hardlyworking commited on
Commit
4ff0dd8
·
verified ·
1 Parent(s): 5928f7e

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. README.md +162 -0
  3. adapter_config.json +42 -0
  4. adapter_model.safetensors +3 -0
  5. chat_template.jinja +51 -0
  6. checkpoint-102/README.md +208 -0
  7. checkpoint-102/adapter_config.json +42 -0
  8. checkpoint-102/adapter_model.safetensors +3 -0
  9. checkpoint-102/chat_template.jinja +51 -0
  10. checkpoint-102/optimizer.pt +3 -0
  11. checkpoint-102/rng_state.pth +3 -0
  12. checkpoint-102/scheduler.pt +3 -0
  13. checkpoint-102/special_tokens_map.json +1032 -0
  14. checkpoint-102/tokenizer.json +3 -0
  15. checkpoint-102/tokenizer_config.json +0 -0
  16. checkpoint-102/trainer_state.json +1054 -0
  17. checkpoint-102/training_args.bin +3 -0
  18. checkpoint-135/README.md +208 -0
  19. checkpoint-135/adapter_config.json +42 -0
  20. checkpoint-135/adapter_model.safetensors +3 -0
  21. checkpoint-135/chat_template.jinja +51 -0
  22. checkpoint-135/optimizer.pt +3 -0
  23. checkpoint-135/rng_state.pth +3 -0
  24. checkpoint-135/scheduler.pt +3 -0
  25. checkpoint-135/special_tokens_map.json +1032 -0
  26. checkpoint-135/tokenizer.json +3 -0
  27. checkpoint-135/tokenizer_config.json +0 -0
  28. checkpoint-135/trainer_state.json +1384 -0
  29. checkpoint-135/training_args.bin +3 -0
  30. checkpoint-34/README.md +208 -0
  31. checkpoint-34/adapter_config.json +42 -0
  32. checkpoint-34/adapter_model.safetensors +3 -0
  33. checkpoint-34/chat_template.jinja +51 -0
  34. checkpoint-34/optimizer.pt +3 -0
  35. checkpoint-34/rng_state.pth +3 -0
  36. checkpoint-34/scheduler.pt +3 -0
  37. checkpoint-34/special_tokens_map.json +1032 -0
  38. checkpoint-34/tokenizer.json +3 -0
  39. checkpoint-34/tokenizer_config.json +0 -0
  40. checkpoint-34/trainer_state.json +374 -0
  41. checkpoint-34/training_args.bin +3 -0
  42. checkpoint-68/README.md +208 -0
  43. checkpoint-68/adapter_config.json +42 -0
  44. checkpoint-68/adapter_model.safetensors +3 -0
  45. checkpoint-68/chat_template.jinja +51 -0
  46. checkpoint-68/optimizer.pt +3 -0
  47. checkpoint-68/rng_state.pth +3 -0
  48. checkpoint-68/scheduler.pt +3 -0
  49. checkpoint-68/special_tokens_map.json +1032 -0
  50. checkpoint-68/tokenizer.json +3 -0
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-102/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-135/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-34/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ checkpoint-68/tokenizer.json filter=lfs diff=lfs merge=lfs -text
40
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ tags:
4
+ - axolotl
5
+ - base_model:adapter:model
6
+ - lora
7
+ - transformers
8
+ datasets:
9
+ - hardlyworking/HardlyRPv2-10k
10
+ base_model: model
11
+ pipeline_tag: text-generation
12
+ model-index:
13
+ - name: outputs/out
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
21
+ <details><summary>See axolotl config</summary>
22
+
23
+ axolotl version: `0.12.0.dev0`
24
+ ```yaml
25
+ base_model: model
26
+
27
+ # Automatically upload checkpoint and final model to HF
28
+ # hub_model_id: username/custom_model_name
29
+
30
+ plugins:
31
+ - axolotl.integrations.liger.LigerPlugin
32
+ - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
33
+ liger_rope: true
34
+ liger_rms_norm: true
35
+ liger_layer_norm: true
36
+ liger_glu_activation: true
37
+ liger_fused_linear_cross_entropy: false
38
+ cut_cross_entropy: true
39
+
40
+ load_in_8bit: false
41
+ load_in_4bit: true
42
+
43
+ # for use with fft to only train on language model layers
44
