Update handler.py
Browse files- handler.py +40 -44
handler.py
CHANGED
|
@@ -1,23 +1,27 @@
|
|
| 1 |
-
|
| 2 |
import contextlib, io, base64, torch
|
| 3 |
from PIL import Image
|
| 4 |
import open_clip
|
| 5 |
from reparam import reparameterize_model
|
| 6 |
|
| 7 |
-
|
| 8 |
class EndpointHandler:
|
| 9 |
def __init__(self, path: str = ""):
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
)
|
| 15 |
-
|
| 16 |
-
self.model = reparameterize_model(
|
| 17 |
|
| 18 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
-
self.model.to(self.device)
|
| 20 |
self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
def __call__(self, data):
|
| 23 |
payload = data.get("inputs", data)
|
|
@@ -28,81 +32,73 @@ class EndpointHandler:
|
|
| 28 |
|
| 29 |
# ---------------- decode inputs ----------------
|
| 30 |
image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 31 |
-
img_tensor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
text_tokens = self.tokenizer(labels).to(self.device)
|
| 33 |
|
| 34 |
# ---------------- forward pass -----------------
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
)
|
| 38 |
-
with torch.no_grad(), autocast_ctx():
|
| 39 |
img_feat = self.model.encode_image(img_tensor)
|
| 40 |
txt_feat = self.model.encode_text(text_tokens)
|
| 41 |
img_feat /= img_feat.norm(dim=-1, keepdim=True)
|
| 42 |
txt_feat /= txt_feat.norm(dim=-1, keepdim=True)
|
| 43 |
-
probs = (100 * img_feat @ txt_feat.T).softmax(dim=-1)[0].tolist()
|
| 44 |
|
| 45 |
return [
|
| 46 |
{"label": l, "score": float(p)}
|
| 47 |
for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
| 48 |
]
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
# # handler.py (repo root)
|
| 52 |
-
# import io, base64, torch
|
| 53 |
# from PIL import Image
|
| 54 |
# import open_clip
|
|
|
|
| 55 |
|
| 56 |
-
# class EndpointHandler:
|
| 57 |
-
# """
|
| 58 |
-
# Zero‑shot classifier for MobileCLIP‑B (OpenCLIP).
|
| 59 |
-
|
| 60 |
-
# Expected client JSON *to the endpoint*:
|
| 61 |
-
# {
|
| 62 |
-
# "inputs": {
|
| 63 |
-
# "image": "<base64 PNG/JPEG>",
|
| 64 |
-
# "candidate_labels": ["cat", "dog", ...]
|
| 65 |
-
# }
|
| 66 |
-
# }
|
| 67 |
-
# """
|
| 68 |
|
|
|
|
| 69 |
# def __init__(self, path: str = ""):
|
|
|
|
| 70 |
# weights = f"{path}/mobileclip_b.pt"
|
| 71 |
# self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 72 |
# "MobileCLIP-B", pretrained=weights
|
| 73 |
# )
|
| 74 |
# self.model.eval()
|
|
|
|
| 75 |
|
| 76 |
-
# self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
| 77 |
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 78 |
# self.model.to(self.device)
|
|
|
|
| 79 |
|
| 80 |
# def __call__(self, data):
|
| 81 |
-
# # ── unwrap Hugging Face's `inputs` envelope ───────────
|
| 82 |
# payload = data.get("inputs", data)
|
| 83 |
-
|
| 84 |
# img_b64 = payload["image"]
|
| 85 |
# labels = payload.get("candidate_labels", [])
|
| 86 |
# if not labels:
|
| 87 |
# return {"error": "candidate_labels list is empty"}
|
| 88 |
|
| 89 |
-
# #
|
| 90 |
# image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 91 |
-
# img_tensor
|
| 92 |
-
|
| 93 |
-
# # Tokenise labels
|
| 94 |
# text_tokens = self.tokenizer(labels).to(self.device)
|
| 95 |
|
| 96 |
-
# #
|
| 97 |
-
#
|
|
|
|
|
|
|
|
|
|
| 98 |
# img_feat = self.model.encode_image(img_tensor)
|
| 99 |
# txt_feat = self.model.encode_text(text_tokens)
|
| 100 |
-
# img_feat
|
| 101 |
-
# txt_feat
|
| 102 |
# probs = (100 * img_feat @ txt_feat.T).softmax(dim=-1)[0].tolist()
|
| 103 |
|
| 104 |
-
# # Sorted output
|
| 105 |
# return [
|
| 106 |
# {"label": l, "score": float(p)}
|
| 107 |
# for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
| 108 |
# ]
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import contextlib, io, base64, torch
|
| 2 |
from PIL import Image
|
| 3 |
import open_clip
|
| 4 |
from reparam import reparameterize_model
|
| 5 |
|
|
|
|
| 6 |
class EndpointHandler:
|
| 7 |
def __init__(self, path: str = ""):
