gihong99 commited on
Commit
e659b5a
·
verified ·
1 Parent(s): 7e18b76

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +10 -24
README.md CHANGED
@@ -15,50 +15,36 @@ library_name: sentence-transformers
15
 
16
  # Ko-Qwen: Korean Embedding Model
17
 
18
- This is a Korean-optimized embedding model fine-tuned from [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) through a 6-stage progressive training pipeline.
19
 
20
- ## Usage
 
 
 
 
 
21
 
22
- Install the required library:
23
 
24
  ```bash
25
  pip install -U sentence-transformers
26
  ```
27
 
28
- Then load and use the model:
29
-
30
  ```python
31
  from sentence_transformers import SentenceTransformer
32
 
33
  # Load model
34
- model = SentenceTransformer("your-username/ko-qwen")
35
 
36
  # Encode sentences
37
- sentences = [
38
- ]
39
-
40
  embeddings = model.encode(sentences)
41
- print(embeddings.shape) # (3, 1024)
42
 
43
  # Compute similarities
44
  similarities = model.similarity(embeddings, embeddings)
45
  print(similarities)
46
  ```
47
 
48
- ## Training
49
-
50
- This model was trained through a 6-stage progressive pipeline
51
-
52
-
53
- ## Framework Versions
54
-
55
- - Python: 3.11.9
56
- - Sentence Transformers: 3.3.1
57
- - Transformers: 4.54.1
58
- - PyTorch: 2.7.1+cu126
59
- - Datasets: 4.3.0
60
- - Tokenizers: 0.21.4
61
-
62
  ## License
63
 
64
  Apache 2.0
 
15
 
16
  # Ko-Qwen: Korean Embedding Model
17
 
18
+ Korean-optimized embedding model based on [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B).
19
 
20
+ ## Model Details
21
+
22
+ - **Parameters**: 600M
23
+ - **Embedding Dimension**: 1024
24
+ - **Max Sequence Length**: 512 tokens
25
+ - **Language**: Korean (ko)
26
 
27
+ ## Usage
28
 
29
  ```bash
30
  pip install -U sentence-transformers
31
  ```
32
 
 
 
33
  ```python
34
  from sentence_transformers import SentenceTransformer
35
 
36
  # Load model
37
+ model = SentenceTransformer("gihong99/qwen3-embedding-ko-v1")
38
 
39
  # Encode sentences
40
+ sentences = ["인공지능은 미래를 바꿀 것입니다.", "오늘 날씨가 좋습니다."]
 
 
41
  embeddings = model.encode(sentences)
 
42
 
43
  # Compute similarities
44
  similarities = model.similarity(embeddings, embeddings)
45
  print(similarities)
46
  ```
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  ## License
49
 
50
  Apache 2.0