File size: 28,794 Bytes
dcdf545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "-u7xRR3DeFXz"
      },
      "source": [
        "##### Copyright 2025 Google LLC."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "id": "oed1Dh9SeIlD"
      },
      "outputs": [],
      "source": [
        "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
        "# you may not use this file except in compliance with the License.\n",
        "# You may obtain a copy of the License at\n",
        "#\n",
        "# https://www.apache.org/licenses/LICENSE-2.0\n",
        "#\n",
        "# Unless required by applicable law or agreed to in writing, software\n",
        "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
        "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
        "# See the License for the specific language governing permissions and\n",
        "# limitations under the License."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "UpJl85mfqdUB"
      },
      "source": [
        "<table class=\"tfo-notebook-buttons\" align=\"left\">\n",
        "  <td>\n",
        "    <a target=\"_blank\" href=\"https://ai.google.dev/gemma/docs/embeddinggemma/inference-embeddinggemma-with-sentence-transformers\"><img src=\"https://ai.google.dev/static/site-assets/images/docs/notebook-site-button.png\" height=\"32\" width=\"32\" />View on ai.google.dev</a>\n",
        "  </td>\n",
        "  <td>\n",
        "    <a target=\"_blank\" href=\"https://colab.research.google.com/github/google/generative-ai-docs/blob/main/site/en/gemma/docs/embeddinggemma/inference-embeddinggemma-with-sentence-transformers.ipynb\"\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
        "  </td>\n",
        "  <td>\n",
        "    <a target=\"_blank\" href=\"https://kaggle.com/kernels/welcome?src=https://github.com/google/generative-ai-docs/blob/main/site/en/gemma/docs/embeddinggemma/inference-embeddinggemma-with-sentence-transformers.ipynb\"><img src=\"https://www.kaggle.com/static/images/logos/kaggle-logo-transparent-300.png\" height=\"32\" width=\"70\"/>Run in Kaggle</a>\n",
        "  </td>\n",
        "  <td>\n",
        "    <a target=\"_blank\" href=\"https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https://raw.githubusercontent.com/google/generative-ai-docs/main/site/en/gemma/docs/embeddinggemma/inference-embeddinggemma-with-sentence-transformers.ipynb\"><img src=\"https://ai.google.dev/images/cloud-icon.svg\" width=\"40\" />Open in Vertex AI</a>\n",
        "  </td>\n",
        "  <td>\n",
        "    <a target=\"_blank\" href=\"https://github.com/google/generative-ai-docs/blob/main/site/en/gemma/docs/embeddinggemma/inference-embeddinggemma-with-sentence-transformers.ipynb\"><img src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View source on GitHub</a>\n",
        "  </td>\n",
        "</table>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Sq3lJyEiqqD-"
      },
      "source": [
        "# Generate Embeddings with Sentence Transformers\n",
        "\n",
        "EmbeddingGemma is a lightweight, open embedding model designed for fast, high-quality retrieval on everyday devices like mobile phones. At only 308 million parameters, it's efficient enough to run advanced AI techniques, such as Retrieval Augmented Generation (RAG), directly on your local machine with no internet connection required.\n",
        "\n",
        "## Setup\n",
        "\n",
        "Before starting this tutorial, complete the following steps:\n",
        "\n",
        "* Get access to Gemma by logging into [Hugging Face](https://huggingface.co/google/embeddinggemma-300M) and selecting **Acknowledge license** for a Gemma model.\n",
        "* Generate a Hugging Face [Access Token](https://huggingface.co/docs/hub/en/security-tokens#how-to-manage-user-access-token) and use it to login from Colab.\n",
        "\n",
        "This notebook will run on either CPU or GPU."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "R3TOEqprq-X3"
      },
      "source": [
        "### Install Python packages\n",
        "\n",
        "Install the libraries required for running the EmbeddingGemma model and generating embeddings. Sentence Transformers is a Python framework for text and image embeddings. For more information, see the [Sentence Transformers](https://www.sbert.net/) documentation."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "jZFuhT3nrHEK"