+ # unfrozen_parameters:
45
+ # - model.language_model.*
46
+ # - lm_head
47
+ # - embed_tokens
48
+
49
+
50
+ chat_template: mistral_v7_tekken
51
+ datasets:
52
+ - path: hardlyworking/HardlyRPv2-10k
53
+ type: chat_template
54
+ split: train
55
+ field_messages: conversations
56
+ message_property_mappings:
57
+ role: from
58
+ content: value
59
+ user: human
60
+ assistant: gpt
61
+
62
+ val_set_size: 0.0
63
+ output_dir: ./outputs/out
64
+
65
+ adapter: qlora
66
+ lora_r: 32
67
+ lora_alpha: 64
68
+ lora_dropout: 0.05
69
+ # lora_target_linear: # Does not work with gemma3n currently
70
+ lora_target_modules:
71
+ - self_attn.q_proj
72
+ - self_attn.k_proj
73
+ - self_attn.v_proj
74
+ - self_attn.o_proj
75
+ - mlp.gate_proj
76
+ - mlp.up_proj
77
+ - mlp.down_proj
78
+
79
+
80
+ sequence_len: 8192
81
+ sample_packing: true
82
+ eval_sample_packing: true
83
+ pad_to_sequence_len: true
84
+
85
+ wandb_project:
86
+ wandb_entity:
87
+ wandb_watch:
88
+ wandb_name:
89
+ wandb_log_model:
90
+
91
+ gradient_accumulation_steps: 16
92
+ micro_batch_size: 1
93
+ num_epochs: 1
94
+ optimizer: adamw_bnb_8bit
95
+ lr_scheduler: cosine
96
+ learning_rate: 0.0002
97
+
98
+ bf16: auto
99
+ tf32: true
100
+
101
+ gradient_checkpointing: true
102
+ gradient_checkpointing_kwargs:
103
+ use_reentrant: false
104
+ unsloth: true
105
+ resume_from_checkpoint:
106
+ logging_steps: 1
107
+ flash_attention: true
108
+
109
+ warmup_ratio: 0.1
110
+ evals_per_epoch:
111
+ saves_per_epoch: 4
112
+ weight_decay: 0.0
113
+ special_tokens:
114
+
115
+
116
+ ```
117
+
118
+ </details><br>
119
+
120
+ # outputs/out
121
+
122
+ This model was trained from scratch on the hardlyworking/HardlyRPv2-10k dataset.
123
+
124
+ ## Model description
125
+
126
+ More information needed
127
+
128
+ ## Intended uses & limitations
129
+
130
+ More information needed
131
+
132
+ ## Training and evaluation data
133
+
134
+ More information needed
135
+
136
+ ## Training procedure
137
+
138
+ ### Training hyperparameters
139
+
140
+ The following hyperparameters were used during training:
141
+ - learning_rate: 0.0002
142
+ - train_batch_size: 1
143
+ - eval_batch_size: 1
144
+ - seed: 42
145
+ - gradient_accumulation_steps: 16
146
+ - total_train_batch_size: 16
147
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
148
+ - lr_scheduler_type: cosine
149
+ - lr_scheduler_warmup_steps: 13
150
+ - training_steps: 135
151
+
152
+ ### Training results
153
+
154
+
155
+
156
+ ### Framework versions
157
+
158
+ - PEFT 0.17.0
159
+ - Transformers 4.55.0
160
+ - Pytorch 2.7.1+cu126
161
+ - Datasets 4.0.0
162
+ - Tokenizers 0.21.4
adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "model",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": null,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 64,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 32,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "mlp.up_proj",
29
+ "self_attn.q_proj",
30
+ "self_attn.o_proj",
31
+ "self_attn.k_proj",
32
+ "mlp.down_proj",
33
+ "mlp.gate_proj",
34
+ "self_attn.v_proj"
35
+ ],
36
+ "target_parameters": [],
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:292f11ea917be88d6cdf82d94a01c2fe0cff748f22bfff68556966618cae8920
3
+ size 739321784
chat_template.jinja ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- set today = strftime_now("%Y-%m-%d") %}
2
+ {%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \"What are some good restaurants around me?\" => \"Where are you?\" or \"When is the next flight to Tokyo\" => \"Where do you travel from?\")" %}
3
+
4
+ {{- bos_token }}
