Update handler.py
Browse files- handler.py +21 -20
handler.py
CHANGED
|
@@ -5,8 +5,10 @@ from PIL import Image
|
|
| 5 |
|
| 6 |
class EndpointHandler:
|
| 7 |
"""
|
| 8 |
-
MobileCLIP‑B
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
{
|
| 11 |
"inputs": {
|
| 12 |
"image": "<base64 PNG/JPEG>",
|
|
@@ -15,52 +17,51 @@ class EndpointHandler:
|
|
| 15 |
}
|
| 16 |
"""
|
| 17 |
|
| 18 |
-
# ---------- initialisation (once per container) ----------
|
| 19 |
def __init__(self, path=""):
|
| 20 |
-
#
|
| 21 |
-
# • No need for the local mobileclip_b.pt file
|
| 22 |
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 23 |
"mobileclip_b", pretrained="datacompdr"
|
| 24 |
)
|
| 25 |
self.model.eval()
|
| 26 |
|
|
|
|
| 27 |
self.tokenizer = open_clip.get_tokenizer("mobileclip_b")
|
| 28 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
self.model.to(self.device)
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
self.
|
| 33 |
|
| 34 |
-
# -------------------- inference --------------------------
|
| 35 |
def __call__(self, data):
|
|
|
|
| 36 |
payload = data.get("inputs", data)
|
| 37 |
img_b64 = payload["image"]
|
| 38 |
labels = payload.get("candidate_labels", [])
|
| 39 |
if not labels:
|
| 40 |
return {"error": "candidate_labels list is empty"}
|
| 41 |
|
| 42 |
-
# image
|
| 43 |
-
|
| 44 |
-
|
| 45 |
|
| 46 |
-
# text
|
| 47 |
-
missing = [l for l in labels if l not in self.
|
| 48 |
if missing:
|
| 49 |
tok = self.tokenizer(missing).to(self.device)
|
| 50 |
with torch.no_grad():
|
| 51 |
emb = self.model.encode_text(tok)
|
| 52 |
emb = emb / emb.norm(dim=-1, keepdim=True)
|
| 53 |
for l, e in zip(missing, emb):
|
| 54 |
-
self.
|
| 55 |
-
|
| 56 |
|
| 57 |
-
# forward
|
| 58 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
probs = (100 *
|
| 62 |
|
| 63 |
-
# sorted
|
| 64 |
return [
|
| 65 |
{"label": l, "score": float(p)}
|
| 66 |
for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
|
|
|
| 5 |
|
| 6 |
class EndpointHandler:
|
| 7 |
"""
|
| 8 |
+
MobileCLIP‑B (pretrained='datacompdr') zero‑shot classifier with
|
| 9 |
+
per‑container text‑embedding cache.
|
| 10 |
+
|
| 11 |
+
Client JSON:
|
| 12 |
{
|
| 13 |
"inputs": {
|
| 14 |
"image": "<base64 PNG/JPEG>",
|
|
|
|
| 17 |
}
|
| 18 |
"""
|
| 19 |
|
|
|
|
| 20 |
def __init__(self, path=""):
|
| 21 |
+
# --- model & transforms ---------------------------------
|
|
|
|
| 22 |
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 23 |
"mobileclip_b", pretrained="datacompdr"
|
| 24 |
)
|
| 25 |
self.model.eval()
|
| 26 |
|
| 27 |
+
# --- tokenizer & device --------------------------------
|
| 28 |
self.tokenizer = open_clip.get_tokenizer("mobileclip_b")
|
| 29 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
self.model.to(self.device)
|
| 31 |
|
| 32 |
+
# --- text‑embedding cache ------------------------------
|
| 33 |
+
self.cache: dict[str, torch.Tensor] = {}
|
| 34 |
|
|
|
|
| 35 |
def __call__(self, data):
|
| 36 |
+
# 1. unwrap HF 'inputs'
|
| 37 |
payload = data.get("inputs", data)
|
| 38 |
img_b64 = payload["image"]
|
| 39 |
labels = payload.get("candidate_labels", [])
|
| 40 |
if not labels:
|
| 41 |
return {"error": "candidate_labels list is empty"}
|
| 42 |
|
| 43 |
+
# 2. image -> tensor
|
| 44 |
+
img = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 45 |
+
img_t = self.preprocess(img).unsqueeze(0).to(self.device)
|
| 46 |
|
| 47 |
+
# 3. text -> cached embeddings
|
| 48 |
+
missing = [l for l in labels if l not in self.cache]
|
| 49 |
if missing:
|
| 50 |
tok = self.tokenizer(missing).to(self.device)
|
| 51 |
with torch.no_grad():
|
| 52 |
emb = self.model.encode_text(tok)
|
| 53 |
emb = emb / emb.norm(dim=-1, keepdim=True)
|
| 54 |
for l, e in zip(missing, emb):
|
| 55 |
+
self.cache[l] = e
|
| 56 |
+
txt_t = torch.stack([self.cache[l] for l in labels])
|
| 57 |
|
| 58 |
+
# 4. forward
|
| 59 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 60 |
+
img_f = self.model.encode_image(img_t)
|
| 61 |
+
img_f = img_f / img_f.norm(dim=-1, keepdim=True)
|
| 62 |
+
probs = (100 * img_f @ txt_t.T).softmax(dim=-1)[0].tolist()
|
| 63 |
|
| 64 |
+
# 5. sorted response
|
| 65 |
return [
|
| 66 |
{"label": l, "score": float(p)}
|
| 67 |
for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|