      },
      "outputs": [],
      "source": [
        "!pip install -U sentence-transformers git+https://github.com/huggingface/transformers@v4.56.0-Embedding-Gemma-preview"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "O3ttIyfSA0Lj"
      },
      "source": [
        "After you have accepted the license, you need a valid Hugging Face Token to access the model."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "WXK1Ev1Sq2iY"
      },
      "outputs": [],
      "source": [
        "# Login into Hugging Face Hub\n",
        "from huggingface_hub import login\n",
        "login()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "NUydcaDBrXDi"
      },
      "source": [
        "### Load Model\n",
        "\n",
        "Use the `sentence-transformers` libraries to create an instance of a model class with EmbeddingGemma."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "mkpmqlU_rcOd",
        "outputId": "f8458e59-9a6e-4a89-af83-ffdf391c323a"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Device: cuda:0\n",
            "SentenceTransformer(\n",
            "  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})\n",
            "  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})\n",
            "  (2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})\n",
            "  (3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})\n",
            "  (4): Normalize()\n",
            ")\n",
            "Total number of parameters in the model: 307581696\n"
          ]
        }
      ],
      "source": [
        "import torch\n",
        "from sentence_transformers import SentenceTransformer\n",
        "\n",
        "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
        "\n",
        "model_id = \"google/embeddinggemma-300M\"\n",
        "model = SentenceTransformer(model_id).to(device=device)\n",
        "\n",
        "print(f\"Device: {model.device}\")\n",
        "print(model)\n",
        "print(\"Total number of parameters in the model:\", sum([p.numel() for _, p in model.named_parameters()]))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "JxrZ8na0A7Hv"
      },
      "source": [
        "## Generating Embedding\n",
        "\n",
        "An embedding is a numerical representation of text, like a word or sentence, that captures its semantic meaning. Essentially, it's a list of numbers (a vector) that allows computers to understand the relationships and context of words.\n",
        "\n",
        "Let's see how EmbeddingGemma would process three different words `[\"apple\", \"banana\", \"car\"]`.\n",
        "\n",
        "EmbeddingGemma has been trained on vast amounts of text and has learned the relationships between words and concepts."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "o0UK8UVAA9b7",
        "outputId": "37c91847-57de-4a47-9c1a-0adffacd1867"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "[[-0.18476306  0.00167681  0.03773484 ... -0.07996225 -0.02348064\n",
            "   0.00976741]\n",
            " [-0.21189538 -0.02657359  0.02513712 ... -0.08042689 -0.01999852\n",
            "   0.00512146]\n",
            " [-0.18924113 -0.02551468  0.04486253 ... -0.06377774 -0.03699806\n",
            "   0.03973572]]\n",
            "Embedding 1: (768,)\n",
            "Embedding 2: (768,)\n",
            "Embedding 3: (768,)\n"
          ]
        }
      ],
      "source": [
        "words = [\"apple\", \"banana\", \"car\"]\n",
        "\n",
        "# Calculate embeddings by calling model.encode()\n",
        "embeddings = model.encode(words)\n",
        "\n",
        "print(embeddings)\n",
        "for idx, embedding in enumerate(embeddings):\n",
        "    print(f\"Embedding {idx+1} (shape): {embedding.shape}\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "inuWOAuMBAR7"
      },
      "source": [
        "The model outpus a numerical vector for each sentence. The actual vectors are very long (768), but for simplicity, those are presented with a few dimensions.\n",
        "\n",
        "The key isn't the individual numbers themselves, but **the distance between the vectors**. If we were to plot these vectors in a multi-dimensional space, The vectors for `apple` and `banana` would be very close to each other. And the vector for `car` would be far away from the other two."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2oCpMMJUr4RT"
