GATE-VLAP: Grounded Action Trajectory Embeddings with Vision-Language Action Planning
Trained on LIBERO-10 Benchmark
This model is trained for robotic manipulation tasks using vision-language-action learning with semantic action chunking.
Model Details
- Architecture: CLIP-RT (CLIP-based Robot Transformer)
- Training Dataset: GATE-VLAP LIBERO-10
- Training Epochs: 90
- Task Type: Long-horizon robotic manipulation
- Input: RGB images (128×128) + language instructions
- Output: 7-DOF actions (xyz, rpy, gripper)
Training Details
- Dataset: LIBERO-10 (29 subtasks, 1,354 demonstrations)
- Segmentation: Semantic action chunking using Gemini Vision API
- Framework: PyTorch
- Checkpoint: Epoch 90 (best_epoch)
Performance
Training run: libero_10_fixed_training_v1
Overall performance accuracy: 88.8 % task success rate => 5 % better than raw CLIP-RT on LIBERO-LONG
Dataset
This model was trained on the GATE-VLAP Datasets, which includes:
- LIBERO-10: 103,650 frames across 29 subtasks
- Semantic action segmentation
- Vision-language annotations
Citation
@article{gateVLAP@SAC2026,
title={Atomic Action Slicing: Planner-Aligned Options for Generalist VLA Agents},
author={Stefan Tabakov, Asen Popov, Dimitar Dimitrov, Ensiye Kiyamousavi and Boris Kraychev},
journal={arXiv preprint arXiv:XXXX.XXXXX},
conference={The 41st ACM/SIGAPP Symposium On Applied Computing (SAC2026), track on Intelligent Robotics and Multi-Agent Systems (IRMAS)},
year={2025}
}
Maintainer
GATE Institute - Advanced AI Research Group, Sofia, Bulgaria
Links
- 🤗 Dataset: gate-institute/GATE-VLAP-datasets
- 📄 Paper: Coming soon
- 💻 Code: Coming soon
- Downloads last month
- 23