File size: 7,905 Bytes
4a94319 44afb45 dba3aeb 44afb45 2b1c712 44afb45 2b1c712 44afb45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import os
import struct
import argparse
import json
import numpy as np
import torch
def SerializeFP32(file, tensor):
d = tensor.detach().cpu().view(-1).to(torch.float32).numpy()
b = struct.pack(f'{len(d)}f', *d)
file.write(b)
def SerializeINT8(file, tensor):
d = tensor.detach().cpu().view(-1).numpy().astype(np.int8)
b = struct.pack(f'{len(d)}b', *d)
file.write(b)
def QuantizeINT8(w, group_size):
assert w.numel() % group_size == 0
ori_shape = w.shape
w = w.float() # convert to float32
w = w.reshape(-1, group_size)
wmax = torch.abs(w).max(dim=1).values
scale = wmax / 127.0
quant = w / scale[:,None]
int8val = torch.round(quant).to(torch.int8)
fp32val = (int8val.float() * scale[:,None]).view(-1)
fp32valr = fp32val.reshape(-1, group_size)
err = torch.abs(fp32valr - w).max(dim=1).values
maxerr = err.max().item()
return int8val, scale, maxerr
def WriteWeightsFP32(file, model, key):
print(f"writing {key} {list(model[key].shape)[::-1]}")
SerializeFP32(file, model[key])
def WriteWeightsINT8(file, model, key, group_size=64):
""" writes the quantized layer weights to file """
q, s, err = QuantizeINT8(model[key], group_size)
SerializeINT8(file, q)
SerializeFP32(file, s)
print(f"{key} quantized {tuple(model[key].shape)} to Q8_0 with max error {err}")
def WriteLayersFP32(file, model, layer, n_layers):
""" writes the layer weights to file """
for n in range(n_layers):
WriteWeightsFP32(file, model, layer % n)
def WriteLayersINT8(file, model, layer, n_layers, group_size=64):
qtensors = { "q": [], "s": [] }
for n in range(n_layers):
q, s, err = QuantizeINT8(model[layer % n], group_size)
qtensors["q"].append(q)
qtensors["s"].append(s)
print(f"{layer % n} quantized {tuple(model[layer % n].shape)} to Q8_0 with max error {err}")
for q in qtensors["q"]:
SerializeINT8(file, q)
for s in qtensors["s"]:
SerializeFP32(file, s)
def LoadConfig(config_path):
with open(config_path) as f:
config = json.load(f)
return config
def LoadModel(model_path):
model = torch.load(model_path, map_location='cpu')
# remove the 'backbone.' prefix from the keys
unwanted_prefix = 'backbone.'
for k,v in list(model.items()):
if k.startswith(unwanted_prefix):
model[k[len(unwanted_prefix):]] = model.pop(k)
return model
def ExportModelFP32(model, config, output_path):
out_file = open(output_path, 'wb')
n_layers = config['n_layer']
'''
Example of the model structure:
embedding.weight - [50280, 768]
layers.0.mixer.D - [1536]
layers.0.mixer.in_proj.weight - [3072, 768]
layers.0.mixer.conv1d.weight - [1536, 1, 4]
layers.0.mixer.conv1d.bias - [1536]
layers.0.mixer.x_proj.weight - [80, 1536]
layers.0.mixer.dt_proj.weight - [1536, 48]
layers.0.mixer.dt_proj.bias - [1536]
layers.0.mixer.A_log - [1536, 16]
layers.0.mixer.out_proj.weight - [768, 1536]
layers.0.norm.weight - [768]
norm_f.weight - [768]
lm_head.weight - [50280, 768]
'''
for n in range(n_layers):
a_log = f'layers.{n}.mixer.A_log'
if a_log in model:
model[f'layers.{n}.mixer.A'] = -torch.exp(model.pop(a_log))
WriteWeightsFP32(out_file, model, 'embedding.weight')
WriteLayersFP32(out_file, model, 'layers.%d.mixer.in_proj.weight', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.conv1d.weight', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.conv1d.bias', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.x_proj.weight', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.dt_proj.weight', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.dt_proj.bias', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.A', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.D', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.out_proj.weight', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.norm.weight', n_layers)
