Update handler.py
Browse files- handler.py +46 -11
handler.py
CHANGED
|
@@ -1,21 +1,56 @@
|
|
|
|
|
| 1 |
import io, base64, torch
|
| 2 |
from PIL import Image
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
|
| 5 |
class EndpointHandler:
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def __call__(self, data):
|
| 13 |
-
#
|
| 14 |
img_b64 = data["image"]
|
| 15 |
labels = data.get("candidate_labels", [])
|
| 16 |
image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# handler.py – place in repo root
|
| 2 |
import io, base64, torch
|
| 3 |
from PIL import Image
|
| 4 |
+
|
| 5 |
+
import open_clip
|
| 6 |
+
from mobileclip.modules.common.mobileone import reparameterize_model
|
| 7 |
|
| 8 |
class EndpointHandler:
|
| 9 |
+
"""
|
| 10 |
+
Zero‑shot image classifier for MobileCLIP‑B using OpenCLIP.
|
| 11 |
+
Expects JSON:
|
| 12 |
+
{
|
| 13 |
+
"image": "<base64‑encoded PNG/JPEG>",
|
| 14 |
+
"candidate_labels": ["cat", "dog", ...]
|
| 15 |
+
}
|
| 16 |
+
"""
|
| 17 |
+
def __init__(self, path: str = ""):
|
| 18 |
+
# Hugging Face Endpoints clones the repo into `path`.
|
| 19 |
+
# The weights file is mobileclip_b.pt (already in the repo).
|
| 20 |
+
weights = f"{path}/mobileclip_b.pt"
|
| 21 |
+
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 22 |
+
"MobileCLIP-B", pretrained=weights
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Re‑parameterize once for faster inference (as per MobileCLIP docs)
|
| 26 |
+
self.model = reparameterize_model(self.model)
|
| 27 |
+
self.model.eval()
|
| 28 |
+
|
| 29 |
+
# OpenCLIP tokenizer (same as CLIP)
|
| 30 |
+
self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
| 31 |
+
|
| 32 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
+
self.model.to(self.device)
|
| 34 |
|
| 35 |
def __call__(self, data):
|
| 36 |
+
# Decode input
|
| 37 |
img_b64 = data["image"]
|
| 38 |
labels = data.get("candidate_labels", [])
|
| 39 |
image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 40 |
|
| 41 |
+
# Preprocess
|
| 42 |
+
image_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
| 43 |
+
text_tokens = self.tokenizer(labels).to(self.device)
|
| 44 |
+
|
| 45 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 46 |
+
img_feat = self.model.encode_image(image_tensor)
|
| 47 |
+
txt_feat = self.model.encode_text(text_tokens)
|
| 48 |
+
img_feat /= img_feat.norm(dim=-1, keepdim=True)
|
| 49 |
+
txt_feat /= txt_feat.norm(dim=-1, keepdim=True)
|
| 50 |
+
probs = (100 * img_feat @ txt_feat.T).softmax(dim=-1)[0].tolist()
|
| 51 |
+
|
| 52 |
+
return [
|
| 53 |
+
{"label": l, "score": float(p)} for l, p in sorted(
|
| 54 |
+
zip(labels, probs), key=lambda x: x[1], reverse=True
|
| 55 |
+
)
|
| 56 |
+
]
|