Update handler.py
Browse files- handler.py +64 -39
handler.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
import contextlib, io, base64, torch
|
| 2 |
from PIL import Image
|
| 3 |
import open_clip
|
| 4 |
from reparam import reparameterize_model
|
|
@@ -7,71 +7,92 @@ class EndpointHandler:
|
|
| 7 |
def __init__(self, path: str = ""):
|
| 8 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
# This guarantees the weights are identical.
|
| 12 |
model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 13 |
"MobileCLIP-B", pretrained='datacompdr'
|
| 14 |
)
|
| 15 |
model.eval()
|
| 16 |
-
self.model = reparameterize_model(model)
|
| 17 |
-
|
| 18 |
-
self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
| 19 |
self.model.to(self.device)
|
| 20 |
|
| 21 |
-
# Fix 2: Explicitly set model to half-precision if on CUDA
|
| 22 |
-
# This matches the behavior of torch.set_default_dtype(torch.float16)
|
| 23 |
if self.device == "cuda":
|
| 24 |
self.model.to(torch.float16)
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def __call__(self, data):
|
|
|
|
| 27 |
payload = data.get("inputs", data)
|
| 28 |
img_b64 = payload["image"]
|
| 29 |
-
labels = payload.get("candidate_labels", [])
|
| 30 |
-
if not labels:
|
| 31 |
-
return {"error": "candidate_labels list is empty"}
|
| 32 |
|
| 33 |
-
# ---------------- decode
|
| 34 |
image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 35 |
img_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
| 36 |
|
| 37 |
-
# The preprocessor might output float32, so ensure tensor matches model dtype
|
| 38 |
if self.device == "cuda":
|
| 39 |
img_tensor = img_tensor.to(torch.float16)
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
# ---------------- forward pass -----------------
|
| 44 |
-
# No need for autocast if everything is already float16
|
| 45 |
with torch.no_grad():
|
|
|
|
| 46 |
img_feat = self.model.encode_image(img_tensor)
|
| 47 |
-
txt_feat = self.model.encode_text(text_tokens)
|
| 48 |
img_feat /= img_feat.norm(dim=-1, keepdim=True)
|
| 49 |
-
txt_feat /= txt_feat.norm(dim=-1, keepdim=True)
|
| 50 |
-
probs = (100 * img_feat @ txt_feat.T).softmax(dim=-1)[0].cpu().tolist()
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
# import contextlib, io, base64, torch
|
| 57 |
# from PIL import Image
|
| 58 |
# import open_clip
|
| 59 |
# from reparam import reparameterize_model
|
| 60 |
|
| 61 |
-
|
| 62 |
# class EndpointHandler:
|
| 63 |
# def __init__(self, path: str = ""):
|
| 64 |
-
#
|
| 65 |
-
|
| 66 |
-
#
|
| 67 |
-
#
|
|
|
|
|
|
|
| 68 |
# )
|
| 69 |
-
#
|
| 70 |
-
# self.model = reparameterize_model(
|
| 71 |
|
| 72 |
-
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 73 |
-
# self.model.to(self.device)
|
| 74 |
# self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
# def __call__(self, data):
|
| 77 |
# payload = data.get("inputs", data)
|
|
@@ -82,23 +103,27 @@ class EndpointHandler:
|
|
| 82 |
|
| 83 |
# # ---------------- decode inputs ----------------
|
| 84 |
# image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 85 |
-
# img_tensor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
# text_tokens = self.tokenizer(labels).to(self.device)
|
| 87 |
|
| 88 |
# # ---------------- forward pass -----------------
|
| 89 |
-
#
|
| 90 |
-
#
|
| 91 |
-
# )
|
| 92 |
-
# with torch.no_grad(), autocast_ctx():
|
| 93 |
# img_feat = self.model.encode_image(img_tensor)
|
| 94 |
# txt_feat = self.model.encode_text(text_tokens)
|
| 95 |
# img_feat /= img_feat.norm(dim=-1, keepdim=True)
|
| 96 |
# txt_feat /= txt_feat.norm(dim=-1, keepdim=True)
|
| 97 |
-
# probs = (100 * img_feat @ txt_feat.T).softmax(dim=-1)[0].tolist()
|
| 98 |
|
| 99 |
# return [
|
| 100 |
# {"label": l, "score": float(p)}
|
| 101 |
# for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
| 102 |
# ]
|
| 103 |
|
|
|
|
| 104 |
|
|
|
|
| 1 |
+
import contextlib, io, base64, torch, json
|
| 2 |
from PIL import Image
|
| 3 |
import open_clip
|
| 4 |
from reparam import reparameterize_model
|
|
|
|
| 7 |
def __init__(self, path: str = ""):
|
| 8 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
|
| 10 |
+
# 1. Load the model (happens only once at startup)
|
|
|
|
| 11 |
model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 12 |
"MobileCLIP-B", pretrained='datacompdr'
|
| 13 |
)
|
| 14 |
model.eval()
|
| 15 |
+
self.model = reparameterize_model(model)
|
| 16 |
+
tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
|
|
|
| 17 |
self.model.to(self.device)
|
| 18 |
|
|
|
|
|
|
|
| 19 |
if self.device == "cuda":
|
| 20 |
self.model.to(torch.float16)
|
| 21 |
|
| 22 |
+
# --- OPTIMIZATION: Pre-compute text features from your JSON ---
|
| 23 |
+
|
| 24 |
+
# 2. Load your rich class definitions from the file
|
