Update README.md
Browse files
README.md
CHANGED
|
@@ -44,19 +44,19 @@ import torchaudio
|
|
| 44 |
from datasets import load_dataset
|
| 45 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 46 |
|
| 47 |
-
!wget https://www.openslr.org/resources/43/
|
| 48 |
-
!unzip
|
| 49 |
-
!ls
|
| 50 |
|
| 51 |
colnames=['path','sentence']
|
| 52 |
-
df = pd.read_csv('/content/
|
| 53 |
-
df['path'] = '/content/
|
| 54 |
|
| 55 |
train, test = train_test_split(df, test_size=0.1)
|
| 56 |
|
| 57 |
-
test.to_csv('/content/
|
| 58 |
|
| 59 |
-
test_dataset = load_dataset('csv', data_files='/content/
|
| 60 |
|
| 61 |
processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
| 62 |
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
|
@@ -66,15 +66,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
| 66 |
# Preprocessing the datasets.
|
| 67 |
# We need to read the aduio files as arrays
|
| 68 |
def speech_file_to_array_fn(batch):
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 74 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 75 |
|
| 76 |
with torch.no_grad():
|
| 77 |
-
|
| 78 |
|
| 79 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 80 |
|
|
@@ -120,37 +120,38 @@ processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-khmer")
|
|
| 120 |
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-khmer")
|
| 121 |
model.to("cuda")
|
| 122 |
|
| 123 |
-
chars_to_ignore_regex = '[
|
| 124 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 125 |
|
| 126 |
# Preprocessing the datasets.
|
| 127 |
# We need to read the aduio files as arrays
|
| 128 |
def speech_file_to_array_fn(batch):
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
|
| 134 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 135 |
|
| 136 |
# Preprocessing the datasets.
|
| 137 |
# We need to read the aduio files as arrays
|
| 138 |
def evaluate(batch):
|
| 139 |
-
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
|
| 148 |
cer = load_metric("cer")
|
| 149 |
|
| 150 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 151 |
|
| 152 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"])))
|
| 153 |
-
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["text"])))
|
|
|
|
| 154 |
|
| 155 |
**Test Result**: 24.96 %
|
| 156 |
|
|
|
|
| 44 |
from datasets import load_dataset
|
| 45 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 46 |
|
| 47 |
+
!wget https://www.openslr.org/resources/43/km_kh_male.zip
|
| 48 |
+
!unzip km_kh_male.zip
|
| 49 |
+
!ls km_kh_male
|
| 50 |
|
| 51 |
colnames=['path','sentence']
|
| 52 |
+
df = pd.read_csv('/content/km_kh_male/line_index.tsv',sep='\\\\\\\\\\\\\\\\t',header=None,names = colnames)
|
| 53 |
+
df['path'] = '/content/km_kh_male/wavs/'+df['path'] +'.wav'
|
| 54 |
|
| 55 |
train, test = train_test_split(df, test_size=0.1)
|
| 56 |
|
| 57 |
+
test.to_csv('/content/km_kh_male/line_index_test.csv')
|
| 58 |
|
| 59 |
+
test_dataset = load_dataset('csv', data_files='/content/km_kh_male/line_index_test.csv',split = 'train')
|
| 60 |
|
| 61 |
processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
| 62 |
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
|
|
|
| 66 |
# Preprocessing the datasets.
|
| 67 |
# We need to read the aduio files as arrays
|
| 68 |
def speech_file_to_array_fn(batch):
|
| 69 |
+
\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 70 |
+
\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 71 |
+
\\\\\\\\treturn batch
|
| 72 |
|
| 73 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 74 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 75 |
|
| 76 |
with torch.no_grad():
|
| 77 |
+
\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 78 |
|
| 79 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 80 |
|
|
|
|
| 120 |
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-khmer")
|
| 121 |
model.to("cuda")
|
| 122 |
|
| 123 |
+
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
|
| 124 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 125 |
|
| 126 |
# Preprocessing the datasets.
|
| 127 |
# We need to read the aduio files as arrays
|
| 128 |
def speech_file_to_array_fn(batch):
|
| 129 |
+
\tbatch["text"] = re.sub(chars_to_ignore_regex, '', batch["text"]).lower()
|
| 130 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 131 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 132 |
+
\treturn batch
|
| 133 |
|
| 134 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 135 |
|
| 136 |
# Preprocessing the datasets.
|
| 137 |
# We need to read the aduio files as arrays
|
| 138 |
def evaluate(batch):
|
| 139 |
+
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 140 |
|
| 141 |
+
\twith torch.no_grad():
|
| 142 |
+
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
| 143 |
|
| 144 |
+
\tpred_ids = torch.argmax(logits, dim=-1)
|
| 145 |
+
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
| 146 |
+
\treturn batch
|
| 147 |
|
| 148 |
cer = load_metric("cer")
|
| 149 |
|
| 150 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 151 |
|
| 152 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"])))
|
| 153 |
+
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["text"])))
|
| 154 |
+
```
|
| 155 |
|
| 156 |
**Test Result**: 24.96 %
|
| 157 |
|