File size: 7,905 Bytes
4a94319
 
 
 
 
 
 
 
 
 
44afb45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba3aeb
44afb45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b1c712
44afb45
 
 
2b1c712
44afb45
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import struct
import argparse
import json

import numpy as np
import torch



def SerializeFP32(file, tensor):
    d = tensor.detach().cpu().view(-1).to(torch.float32).numpy()
    b = struct.pack(f'{len(d)}f', *d)
    file.write(b)


def SerializeINT8(file, tensor):
    d = tensor.detach().cpu().view(-1).numpy().astype(np.int8)
    b = struct.pack(f'{len(d)}b', *d)
    file.write(b)


def QuantizeINT8(w, group_size):
    assert w.numel() % group_size == 0
    ori_shape = w.shape
    w = w.float() # convert to float32
    w = w.reshape(-1, group_size)

    wmax = torch.abs(w).max(dim=1).values 
    scale = wmax / 127.0
    quant = w / scale[:,None]

    int8val = torch.round(quant).to(torch.int8)
    fp32val = (int8val.float() * scale[:,None]).view(-1)
    fp32valr = fp32val.reshape(-1, group_size)

    err = torch.abs(fp32valr - w).max(dim=1).values
    maxerr = err.max().item()

    return int8val, scale, maxerr


def WriteWeightsFP32(file, model, key):
    print(f"writing {key} {list(model[key].shape)[::-1]}")
    SerializeFP32(file, model[key])


def WriteWeightsINT8(file, model, key, group_size=64):
    """ writes the quantized layer weights to file """
    q, s, err = QuantizeINT8(model[key], group_size)

    SerializeINT8(file, q)
    SerializeFP32(file, s)

    print(f"{key} quantized {tuple(model[key].shape)} to Q8_0 with max error {err}")


def WriteLayersFP32(file, model, layer, n_layers):
    """ writes the layer weights to file """
    for n in range(n_layers):
        WriteWeightsFP32(file, model, layer % n)


def WriteLayersINT8(file, model, layer, n_layers, group_size=64):
    qtensors = { "q": [], "s": [] }

    for n in range(n_layers):
        q, s, err = QuantizeINT8(model[layer % n], group_size)

        qtensors["q"].append(q)
        qtensors["s"].append(s)


        print(f"{layer % n} quantized {tuple(model[layer % n].shape)} to Q8_0 with max error {err}") 


    for q in qtensors["q"]:
        SerializeINT8(file, q)

    for s in qtensors["s"]:
        SerializeFP32(file, s)


def LoadConfig(config_path):
    with open(config_path) as f:
        config = json.load(f)

    return config


def LoadModel(model_path):
    model = torch.load(model_path, map_location='cpu')

    # remove the 'backbone.' prefix from the keys
    unwanted_prefix = 'backbone.'
    for k,v in list(model.items()):
        if k.startswith(unwanted_prefix):
            model[k[len(unwanted_prefix):]] = model.pop(k)

    return model


def ExportModelFP32(model, config, output_path):
    out_file = open(output_path, 'wb')

    n_layers = config['n_layer']

    '''
    Example of the model structure:
    embedding.weight - [50280, 768]
    layers.0.mixer.D - [1536]
    layers.0.mixer.in_proj.weight - [3072, 768]
    layers.0.mixer.conv1d.weight - [1536, 1, 4]
    layers.0.mixer.conv1d.bias - [1536]
    layers.0.mixer.x_proj.weight - [80, 1536]
    layers.0.mixer.dt_proj.weight - [1536, 48]
    layers.0.mixer.dt_proj.bias - [1536]
    layers.0.mixer.A_log - [1536, 16]
    layers.0.mixer.out_proj.weight - [768, 1536]
    layers.0.norm.weight - [768]
    norm_f.weight - [768]
    lm_head.weight - [50280, 768]
    '''

    for n in range(n_layers):
        a_log = f'layers.{n}.mixer.A_log'
        if a_log in model:
            model[f'layers.{n}.mixer.A'] = -torch.exp(model.pop(a_log))


    WriteWeightsFP32(out_file, model, 'embedding.weight')

    WriteLayersFP32(out_file, model, 'layers.%d.mixer.in_proj.weight', n_layers)
    WriteLayersFP32(out_file, model, 'layers.%d.mixer.conv1d.weight', n_layers)
    WriteLayersFP32(out_file, model, 'layers.%d.mixer.conv1d.bias', n_layers)
    WriteLayersFP32(out_file, model, 'layers.%d.mixer.x_proj.weight', n_layers)
    WriteLayersFP32(out_file, model, 'layers.%d.mixer.dt_proj.weight', n_layers)
    WriteLayersFP32(out_file, model, 'layers.%d.mixer.dt_proj.bias', n_layers)
    WriteLayersFP32(out_file, model, 'layers.%d.mixer.A', n_layers)
    WriteLayersFP32(out_file, model, 'layers.%d.mixer.D', n_layers)
    WriteLayersFP32(out_file, model, 'layers.%d.mixer.out_proj.weight', n_layers)
    WriteLayersFP32(out_file, model, 'layers.%d.norm.weight', n_layers)