5
+
6
+ {%- if messages[0]['role'] == 'system' %}
7
+ {%- if messages[0]['content'] is string %}
8
+ {%- set system_message = messages[0]['content'] %}
9
+ {%- else %}
10
+ {%- set system_message = messages[0]['content'][0]['text'] %}
11
+ {%- endif %}
12
+ {%- set loop_messages = messages[1:] %}
13
+ {%- else %}
14
+ {%- set system_message = default_system_message %}
15
+ {%- set loop_messages = messages %}
16
+ {%- endif %}
17
+ {{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}
18
+
19
+ {%- for message in loop_messages %}
20
+ {%- if message['role'] == 'user' %}
21
+ {%- if message['content'] is string %}
22
+ {{- '[INST]' + message['content'] + '[/INST]' }}
23
+ {%- else %}
24
+ {{- '[INST]' }}
25
+ {%- for block in message['content'] %}
26
+ {%- if block['type'] == 'text' %}
27
+ {{- block['text'] }}
28
+ {%- elif block['type'] in ['image', 'image_url'] %}
29
+ {{- '[IMG]' }}
30
+ {%- else %}
31
+ {{- raise_exception('Only text and image blocks are supported in message content!') }}
32
+ {%- endif %}
33
+ {%- endfor %}
34
+ {{- '[/INST]' }}
35
+ {%- endif %}
36
+ {%- elif message['role'] == 'system' %}
37
+ {%- if message['content'] is string %}
38
+ {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}
39
+ {%- else %}
40
+ {{- '[SYSTEM_PROMPT]' + message['content'][0]['text'] + '[/SYSTEM_PROMPT]' }}
41
+ {%- endif %}
42
+ {%- elif message['role'] == 'assistant' %}
43
+ {%- if message['content'] is string %}
44
+ {{- message['content'] + eos_token }}
45
+ {%- else %}
46
+ {{- message['content'][0]['text'] + eos_token }}
47
+ {%- endif %}
48
+ {%- else %}
49
+ {{- raise_exception('Only user, system and assistant roles are supported!') }}
50
+ {%- endif %}
51
+ {%- endfor %}
checkpoint-102/README.md ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: model
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - axolotl
7
+ - base_model:adapter:model
8
+ - lora
9
+ - transformers
10
+ ---
11
+
12
+ # Model Card for Model ID
13
+
14
+ <!-- Provide a quick summary of what the model is/does. -->
15
+
16
+
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ <!-- Provide a longer summary of what this model is. -->
23
+
24
+
25
+
26
+ - **Developed by:** [More Information Needed]
27
+ - **Funded by [optional]:** [More Information Needed]
28
+ - **Shared by [optional]:** [More Information Needed]
29
+ - **Model type:** [More Information Needed]
30
+ - **Language(s) (NLP):** [More Information Needed]
31
+ - **License:** [More Information Needed]
32
+ - **Finetuned from model [optional]:** [More Information Needed]
33
+
34
+ ### Model Sources [optional]
35
+
36
+ <!-- Provide the basic links for the model. -->
37
+
38
+ - **Repository:** [More Information Needed]
39
+ - **Paper [optional]:** [More Information Needed]
40
+ - **Demo [optional]:** [More Information Needed]
41
+
42
+ ## Uses
43
+
44
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
+
46
+ ### Direct Use
47
+
48
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Downstream Use [optional]
53
+
54
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
+
56
+ [More Information Needed]
57
+
58
+ ### Out-of-Scope Use
59
+
60
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ## Bias, Risks, and Limitations
65
+
66
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
+
68
+ [More Information Needed]
69
+
70
+ ### Recommendations
71
+
72
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
+
74
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
+
76
+ ## How to Get Started with the Model
77
+
78
+ Use the code below to get started with the model.