| 25 |
+
with open(f"{path}/classes.json", "r", encoding="utf-8") as f:
|
| 26 |
+
class_definitions = json.load(f)
|
| 27 |
+
|
| 28 |
+
# 3. Prepare the data for encoding and for the final response
|
| 29 |
+
# - Use the 'prompt' field for creating the embeddings
|
| 30 |
+
# - Keep 'name' and 'id' to structure the response later
|
| 31 |
+
prompts = [item['prompt'] for item in class_definitions]
|
| 32 |
+
self.class_ids = [item['id'] for item in class_definitions]
|
| 33 |
+
self.class_names = [item['name'] for item in class_definitions]
|
| 34 |
+
|
| 35 |
+
# 4. Tokenize and encode all prompts at once
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
text_tokens = tokenizer(prompts).to(self.device)
|
| 38 |
+
self.text_features = self.model.encode_text(text_tokens)
|
| 39 |
+
self.text_features /= self.text_features.norm(dim=-1, keepdim=True)
|
| 40 |
+
|
| 41 |
def __call__(self, data):
|
| 42 |
+
# The payload only needs the image now
|
| 43 |
payload = data.get("inputs", data)
|
| 44 |
img_b64 = payload["image"]
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# ---------------- decode image ----------------
|
| 47 |
image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 48 |
img_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
| 49 |
|
|
|
|
| 50 |
if self.device == "cuda":
|
| 51 |
img_tensor = img_tensor.to(torch.float16)
|
| 52 |
|
| 53 |
+
# ---------------- forward pass (very fast) -----------------
|
|
|
|
|
|
|
|
|
|
| 54 |
with torch.no_grad():
|
| 55 |
+
# 1. Encode only the image
|
| 56 |
img_feat = self.model.encode_image(img_tensor)
|
|
|
|
| 57 |
img_feat /= img_feat.norm(dim=-1, keepdim=True)
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# 2. Compute similarity against the pre-computed text features
|
| 60 |
+
probs = (100 * img_feat @ self.text_features.T).softmax(dim=-1)[0]
|
| 61 |
+
|
| 62 |
+
# 3. Combine the results with your stored class IDs and names
|
| 63 |
+
# and convert the tensor of probabilities to a list of floats
|
| 64 |
+
results = zip(self.class_ids, self.class_names, probs.cpu().tolist())
|
| 65 |
+
|
| 66 |
+
# 4. Create a sorted list of dictionaries for a clean JSON response
|
| 67 |
+
return sorted(
|
| 68 |
+
[{"id": i, "label": name, "score": float(p)} for i, name, p in results],
|
| 69 |
+
key=lambda x: x["score"],
|
| 70 |
+
reverse=True
|
| 71 |
+
)
|
| 72 |
# import contextlib, io, base64, torch
|
| 73 |
# from PIL import Image
|
| 74 |
# import open_clip
|
| 75 |
# from reparam import reparameterize_model
|
| 76 |
|
|
|
|
| 77 |
# class EndpointHandler:
|
| 78 |
# def __init__(self, path: str = ""):
|
| 79 |
+
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 80 |
+
|
| 81 |
+
# # Fix 1: Load weights directly from the web, just like local script
|
| 82 |
+
# # This guarantees the weights are identical.
|
| 83 |
+
# model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 84 |
+
# "MobileCLIP-B", pretrained='datacompdr'
|
| 85 |
# )
|
| 86 |
+
# model.eval()
|
| 87 |
+
# self.model = reparameterize_model(model) # fuse branches
|
| 88 |
|
|
|
|
|
|
|
| 89 |
# self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
| 90 |
+
# self.model.to(self.device)
|
| 91 |
+
|
| 92 |
+
# # Fix 2: Explicitly set model to half-precision if on CUDA
|
| 93 |
+
# # This matches the behavior of torch.set_default_dtype(torch.float16)
|
| 94 |
+
# if self.device == "cuda":
|
| 95 |
+
# self.model.to(torch.float16)
|
| 96 |
|
| 97 |
# def __call__(self, data):
|
| 98 |
# payload = data.get("inputs", data)
|
|
|
|
| 103 |
|
| 104 |
# # ---------------- decode inputs ----------------
|
| 105 |
# image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 106 |
+
# img_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
| 107 |
+
|
| 108 |
+
# # The preprocessor might output float32, so ensure tensor matches model dtype
|
| 109 |
+
# if self.device == "cuda":
|
| 110 |
+
# img_tensor = img_tensor.to(torch.float16)
|
| 111 |
+
|
| 112 |
# text_tokens = self.tokenizer(labels).to(self.device)
|
| 113 |
|
| 114 |
# # ---------------- forward pass -----------------
|
| 115 |
+
# # No need for autocast if everything is already float16
|
| 116 |
+
# with torch.no_grad():
|
|
|
|
|
|
|
| 117 |
# img_feat = self.model.encode_image(img_tensor)
|
| 118 |
# txt_feat = self.model.encode_text(text_tokens)
|
| 119 |
# img_feat /= img_feat.norm(dim=-1, keepdim=True)
|
| 120 |
# txt_feat /= txt_feat.norm(dim=-1, keepdim=True)
|
| 121 |
+
# probs = (100 * img_feat @ txt_feat.T).softmax(dim=-1)[0].cpu().tolist()
|
| 122 |
|
| 123 |
# return [
|
| 124 |
# {"label": l, "score": float(p)}
|
| 125 |
# for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
| 126 |
# ]
|
| 127 |
|
| 128 |
+
|
| 129 |
|