
|
| 340 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
| 341 |
+
return (
|
| 342 |
+
bos_token_id + ([0] * len(token_ids_0)) + eos_token_id +
|
| 343 |
+
bos_token_id + ([0] * len(token_ids_1)) + eos_token_id
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
def create_token_type_ids_from_sequences(
|
| 347 |
+
self,
|
| 348 |
+
token_ids_0: List[int],
|
| 349 |
+
token_ids_1: Optional[List[int]] = None,
|
| 350 |
+
) -> List[int]:
|
| 351 |
+
sep = [self.sep_token_id]
|
| 352 |
+
|
| 353 |
+
if token_ids_1 is None:
|
| 354 |
+
return len(token_ids_0 + sep) * [0]
|
| 355 |
+
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
| 356 |
+
|
| 357 |
+
def save_vocabulary(
|
| 358 |
+
self,
|
| 359 |
+
save_directory: str,
|
| 360 |
+
filename_prefix: Optional[str] = None,
|
| 361 |
+
) -> Tuple[str]:
|
| 362 |
+
|
| 363 |
+
# ignore the below type to keep the original signature
|
| 364 |
+
# we are knowingly breaking the signature here, although not 100% certain
|
| 365 |
+
# it doesn't have side effects
|
| 366 |
+
# There is some code in huggingface that calls this function to get the vocab files,
|
| 367 |
+
# but it doesn't seem to access them (or at least checks for their existence
|
| 368 |
+
# before accessing them)
|
| 369 |
+
return (None, None) # type: ignore
|
| 370 |
+
|
| 371 |
+
def sanitize_special_tokens(self) -> int:
|
| 372 |
+
"""Make sure that all the special tokens attributes of the tokenizer.
|
| 373 |
+
|
| 374 |
+
(`tokenizer.mask_token`, `tokenizer.cls_token`, etc.) are in the
|
| 375 |
+
vocabulary.
|
| 376 |
+
|
| 377 |
+
Add the missing ones to the vocabulary if needed.
|
| 378 |
+
|
| 379 |
+
Return:
|
| 380 |
+
`int`: The number of tokens added in the vocabulary during the operation.
|
| 381 |
+
"""
|
| 382 |
+
actual_new_tokens = []
|
| 383 |
+
for token in self.all_special_tokens_extended:
|
| 384 |
+
encoded = self.encoding.encode(token, allowed_special='all')
|
| 385 |
+
if len(encoded) > 1:
|
| 386 |
+
actual_new_tokens.append(token)
|
| 387 |
+
|
| 388 |
+
return self.add_tokens(actual_new_tokens, special_tokens=True)
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
TiktokenTokenizerWrapper.register_for_auto_class()
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"100257": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
}
|
| 13 |
+
},
|
| 14 |
+
"auto_map": {
|
| 15 |
+
"AutoTokenizer": [
|
| 16 |
+
"tiktoken.TiktokenTokenizerWrapper",
|
| 17 |
+
null
|
| 18 |
+
]
|
| 19 |
+
},
|
| 20 |
+
"bos_token": "<|endoftext|>",
|
| 21 |
+
"clean_up_tokenization_spaces": true,
|
| 22 |
+
"encoding_name": null,
|
| 23 |
+
"eos_token": "<|endoftext|>",
|
| 24 |
+
"errors": "replace",
|
| 25 |
+
"extra_special_tokens": {},
|
| 26 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 27 |
+
"model_name": "gpt-4",
|
| 28 |
+
"pad_token": "<|endoftext|>",
|
| 29 |
+
"padding_side": "right",
|
| 30 |
+
"split_special_tokens": false,
|
| 31 |
+
"tokenizer_class": "TiktokenTokenizerWrapper",
|
| 32 |
+
"unk_token": "<|endoftext|>",
|
| 33 |
+
"use_default_system_prompt": false
|
| 34 |
+
}
|