79
+
80
+ [More Information Needed]
81
+
82
+ ## Training Details
83
+
84
+ ### Training Data
85
+
86
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
+
88
+ [More Information Needed]
89
+
90
+ ### Training Procedure
91
+
92
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
+
94
+ #### Preprocessing [optional]
95
+
96
+ [More Information Needed]
97
+
98
+
99
+ #### Training Hyperparameters
100
+
101
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
+
103
+ #### Speeds, Sizes, Times [optional]
104
+
105
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
+
107
+ [More Information Needed]
108
+
109
+ ## Evaluation
110
+
111
+ <!-- This section describes the evaluation protocols and provides the results. -->
112
+
113
+ ### Testing Data, Factors & Metrics
114
+
115
+ #### Testing Data
116
+
117
+ <!-- This should link to a Dataset Card if possible. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Factors
122
+
123
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
+
125
+ [More Information Needed]
126
+
127
+ #### Metrics
128
+
129
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
+
131
+ [More Information Needed]
132
+
133
+ ### Results
134
+
135
+ [More Information Needed]
136
+
137
+ #### Summary
138
+
139
+
140
+
141
+ ## Model Examination [optional]
142
+
143
+ <!-- Relevant interpretability work for the model goes here -->
144
+
145
+ [More Information Needed]
146
+
147
+ ## Environmental Impact
148
+
149
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
+
151
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
152
+
153
+ - **Hardware Type:** [More Information Needed]
154
+ - **Hours used:** [More Information Needed]
155
+ - **Cloud Provider:** [More Information Needed]
156
+ - **Compute Region:** [More Information Needed]
157
+ - **Carbon Emitted:** [More Information Needed]
158
+
159
+ ## Technical Specifications [optional]
160
+
161
+ ### Model Architecture and Objective
162
+
163
+ [More Information Needed]
164
+
165
+ ### Compute Infrastructure
166
+
167
+ [More Information Needed]
168
+
169
+ #### Hardware
170
+
171
+ [More Information Needed]
172
+
173
+ #### Software
174
+
175
+ [More Information Needed]
176
+
177
+ ## Citation [optional]
178
+
179
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
+
181
+ **BibTeX:**
182
+
183
+ [More Information Needed]
184
+
185
+ **APA:**
186
+
187
+ [More Information Needed]
188
+
189
+ ## Glossary [optional]
190
+
191
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
+
193
+ [More Information Needed]
194
+
195
+ ## More Information [optional]
196
+
197
+ [More Information Needed]
198
+
199
+ ## Model Card Authors [optional]
200
+
201
+ [More Information Needed]
202
+
203
+ ## Model Card Contact
204
+
205
+ [More Information Needed]
206
+ ### Framework versions
207
+
208
+ - PEFT 0.17.0