      },
      "source": [
        "## Determining Similarity\n",
        "\n",
        "In this section, we use embeddings to determine how sementically similar different sentences are. Here we show examples with high, medieum, and low similarity scores.\n",
        "\n",
        "- High Similarity:\n",
        "  - Sentence A: \"The chef prepared a delicious meal for the guests.\"\n",
        "  - Sentence B: \"A tasty dinner was cooked by the chef for the visitors.\"\n",
        "  - Reasoning: Both sentences describe the same event using different words and grammatical structures (active vs. passive voice). They convey the same core meaning.\n",
        "\n",
        "- Medium Similarity:\n",
        "  - Sentence A: \"She is an expert in machine learning.\"\n",
        "  - Sentence B: \"He has a deep interest in artificial intelligence.\"\n",
        "  - Reasoning: The sentences are related as machine learning is a subfield of artificial intelligence. However, they talk about different people with different levels of engagement (expert vs. interest).\n",
        "\n",
        "- Low Similarity:\n",
        "  - Sentence A: \"The weather in Tokyo is sunny today.\"\n",
        "  - Sentence B: \"I need to buy groceries for the week.\"\n",
        "  - Reasoning: The two sentences are on completely unrelated topics and share no semantic overlap."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "VeTEvnTyslyq",
        "outputId": "b387529f-aad8-4150-e4f1-daef4f30cfc0"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "🙋‍♂️\n",
            "['The chef prepared a delicious meal for the guests.', 'A tasty dinner was cooked by the chef for the visitors.']\n",
            "`-> 🤖 score:  0.8002148\n",
            "🙋‍♂️\n",
            "['She is an expert in machine learning.', 'He has a deep interest in artificial intelligence.']\n",
            "`-> 🤖 score:  0.45417833\n",
            "🙋‍♂️\n",
            "['The weather in Tokyo is sunny today.', 'I need to buy groceries for the week.']\n",
            "`-> 🤖 score:  0.22262995\n"
          ]
        }
      ],
      "source": [
        "# The sentences to encode\n",
        "sentence_high = [\n",
        "    \"The chef prepared a delicious meal for the guests.\",\n",
        "    \"A tasty dinner was cooked by the chef for the visitors.\"\n",
        "]\n",
        "sentence_medium = [\n",
        "    \"She is an expert in machine learning.\",\n",
        "    \"He has a deep interest in artificial intelligence.\"\n",
        "]\n",
        "sentence_low = [\n",
        "    \"The weather in Tokyo is sunny today.\",\n",
        "    \"I need to buy groceries for the week.\"\n",
        "]\n",
        "\n",
        "for sentence in [sentence_high, sentence_medium, sentence_low]:\n",
        "    print(\"🙋‍♂️\")\n",
        "    print(sentence)\n",
        "    embeddings = model.encode(sentence)\n",
        "    similarities = model.similarity(embeddings[0], embeddings[1])\n",
        "    print(\"`-> 🤖 score: \", similarities.numpy()[0][0])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "obfUiizULZE0"
      },
      "source": [
        "### Using Prompts with EmbeddingGemma\n",
        "\n",
        "To generate the best embeddings with EmbeddingGemma, you should add an \"instructional prompt\" or \"task\" to the beginning of your input text. These prompts optimize the embeddings for specific tasks, such as document retrieval or question answering, and help the model distinguish between different input types, like a search query versus a document.\n",
        "\n",
        "#### How to Apply Prompts\n",
        "\n",
        "You can apply a prompt during inference in three ways.\n",
        "\n",
        "1.  **Using the `prompt` argument**<br>\n",
        "    Pass the full prompt string directly to the `encode` method. This gives you precise control.\n",
        "    ```python\n",
        "    embeddings = model.encode(\n",
        "        sentence,\n",
        "        prompt=\"task: sentence similarity | query: \"\n",
        "    )\n",
        "    ```\n",
        "2.  **Using the `prompt_name` argument**<br>\n",