|
| 8 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
|
| 10 |
+
# Fix 1: Load weights directly from the web, just like local script
|
| 11 |
+
# This guarantees the weights are identical.
|
| 12 |
+
model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 13 |
+
"MobileCLIP-B", pretrained='datacompdr'
|
| 14 |
)
|
| 15 |
+
model.eval()
|
| 16 |
+
self.model = reparameterize_model(model) # fuse branches
|
| 17 |
|
|
|
|
|
|
|
| 18 |
self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
| 19 |
+
self.model.to(self.device)
|
| 20 |
+
|
| 21 |
+
# Fix 2: Explicitly set model to half-precision if on CUDA
|
| 22 |
+
# This matches the behavior of torch.set_default_dtype(torch.float16)
|
| 23 |
+
if self.device == "cuda":
|
| 24 |
+
self.model.to(torch.float16)
|
| 25 |
|
| 26 |
def __call__(self, data):
|
| 27 |
payload = data.get("inputs", data)
|
|
|
|
| 32 |
|
| 33 |
# ---------------- decode inputs ----------------
|
| 34 |
image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 35 |
+
img_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
| 36 |
+
|
| 37 |
+
# The preprocessor might output float32, so ensure tensor matches model dtype
|
| 38 |
+
if self.device == "cuda":
|
| 39 |
+
img_tensor = img_tensor.to(torch.float16)
|
| 40 |
+
|
| 41 |
text_tokens = self.tokenizer(labels).to(self.device)
|
| 42 |
|
| 43 |
# ---------------- forward pass -----------------
|
| 44 |
+
# No need for autocast if everything is already float16
|
| 45 |
+
with torch.no_grad():
|
|
|
|
|
|
|
| 46 |
img_feat = self.model.encode_image(img_tensor)
|
| 47 |
txt_feat = self.model.encode_text(text_tokens)
|
| 48 |
img_feat /= img_feat.norm(dim=-1, keepdim=True)
|
| 49 |
txt_feat /= txt_feat.norm(dim=-1, keepdim=True)
|
| 50 |
+
probs = (100 * img_feat @ txt_feat.T).softmax(dim=-1)[0].cpu().tolist()
|
| 51 |
|
| 52 |
return [
|
| 53 |
{"label": l, "score": float(p)}
|
| 54 |
for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
| 55 |
]
|
| 56 |
+
# import contextlib, io, base64, torch
|
|
|
|
|
|
|
|
|
|
| 57 |
# from PIL import Image
|
| 58 |
# import open_clip
|
| 59 |
+
# from reparam import reparameterize_model
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
# class EndpointHandler:
|
| 63 |
# def __init__(self, path: str = ""):
|
| 64 |
+
# # You can also pass pretrained='datacompdr' to let OpenCLIP download
|
| 65 |
# weights = f"{path}/mobileclip_b.pt"
|
| 66 |
# self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 67 |
# "MobileCLIP-B", pretrained=weights
|
| 68 |
# )
|
| 69 |
# self.model.eval()
|
| 70 |
+
# self.model = reparameterize_model(self.model) # *** fuse branches ***
|
| 71 |
|
|
|
|
| 72 |
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 73 |
# self.model.to(self.device)
|
| 74 |
+
# self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
| 75 |
|
| 76 |
# def __call__(self, data):
|
|
|
|
| 77 |
# payload = data.get("inputs", data)
|
|
|
|
| 78 |
# img_b64 = payload["image"]
|
| 79 |
# labels = payload.get("candidate_labels", [])
|
| 80 |
# if not labels:
|
| 81 |
# return {"error": "candidate_labels list is empty"}
|
| 82 |
|
| 83 |
+
# # ---------------- decode inputs ----------------
|
| 84 |
# image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 85 |
+
# img_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
|
|
|
|
|
|
| 86 |
# text_tokens = self.tokenizer(labels).to(self.device)
|
| 87 |
|
| 88 |
+
# # ---------------- forward pass -----------------
|
| 89 |
+
# autocast_ctx = (
|
| 90 |
+
# torch.cuda.amp.autocast if self.device.startswith("cuda") else contextlib.nullcontext
|
| 91 |
+
# )
|
| 92 |
+
# with torch.no_grad(), autocast_ctx():
|
| 93 |
# img_feat = self.model.encode_image(img_tensor)
|
| 94 |
# txt_feat = self.model.encode_text(text_tokens)
|
| 95 |
+
# img_feat /= img_feat.norm(dim=-1, keepdim=True)
|
| 96 |
+
# txt_feat /= txt_feat.norm(dim=-1, keepdim=True)
|
| 97 |
# probs = (100 * img_feat @ txt_feat.T).softmax(dim=-1)[0].tolist()
|
| 98 |
|
|
|
|
| 99 |
# return [
|
| 100 |
# {"label": l, "score": float(p)}
|
| 101 |
# for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
| 102 |
# ]
|
| 103 |
+
|
| 104 |
+
|