checkpoint-102/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "model",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": null,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 64,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 32,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "mlp.up_proj",
29
+ "self_attn.q_proj",
30
+ "self_attn.o_proj",
31
+ "self_attn.k_proj",
32
+ "mlp.down_proj",
33
+ "mlp.gate_proj",
34
+ "self_attn.v_proj"
35
+ ],
36
+ "target_parameters": [],
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-102/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c66d8f7119e58ec01367fb85a6abaa1eb47c6e119edeb9a8dd1e5b3393444add
3
+ size 739321784
checkpoint-102/chat_template.jinja ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- set today = strftime_now("%Y-%m-%d") %}
2
+ {%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \"What are some good restaurants around me?\" => \"Where are you?\" or \"When is the next flight to Tokyo\" => \"Where do you travel from?\")" %}
3
+
4
+ {{- bos_token }}
5
+
6
+ {%- if messages[0]['role'] == 'system' %}
7
+ {%- if messages[0]['content'] is string %}
8
+ {%- set system_message = messages[0]['content'] %}
9
+ {%- else %}
10
+ {%- set system_message = messages[0]['content'][0]['text'] %}
11
+ {%- endif %}
12
+ {%- set loop_messages = messages[1:] %}
13
+ {%- else %}
14
+ {%- set system_message = default_system_message %}
15
+ {%- set loop_messages = messages %}
16
+ {%- endif %}
17
+ {{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}
18
+
19
+ {%- for message in loop_messages %}
20
+ {%- if message['role'] == 'user' %}
21
+ {%- if message['content'] is string %}
22
+ {{- '[INST]' + message['content'] + '[/INST]' }}
23
+ {%- else %}
24
+ {{- '[INST]' }}
25
+ {%- for block in message['content'] %}
26
+ {%- if block['type'] == 'text' %}
27
+ {{- block['text'] }}
28
+ {%- elif block['type'] in ['image', 'image_url'] %}
29
+ {{- '[IMG]' }}
30
+ {%- else %}
31
+ {{- raise_exception('Only text and image blocks are supported in message content!') }}
32
+ {%- endif %}
33
+ {%- endfor %}
34
+ {{- '[/INST]' }}
35
+ {%- endif %}
36
+ {%- elif message['role'] == 'system' %}
37
+ {%- if message['content'] is string %}
38
+ {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}
39
+ {%- else %}
40
+ {{- '[SYSTEM_PROMPT]' + message['content'][0]['text'] + '[/SYSTEM_PROMPT]' }}
41
+ {%- endif %}
42
+ {%- elif message['role'] == 'assistant' %}
43
+ {%- if message['content'] is string %}
44
+ {{- message['content'] + eos_token }}
45
+ {%- else %}
46
+ {{- message['content'][0]['text'] + eos_token }}
47
+ {%- endif %}
48
+ {%- else %}
49
+ {{- raise_exception('Only user, system and assistant roles are supported!') }}
50
+ {%- endif %}
51
+ {%- endfor %}
checkpoint-102/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:593d7f5fcf6e4e421762793d533bd3f8719055ce3efd3be1208ec10b91546d78