WriteWeightsFP32(out_file, model, 'norm_f.weight')
WriteWeightsFP32(out_file, model, 'lm_head.weight')
out_file.close()
print(f"Exported FP32 model to {output_path}")
def ExportModelINT8(model, config, output_path, group_size=64):
out_file = open(output_path, 'wb')
n_layers = config['n_layer']
'''
Example of the model structure:
embedding.weight - [50280, 768]
layers.0.mixer.D - [1536]
layers.0.mixer.in_proj.weight - [3072, 768]
layers.0.mixer.conv1d.weight - [1536, 1, 4]
layers.0.mixer.conv1d.bias - [1536]
layers.0.mixer.x_proj.weight - [80, 1536]
layers.0.mixer.dt_proj.weight - [1536, 48]
layers.0.mixer.dt_proj.bias - [1536]
layers.0.mixer.A_log - [1536, 16]
layers.0.mixer.out_proj.weight - [768, 1536]
layers.0.norm.weight - [768]
norm_f.weight - [768]
lm_head.weight - [50280, 768]
'''
for n in range(n_layers):
a_log = f'layers.{n}.mixer.A_log'
if a_log in model:
model[f'layers.{n}.mixer.A'] = -torch.exp(model.pop(a_log))
WriteWeightsINT8(out_file, model, 'embedding.weight')
WriteLayersINT8(out_file, model, 'layers.%d.mixer.in_proj.weight', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.conv1d.weight', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.conv1d.bias', n_layers)
WriteLayersINT8(out_file, model, 'layers.%d.mixer.x_proj.weight', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.dt_proj.weight', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.dt_proj.bias', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.A', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.mixer.D', n_layers)
WriteLayersINT8(out_file, model, 'layers.%d.mixer.out_proj.weight', n_layers)
WriteLayersFP32(out_file, model, 'layers.%d.norm.weight', n_layers)
WriteWeightsFP32(out_file, model, 'norm_f.weight')
WriteWeightsINT8(out_file, model, 'lm_head.weight')
out_file.close()
print(f"Exported INT8 model to {output_path}")
def ExportConfig(model, config, output_path):
"""
Exports the config to a C header file, following this configuration example:
#define VOCAB_SIZE 256
#define N_LAYER 12
#define D_MODEL 768
#define D_INNER 1536
#define DT_RANK 48
#define D_STATE 16
#define D_CONV 4
#define GS 64
#define [KEY] [VALUE]
key is converted to uppercase and value is the value from the config dictionary
"""
vocab_size = config['vocab_size']
rounded_vocab_size = vocab_size if vocab_size % 8 == 0 else vocab_size + (8 - (vocab_size % 8))
with open(output_path, 'w') as f:
f.write("#pragma once\n\n")
f.write("#define VOCAB_SIZE %d\n" % vocab_size)
f.write("#define ROUNDED_VOCAB_SIZE %d\n\n" % rounded_vocab_size)
f.write("#define N_LAYER %d\n" % config['n_layer'])
f.write("#define D_MODEL %d\n" % config['d_model'])
f.write("#define D_INNER %d\n" % (2 * config['d_model']))
f.write("#define DT_RANK %d\n" % model['layers.0.mixer.dt_proj.weight'].shape[1])
f.write("#define D_STATE %d\n" % model['layers.0.mixer.A'].shape[1])
f.write("#define D_CONV %d\n\n" % model['layers.0.mixer.conv1d.weight'].shape[2])
f.write("#define GS 64\n")
print(f"Exported C compatible config (header) to {output_path}")
def ExportAll():
model = LoadModel('pytorch_model.bin')
config = LoadConfig('config.json')
ExportModelFP32(model, config, 'model.fp32.bin')
ExportModelINT8(model, config, 'model.int8.bin')
ExportConfig(model, config, 'config.h')
|