        "    Select a predefined prompt by its name. These prompts are loaded from the model's configuration or during its initialization.\n",
        "    ```python\n",
        "    embeddings = model.encode(sentence, prompt_name=\"STS\")\n",
        "    ```\n",
        "3.  **Using the Default Prompt**<br>\n",
        "    If you don't specify either `prompt` or `prompt_name`, the system will automatically use the prompt set as `default_prompt_name`, if no default is set, then no prompt is applied.\n",
        "    ```python\n",
        "    embeddings = model.encode(sentence)\n",
        "    ```\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "0p3qe3WDJV-I",
        "outputId": "5fa2638e-e67b-479b-fba4-ca89a22cd10e"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Available tasks:\n",
            " query: \"task: search result | query: \"\n",
            " document: \"title: none | text: \"\n",
            " BitextMining: \"task: search result | query: \"\n",
            " Clustering: \"task: clustering | query: \"\n",
            " Classification: \"task: classification | query: \"\n",
            " InstructionRetrieval: \"task: code retrieval | query: \"\n",
            " MultilabelClassification: \"task: classification | query: \"\n",
            " PairClassification: \"task: sentence similarity | query: \"\n",
            " Reranking: \"task: search result | query: \"\n",
            " Retrieval: \"task: search result | query: \"\n",
            " Retrieval-query: \"task: search result | query: \"\n",
            " Retrieval-document: \"title: none | text: \"\n",
            " STS: \"task: sentence similarity | query: \"\n",
            " Summarization: \"task: summarization | query: \"\n",
            "--------------------------------------------------------------------------------\n",
            "🙋‍♂️\n",
            "['The chef prepared a delicious meal for the guests.', 'A tasty dinner was cooked by the chef for the visitors.']\n",
            "`-> 🤖 score:  0.9363755\n",
            "🙋‍♂️\n",
            "['She is an expert in machine learning.', 'He has a deep interest in artificial intelligence.']\n",
            "`-> 🤖 score:  0.6425841\n",
            "🙋‍♂️\n",
            "['The weather in Tokyo is sunny today.', 'I need to buy groceries for the week.']\n",
            "`-> 🤖 score:  0.38587403\n"
          ]
        }
      ],
      "source": [
        "print(\"Available tasks:\")\n",
        "for name, prefix in model.prompts.items():\n",
        "    print(f\" {name}: \\\"{prefix}\\\"\")\n",
        "print(\"-\"*80)\n",
        "\n",
        "for sentence in [sentence_high, sentence_medium, sentence_low]:\n",
        "    print(\"🙋‍♂️\")\n",
        "    print(sentence)\n",
        "    embeddings = model.encode(sentence, prompt_name=\"STS\")\n",
        "    similarities = model.similarity(embeddings[0], embeddings[1])\n",
        "    print(\"`-> 🤖 score: \", similarities.numpy()[0][0])\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2YAqPXDctw2w"
      },
      "source": [
        "#### Use Case: Retrieval-Augmented Generation (RAG)\n",
        "\n",
        "For RAG systems, use the following `prompt_name` values to create specialized embeddings for your queries and documents:\n",
        "\n",
        "* **For Queries:** Use `prompt_name=\"Retrieval-query\"`.<br>\n",
        "    ```python\n",
        "    query_embedding = model.encode(\n",
        "        \"How do I use prompts with this model?\",\n",
        "        prompt_name=\"Retrieval-query\"\n",
        "    )\n",
        "    ```\n",
        "\n",
        "* **For Documents:** Use `prompt_name=\"Retrieval-document\"`. To further improve document embeddings, you can also include a title by using the `prompt` argument directly:<br>\n",
        "  * **With a title:**<br>\n",
        "    ```python\n",
        "    doc_embedding = model.encode(\n",
        "        \"The document text...\",\n",
        "        prompt=\"title: Using Prompts in RAG | text: \"\n",
        "    )\n",
        "    ```\n",
        "  * **Without a title:**<br>\n",
        "    ```python\n",
        "    doc_embedding = model.encode(\n",
        "        \"The document text...\",\n",
        "        prompt=\"title: none | text: \"\n",
        "    )\n",
        "    ```\n",
        "\n",
        "#### Further Reading\n",