3
+ size 376056741
checkpoint-102/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8290a10374e21d73cfe0938ec8975684ad4f00a2201486ecbb737e779b98b5f6
3
+ size 14645
checkpoint-102/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32fc9a04baf6c238edd542dfc9e204d9c241397ad5906691d3d1b4f268f110a6
3
+ size 1465
checkpoint-102/special_tokens_map.json ADDED
@@ -0,0 +1,1032 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>",
6
+ "[INST]",
7
+ "[/INST]",
8
+ "[AVAILABLE_TOOLS]",
9
+ "[/AVAILABLE_TOOLS]",
10
+ "[TOOL_RESULTS]",
11
+ "[/TOOL_RESULTS]",
12
+ "[TOOL_CALLS]",
13
+ "[IMG]",
14
+ "<pad>",
15
+ "[IMG_BREAK]",
16
+ "[IMG_END]",
17
+ "[PREFIX]",
18
+ "[MIDDLE]",
19
+ "[SUFFIX]",
20
+ "[SYSTEM_PROMPT]",
21
+ "[/SYSTEM_PROMPT]",
22
+ "[TOOL_CONTENT]",
23
+ "<SPECIAL_20>",
24
+ "<SPECIAL_21>",
25
+ "<SPECIAL_22>",
26
+ "<SPECIAL_23>",
27
+ "<SPECIAL_24>",
28
+ "<SPECIAL_25>",
29
+ "<SPECIAL_26>",
30
+ "<SPECIAL_27>",
31
+ "<SPECIAL_28>",
32
+ "<SPECIAL_29>",
33
+ "<SPECIAL_30>",
34
+ "<SPECIAL_31>",
35
+ "<SPECIAL_32>",
36
+ "<SPECIAL_33>",
37
+ "<SPECIAL_34>",
38
+ "<SPECIAL_35>",
39
+ "<SPECIAL_36>",
40
+ "<SPECIAL_37>",
41
+ "<SPECIAL_38>",
42
+ "<SPECIAL_39>",
43
+ "<SPECIAL_40>",
44
+ "<SPECIAL_41>",
45
+ "<SPECIAL_42>",
46
+ "<SPECIAL_43>",
47
+ "<SPECIAL_44>",
48
+ "<SPECIAL_45>",
49
+ "<SPECIAL_46>",
50
+ "<SPECIAL_47>",
51
+ "<SPECIAL_48>",
52
+ "<SPECIAL_49>",
53
+ "<SPECIAL_50>",
54
+ "<SPECIAL_51>",
55
+ "<SPECIAL_52>",
56
+ "<SPECIAL_53>",
57
+ "<SPECIAL_54>",
58
+ "<SPECIAL_55>",
59
+ "<SPECIAL_56>",
60
+ "<SPECIAL_57>",
61
+ "<SPECIAL_58>",
62
+ "<SPECIAL_59>",
63
+ "<SPECIAL_60>",
64
+ "<SPECIAL_61>",
65
+ "<SPECIAL_62>",
66
+ "<SPECIAL_63>",
67
+ "<SPECIAL_64>",
68
+ "<SPECIAL_65>",
69
+ "<SPECIAL_66>",
70
+ "<SPECIAL_67>",
71
+ "<SPECIAL_68>",
72
+ "<SPECIAL_69>",
73
+ "<SPECIAL_70>",
74
+ "<SPECIAL_71>",
75
+ "<SPECIAL_72>",
76
+ "<SPECIAL_73>",
77
+ "<SPECIAL_74>",
78
+ "<SPECIAL_75>",
79
+ "<SPECIAL_76>",
80
+ "<SPECIAL_77>",
81
+ "<SPECIAL_78>",
82
+ "<SPECIAL_79>",
83
+ "<SPECIAL_80>",
84
+ "<SPECIAL_81>",
85
+ "<SPECIAL_82>",
86
+ "<SPECIAL_83>",
87
+ "<SPECIAL_84>",
88
+ "<SPECIAL_85>",
89
+ "<SPECIAL_86>",
90
+ "<SPECIAL_87>",
91
+ "<SPECIAL_88>",
92
+ "<SPECIAL_89>",
93
+ "<SPECIAL_90>",
94
+ "<SPECIAL_91>",
95
+ "<SPECIAL_92>",
96
+ "<SPECIAL_93>",
97
+ "<SPECIAL_94>",
98
+ "<SPECIAL_95>",
99
+ "<SPECIAL_96>",
100
+ "<SPECIAL_97>",
101
+ "<SPECIAL_98>",
102
+ "<SPECIAL_99>",
103
+ "<SPECIAL_100>",
104
+ "<SPECIAL_101>",
105
+ "<SPECIAL_102>",
106
+ "<SPECIAL_103>",
107
+ "<SPECIAL_104>",
108
+ "<SPECIAL_105>",
109
+ "<SPECIAL_106>",
110
+ "<SPECIAL_107>",
111
+ "<SPECIAL_108>",
112
+ "<SPECIAL_109>",
113
+ "<SPECIAL_110>",
114
+ "<SPECIAL_111>",
115
+ "<SPECIAL_112>",
116
+ "<SPECIAL_113>",
117
+ "<SPECIAL_114>",
118
+ "<SPECIAL_115>",
119
