Update handler.py
Browse files- handler.py +12 -16
handler.py
CHANGED
|
@@ -5,10 +5,8 @@ from PIL import Image
|
|
| 5 |
|
| 6 |
class EndpointHandler:
|
| 7 |
"""
|
| 8 |
-
MobileCLIP‑B (pretrained='datacompdr') zero‑shot classifier
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
Client JSON:
|
| 12 |
{
|
| 13 |
"inputs": {
|
| 14 |
"image": "<base64 PNG/JPEG>",
|
|
@@ -18,50 +16,48 @@ class EndpointHandler:
|
|
| 18 |
"""
|
| 19 |
|
| 20 |
def __init__(self, path=""):
|
| 21 |
-
#
|
| 22 |
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 23 |
"mobileclip_b", pretrained="datacompdr"
|
| 24 |
)
|
| 25 |
self.model.eval()
|
| 26 |
|
| 27 |
-
#
|
| 28 |
self.tokenizer = open_clip.get_tokenizer("mobileclip_b")
|
| 29 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
self.model.to(self.device)
|
| 31 |
|
| 32 |
-
#
|
| 33 |
self.cache: dict[str, torch.Tensor] = {}
|
| 34 |
|
| 35 |
def __call__(self, data):
|
| 36 |
-
# 1. unwrap HF 'inputs'
|
| 37 |
payload = data.get("inputs", data)
|
| 38 |
img_b64 = payload["image"]
|
| 39 |
labels = payload.get("candidate_labels", [])
|
| 40 |
if not labels:
|
| 41 |
return {"error": "candidate_labels list is empty"}
|
| 42 |
|
| 43 |
-
#
|
| 44 |
img = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 45 |
img_t = self.preprocess(img).unsqueeze(0).to(self.device)
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
|
| 49 |
-
if
|
| 50 |
-
tok = self.tokenizer(
|
| 51 |
with torch.no_grad():
|
| 52 |
emb = self.model.encode_text(tok)
|
| 53 |
emb = emb / emb.norm(dim=-1, keepdim=True)
|
| 54 |
-
for l, e in zip(
|
| 55 |
self.cache[l] = e
|
| 56 |
txt_t = torch.stack([self.cache[l] for l in labels])
|
| 57 |
|
| 58 |
-
#
|
| 59 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 60 |
img_f = self.model.encode_image(img_t)
|
| 61 |
img_f = img_f / img_f.norm(dim=-1, keepdim=True)
|
| 62 |
probs = (100 * img_f @ txt_t.T).softmax(dim=-1)[0].tolist()
|
| 63 |
|
| 64 |
-
# 5. sorted response
|
| 65 |
return [
|
| 66 |
{"label": l, "score": float(p)}
|
| 67 |
for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
|
|
|
| 5 |
|
| 6 |
class EndpointHandler:
|
| 7 |
"""
|
| 8 |
+
MobileCLIP‑B (pretrained='datacompdr') zero‑shot classifier.
|
| 9 |
+
Expects JSON:
|
|
|
|
|
|
|
| 10 |
{
|
| 11 |
"inputs": {
|
| 12 |
"image": "<base64 PNG/JPEG>",
|
|
|
|
| 16 |
"""
|
| 17 |
|
| 18 |
def __init__(self, path=""):
|
| 19 |
+
# Model + transforms
|
| 20 |
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 21 |
"mobileclip_b", pretrained="datacompdr"
|
| 22 |
)
|
| 23 |
self.model.eval()
|
| 24 |
|
| 25 |
+
# Tokeniser & device
|
| 26 |
self.tokenizer = open_clip.get_tokenizer("mobileclip_b")
|
| 27 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
self.model.to(self.device)
|
| 29 |
|
| 30 |
+
# Cache {prompt → 1×512 tensor}
|
| 31 |
self.cache: dict[str, torch.Tensor] = {}
|
| 32 |
|
| 33 |
def __call__(self, data):
|
|
|
|
| 34 |
payload = data.get("inputs", data)
|
| 35 |
img_b64 = payload["image"]
|
| 36 |
labels = payload.get("candidate_labels", [])
|
| 37 |
if not labels:
|
| 38 |
return {"error": "candidate_labels list is empty"}
|
| 39 |
|
| 40 |
+
# Image → tensor
|
| 41 |
img = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 42 |
img_t = self.preprocess(img).unsqueeze(0).to(self.device)
|
| 43 |
|
| 44 |
+
# Text embeddings with cache
|
| 45 |
+
new_labels = [l for l in labels if l not in self.cache]
|
| 46 |
+
if new_labels:
|
| 47 |
+
tok = self.tokenizer(new_labels).to(self.device)
|
| 48 |
with torch.no_grad():
|
| 49 |
emb = self.model.encode_text(tok)
|
| 50 |
emb = emb / emb.norm(dim=-1, keepdim=True)
|
| 51 |
+
for l, e in zip(new_labels, emb):
|
| 52 |
self.cache[l] = e
|
| 53 |
txt_t = torch.stack([self.cache[l] for l in labels])
|
| 54 |
|
| 55 |
+
# Forward
|
| 56 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 57 |
img_f = self.model.encode_image(img_t)
|
| 58 |
img_f = img_f / img_f.norm(dim=-1, keepdim=True)
|
| 59 |
probs = (100 * img_f @ txt_t.T).softmax(dim=-1)[0].tolist()
|
| 60 |
|
|
|
|
| 61 |
return [
|
| 62 |
{"label": l, "score": float(p)}
|
| 63 |
for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|