        "\n",
        "* For details on all available EmbeddingGemma prompts, see the [model card](http://ai.google.dev/gemma/docs/embeddinggemma/model_card#prompt_instructions).\n",
        "* For general information on prompt templates, see the [Sentence Transformer documentation](https://sbert.net/examples/sentence_transformer/applications/computing-embeddings/README.html#prompt-templates).\n",
        "* For a demo of RAG, see the [Simple RAG example](https://github.com/google-gemini/gemma-cookbook/blob/main/Gemma/%5BGemma_3%5DRAG_with_EmbeddingGemma.ipynb) in the Gemma Cookbook.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "aQh-QFAPsswb"
      },
      "source": [
        "## Classification\n",
        "\n",
        "Classification is the task of assigning a piece of text to one or more predefined categories or labels. It's one of the most fundamental tasks in Natural Language Processing (NLP).\n",
        "\n",
        "A practical application of text classification is customer support ticket routing. This process automatically directs customer queries to the correct department, saving time and reducing manual work."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "C2Ufawl-tXvr",
        "outputId": "347bd68c-dfee-470d-eef7-e3af5d096e91"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "tensor([[0.4673, 0.5145, 0.3604],\n",
            "        [0.4191, 0.5010, 0.5966]])\n",
            "tensor([1, 2])\n",
            "🙋‍♂️ Excuse me, the app freezes on the login screen. It won't work even when I try to reset my password. -> 🤖 Technical Support\n",
            "🙋‍♂️ I would like to inquire about your enterprise plan pricing and features for a team of 50 people. -> 🤖 Sales Inquiry\n"
          ]
        }
      ],
      "source": [
        "labels = [\"Billing Issue\", \"Technical Support\", \"Sales Inquiry\"]\n",
        "\n",
        "sentence = [\n",
        "    \"Excuse me, the app freezes on the login screen. It won't work even when I try to reset my password.\",\n",
        "    \"I would like to inquire about your enterprise plan pricing and features for a team of 50 people.\",\n",
        "]\n",
        "\n",
        "# Calculate embeddings by calling model.encode()\n",
        "label_embeddings = model.encode(labels, prompt_name=\"Classification\")\n",
        "embeddings = model.encode(sentence, prompt_name=\"Classification\")\n",
        "\n",
        "# Calculate the embedding similarities\n",
        "similarities = model.similarity(embeddings, label_embeddings)\n",
        "print(similarities)\n",
        "\n",
        "idx = similarities.argmax(1)\n",
        "print(idx)\n",
        "\n",
        "for example in sentence:\n",
        "    print(\"🙋‍♂️\", example, \"-> 🤖\", labels[idx[sentence.index(example)]])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "IRUU2EIDPSmW"
      },
      "source": [
        "## Matryoshka Representation Learning (MRL)\n",
        "\n",
        "EmbeddingGemma leverages MRL to provide multiple embedding sizes from one model. It's a clever training method that creates a single, high-quality embedding where the most important information is concentrated at the beginning of the vector.\n",
        "\n",
        "This means you can get a smaller but still very useful embedding by simply taking the first `N` dimensions of the full embedding. Using smaller, truncated embeddings is significantly cheaper to store and faster to process, but this efficiency comes at the cost of potential lower quality of embeddings. MRL gives you the power to choose the optimal balance between this speed and accuracy for your application's specific needs.\n",
        "\n",
        "Let's use three words `[\"apple\", \"banana\", \"car\"]` and create simplified embeddings to see how MRL works."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "B1q1F9I5PYSq",
        "outputId": "a5b28e04-4783-4d79-ae82-3fac7e554a7a"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "similarity function:  cosine\n",
            "tensor([[0.7510, 0.6685]])\n",
            "🙋‍♂️ apple vs. banana -> 🤖 score:  0.75102395\n",
            "🙋‍♂️ apple vs. car -> 🤖 score:  0.6684626\n"
          ]
        }
      ],
      "source": [
        "def check_word_similarities():\n",
        "    # Calculate the embedding similarities\n",
