Update handler.py
Browse files- handler.py +6 -8
handler.py
CHANGED
|
@@ -1,14 +1,12 @@
|
|
| 1 |
-
# handler.py (repo root)
|
| 2 |
import io, base64, torch, open_clip
|
| 3 |
from PIL import Image
|
| 4 |
-
# optional: from open_clip import fuse_conv_bn_sequential # if you want re‑param
|
| 5 |
|
| 6 |
class EndpointHandler:
|
| 7 |
"""
|
| 8 |
-
MobileCLIP‑B ('datacompdr') zero‑shot classifier with per‑process
|
| 9 |
text‑embedding cache.
|
| 10 |
|
| 11 |
-
|
| 12 |
{
|
| 13 |
"inputs": {
|
| 14 |
"image": "<base64 PNG/JPEG>",
|
|
@@ -17,13 +15,11 @@ class EndpointHandler:
|
|
| 17 |
}
|
| 18 |
"""
|
| 19 |
|
|
|
|
| 20 |
def __init__(self, path=""):
|
| 21 |
-
# Load the exact weights your local run uses
|
| 22 |
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 23 |
"mobileclip_b", pretrained="datacompdr"
|
| 24 |
)
|
| 25 |
-
# Optional: fuse conv+bn for speed
|
| 26 |
-
# self.model = fuse_conv_bn_sequential(self.model).eval()
|
| 27 |
self.model.eval()
|
| 28 |
|
| 29 |
self.tokenizer = open_clip.get_tokenizer("mobileclip_b")
|
|
@@ -32,6 +28,7 @@ class EndpointHandler:
|
|
| 32 |
|
| 33 |
self.cache: dict[str, torch.Tensor] = {} # prompt → embedding
|
| 34 |
|
|
|
|
| 35 |
def __call__(self, data):
|
| 36 |
payload = data.get("inputs", data)
|
| 37 |
img_b64 = payload["image"]
|
|
@@ -43,7 +40,7 @@ class EndpointHandler:
|
|
| 43 |
img = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 44 |
img_t = self.preprocess(img).unsqueeze(0).to(self.device)
|
| 45 |
|
| 46 |
-
# Text embeddings
|
| 47 |
new = [l for l in labels if l not in self.cache]
|
| 48 |
if new:
|
| 49 |
tok = self.tokenizer(new).to(self.device)
|
|
@@ -65,6 +62,7 @@ class EndpointHandler:
|
|
| 65 |
for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
| 66 |
]
|
| 67 |
|
|
|
|
| 68 |
# import io, base64, torch
|
| 69 |
# from PIL import Image
|
| 70 |
# import open_clip
|
|
|
|
|
|
|
| 1 |
import io, base64, torch, open_clip
|
| 2 |
from PIL import Image
|
|
|
|
| 3 |
|
| 4 |
class EndpointHandler:
|
| 5 |
"""
|
| 6 |
+
MobileCLIP‑B ('datacompdr') zero‑shot classifier with a per‑process
|
| 7 |
text‑embedding cache.
|
| 8 |
|
| 9 |
+
Client JSON must look like:
|
| 10 |
{
|
| 11 |
"inputs": {
|
| 12 |
"image": "<base64 PNG/JPEG>",
|
|
|
|
| 15 |
}
|
| 16 |
"""
|
| 17 |
|
| 18 |
+
# ---------- init (runs once per container) ----------
|
| 19 |
def __init__(self, path=""):
|
|
|
|
| 20 |
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 21 |
"mobileclip_b", pretrained="datacompdr"
|
| 22 |
)
|
|
|
|
|
|
|
| 23 |
self.model.eval()
|
| 24 |
|
| 25 |
self.tokenizer = open_clip.get_tokenizer("mobileclip_b")
|
|
|
|
| 28 |
|
| 29 |
self.cache: dict[str, torch.Tensor] = {} # prompt → embedding
|
| 30 |
|
| 31 |
+
# ----------------- inference ------------------------
|
| 32 |
def __call__(self, data):
|
| 33 |
payload = data.get("inputs", data)
|
| 34 |
img_b64 = payload["image"]
|
|
|
|
| 40 |
img = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 41 |
img_t = self.preprocess(img).unsqueeze(0).to(self.device)
|
| 42 |
|
| 43 |
+
# Text embeddings (cached)
|
| 44 |
new = [l for l in labels if l not in self.cache]
|
| 45 |
if new:
|
| 46 |
tok = self.tokenizer(new).to(self.device)
|
|
|
|
| 62 |
for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
| 63 |
]
|
| 64 |
|
| 65 |
+
|
| 66 |
# import io, base64, torch
|
| 67 |
# from PIL import Image
|
| 68 |
# import open_clip
|