    WriteWeightsFP32(out_file, model, 'norm_f.weight')
    WriteWeightsFP32(out_file, model, 'lm_head.weight')

    out_file.close()


    print(f"Exported FP32 model to {output_path}")

    
def ExportModelINT8(model, config, output_path, group_size=64):
    out_file = open(output_path, 'wb')

    n_layers = config['n_layer']

    '''
    Example of the model structure:
    embedding.weight - [50280, 768]
    layers.0.mixer.D - [1536]
    layers.0.mixer.in_proj.weight - [3072, 768]
    layers.0.mixer.conv1d.weight - [1536, 1, 4]
    layers.0.mixer.conv1d.bias - [1536]
    layers.0.mixer.x_proj.weight - [80, 1536]
    layers.0.mixer.dt_proj.weight - [1536, 48]
    layers.0.mixer.dt_proj.bias - [1536]
    layers.0.mixer.A_log - [1536, 16]
    layers.0.mixer.out_proj.weight - [768, 1536]
    layers.0.norm.weight - [768]
    norm_f.weight - [768]
    lm_head.weight - [50280, 768]
    '''

    for n in range(n_layers):
        a_log = f'layers.{n}.mixer.A_log'
        if a_log in model:
            model[f'layers.{n}.mixer.A'] = -torch.exp(model.pop(a_log))


    WriteWeightsINT8(out_file, model, 'embedding.weight')

    WriteLayersINT8(out_file, model, 'layers.%d.mixer.in_proj.weight', n_layers)

    WriteLayersFP32(out_file, model, 'layers.%d.mixer.conv1d.weight', n_layers)
    WriteLayersFP32(out_file, model, 'layers.%d.mixer.conv1d.bias', n_layers)

    WriteLayersINT8(out_file, model, 'layers.%d.mixer.x_proj.weight', n_layers)

    WriteLayersFP32(out_file, model, 'layers.%d.mixer.dt_proj.weight', n_layers)
    WriteLayersFP32(out_file, model, 'layers.%d.mixer.dt_proj.bias', n_layers)

    WriteLayersFP32(out_file, model, 'layers.%d.mixer.A', n_layers)
    WriteLayersFP32(out_file, model, 'layers.%d.mixer.D', n_layers)

    WriteLayersINT8(out_file, model, 'layers.%d.mixer.out_proj.weight', n_layers)

    WriteLayersFP32(out_file, model, 'layers.%d.norm.weight', n_layers)
    WriteWeightsFP32(out_file, model, 'norm_f.weight')

    WriteWeightsINT8(out_file, model, 'lm_head.weight')

    out_file.close()


    print(f"Exported INT8 model to {output_path}")


def ExportConfig(model, config, output_path):
    """
    Exports the config to a C header file, following this configuration example:

        #define VOCAB_SIZE 256
        #define N_LAYER 12
        #define D_MODEL 768
        #define D_INNER 1536
        #define DT_RANK 48
        #define D_STATE 16
        #define D_CONV 4
        #define GS 64

    #define [KEY] [VALUE]
    key is converted to uppercase and value is the value from the config dictionary
    """

    vocab_size = config['vocab_size']
    rounded_vocab_size = vocab_size if vocab_size % 8 == 0 else vocab_size + (8 - (vocab_size % 8))

    with open(output_path, 'w') as f:
        f.write("#pragma once\n\n")
        f.write("#define VOCAB_SIZE %d\n" % vocab_size)
        f.write("#define ROUNDED_VOCAB_SIZE %d\n\n" % rounded_vocab_size)
        f.write("#define N_LAYER %d\n" % config['n_layer'])
        f.write("#define D_MODEL %d\n" % config['d_model'])
        f.write("#define D_INNER %d\n" % (2 * config['d_model']))
        f.write("#define DT_RANK %d\n" % model['layers.0.mixer.dt_proj.weight'].shape[1])
        f.write("#define D_STATE %d\n" % model['layers.0.mixer.A'].shape[1])
        f.write("#define D_CONV %d\n\n" % model['layers.0.mixer.conv1d.weight'].shape[2])
        f.write("#define GS 64\n")

    
    print(f"Exported C compatible config (header) to {output_path}")






def ExportAll():
    model = LoadModel('pytorch_model.bin')
    config = LoadConfig('config.json')

    

    ExportModelFP32(model, config, 'model.fp32.bin')
    ExportModelINT8(model, config, 'model.int8.bin')

    ExportConfig(model, config, 'config.h')