        "    print(\"similarity function: \", model.similarity_fn_name)\n",
        "    similarities = model.similarity(embeddings[0], embeddings[1:])\n",
        "    print(similarities)\n",
        "\n",
        "    for idx, word in enumerate(words[1:]):\n",
        "        print(\"🙋‍♂️ apple vs.\", word, \"-> 🤖 score: \", similarities.numpy()[0][idx])\n",
        "\n",
        "# Calculate embeddings by calling model.encode()\n",
        "embeddings = model.encode(words, prompt_name=\"STS\")\n",
        "\n",
        "check_word_similarities()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_iv1xG0TPxkm"
      },
      "source": [
        "Now, for a faster application, you don't need a new model. Simply **truncate** the full embeddings to the first **512 dimensions**. For optimal results, it is also recommended to set `normalize_embeddings=True`, which scales the vectors to a unit length of 1."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "9Ue4aWh8PzdL",
        "outputId": "176dabd4-9d9c-4ce9-c7e5-472ba47ed55f"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Embedding 1: (512,)\n",
            "Embedding 2: (512,)\n",
            "Embedding 3: (512,)\n",
            "--------------------------------------------------------------------------------\n",
            "similarity function:  cosine\n",
            "tensor([[0.7674, 0.7041]])\n",
            "🙋‍♂️ apple vs. banana -> 🤖 score:  0.767427\n",
            "🙋‍♂️ apple vs. car -> 🤖 score:  0.7040509\n"
          ]
        }
      ],
      "source": [
        "embeddings = model.encode(words, truncate_dim=512, normalize_embeddings=True)\n",
        "\n",
        "for idx, embedding in enumerate(embeddings):\n",
        "    print(f\"Embedding {idx+1}: {embedding.shape}\")\n",
        "\n",
        "print(\"-\"*80)\n",
        "check_word_similarities()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "lgkmgzfVP24M"
      },
      "source": [
        "In extremely constrained environments, you can further shorten the embeddings to just **256 dimensions**. You can also use the more efficient **dot-product** for similarity calculations instead of the standard **cosine** similarity."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Gi4NlPv-P4RS",
        "outputId": "656d8d6a-1e79-41be-f17a-cab136bf27ea"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Embedding 1: (256,)\n",
            "Embedding 2: (256,)\n",
            "Embedding 3: (256,)\n",
            "--------------------------------------------------------------------------------\n",
            "similarity function:  dot\n",
            "tensor([[0.7855, 0.7382]])\n",
            "🙋‍♂️ apple vs. banana -> 🤖 score:  0.7854644\n",
            "🙋‍♂️ apple vs. car -> 🤖 score:  0.7382126\n"
          ]
        }
      ],
      "source": [
        "model = SentenceTransformer(model_id, truncate_dim=256, similarity_fn_name=\"dot\").to(device=device)\n",
        "embeddings = model.encode(words, prompt_name=\"STS\", normalize_embeddings=True)\n",
        "\n",
        "for idx, embedding in enumerate(embeddings):\n",
        "    print(f\"Embedding {idx+1}: {embedding.shape}\")\n",
        "\n",
        "print(\"-\"*80)\n",
        "check_word_similarities()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "RYr9uSI_t3fm"
      },
      "source": [
        "## Summary and next steps\n",
        "\n",
        "You are now equipped to generate high-quality text embeddings using EmbeddingGemma and the Sentence Transformers library. Apply these skills to build powerful features like semantic similarity, text classification, and Retrieval-Augmented Generation (RAG) systems, and continue exploring what's possible with Gemma models.\n",
        "\n",
        "Check out the following docs next:\n",
        "\n",
        "* [Fine-tune EmbeddingGemma](https://ai.google.dev/gemma/docs/embeddinggemma/fine-tuning-embeddinggemma-with-sentence-transformers)\n",
        "* [Simple RAG example](https://github.com/google-gemini/gemma-cookbook/blob/main/Gemma/%5BGemma_3%5DRAG_with_EmbeddingGemma.ipynb) in the Gemma Cookbook\n"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "name": "inference-embeddinggemma-with-sentence-transformers.ipynb",
      "provenance": [],
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}