+ "<SPECIAL_116>",
120
+ "<SPECIAL_117>",
121
+ "<SPECIAL_118>",
122
+ "<SPECIAL_119>",
123
+ "<SPECIAL_120>",
124
+ "<SPECIAL_121>",
125
+ "<SPECIAL_122>",
126
+ "<SPECIAL_123>",
127
+ "<SPECIAL_124>",
128
+ "<SPECIAL_125>",
129
+ "<SPECIAL_126>",
130
+ "<SPECIAL_127>",
131
+ "<SPECIAL_128>",
132
+ "<SPECIAL_129>",
133
+ "<SPECIAL_130>",
134
+ "<SPECIAL_131>",
135
+ "<SPECIAL_132>",
136
+ "<SPECIAL_133>",
137
+ "<SPECIAL_134>",
138
+ "<SPECIAL_135>",
139
+ "<SPECIAL_136>",
140
+ "<SPECIAL_137>",
141
+ "<SPECIAL_138>",
142
+ "<SPECIAL_139>",
143
+ "<SPECIAL_140>",
144
+ "<SPECIAL_141>",
145
+ "<SPECIAL_142>",
146
+ "<SPECIAL_143>",
147
+ "<SPECIAL_144>",
148
+ "<SPECIAL_145>",
149
+ "<SPECIAL_146>",
150
+ "<SPECIAL_147>",
151
+ "<SPECIAL_148>",
152
+ "<SPECIAL_149>",
153
+ "<SPECIAL_150>",
154
+ "<SPECIAL_151>",
155
+ "<SPECIAL_152>",
156
+ "<SPECIAL_153>",
157
+ "<SPECIAL_154>",
158
+ "<SPECIAL_155>",
159
+ "<SPECIAL_156>",
160
+ "<SPECIAL_157>",
161
+ "<SPECIAL_158>",
162
+ "<SPECIAL_159>",
163
+ "<SPECIAL_160>",
164
+ "<SPECIAL_161>",
165
+ "<SPECIAL_162>",
166
+ "<SPECIAL_163>",
167
+ "<SPECIAL_164>",
168
+ "<SPECIAL_165>",
169
+ "<SPECIAL_166>",
170
+ "<SPECIAL_167>",
171
+ "<SPECIAL_168>",
172
+ "<SPECIAL_169>",
173
+ "<SPECIAL_170>",
174
+ "<SPECIAL_171>",
175
+ "<SPECIAL_172>",
176
+ "<SPECIAL_173>",
177
+ "<SPECIAL_174>",
178
+ "<SPECIAL_175>",
179
+ "<SPECIAL_176>",
180
+ "<SPECIAL_177>",
181
+ "<SPECIAL_178>",
182
+ "<SPECIAL_179>",
183
+ "<SPECIAL_180>",
184
+ "<SPECIAL_181>",
185
+ "<SPECIAL_182>",
186
+ "<SPECIAL_183>",
187
+ "<SPECIAL_184>",
188
+ "<SPECIAL_185>",
189
+ "<SPECIAL_186>",
190
+ "<SPECIAL_187>",
191
+ "<SPECIAL_188>",
192
+ "<SPECIAL_189>",
193
+ "<SPECIAL_190>",
194
+ "<SPECIAL_191>",
195
+ "<SPECIAL_192>",
196
+ "<SPECIAL_193>",
197
+ "<SPECIAL_194>",
198
+ "<SPECIAL_195>",
199
+ "<SPECIAL_196>",
200
+ "<SPECIAL_197>",
201
+ "<SPECIAL_198>",
202
+ "<SPECIAL_199>",
203
+ "<SPECIAL_200>",
204
+ "<SPECIAL_201>",
205
+ "<SPECIAL_202>",
206
+ "<SPECIAL_203>",
207
+ "<SPECIAL_204>",
208
+ "<SPECIAL_205>",
209
+ "<SPECIAL_206>",
210
+ "<SPECIAL_207>",
211
+ "<SPECIAL_208>",
212
+ "<SPECIAL_209>",
213
+ "<SPECIAL_210>",
214
+ "<SPECIAL_211>",
215
+ "<SPECIAL_212>",
216
+ "<SPECIAL_213>",
217
+ "<SPECIAL_214>",
218
+ "<SPECIAL_215>",
219
+ "<SPECIAL_216>",
220
+ "<SPECIAL_217>",
221
+ "<SPECIAL_218>",
222
+ "<SPECIAL_219>",
223
+ "<SPECIAL_220>",
224
+ "<SPECIAL_221>",
225
+ "<SPECIAL_222>",
226
+ "<SPECIAL_223>",
227
+ "<SPECIAL_224>",
228
+ "<SPECIAL_225>",
229
+ "<SPECIAL_226>",
230
+ "<SPECIAL_227>",
231
+ "<SPECIAL_228>",
232
+ "<SPECIAL_229>",
233
+ "<SPECIAL_230>",
234
+ "<SPECIAL_231>",
235
+ "<SPECIAL_232>",
236
+ "<SPECIAL_233>",
237
+ "<SPECIAL_234>",
238
+ "<SPECIAL_235>",
239
+ "<SPECIAL_236>",
240
+ "<SPECIAL_237>",
241
+ "<SPECIAL_238>",
242
+ "<SPECIAL_239>",
243
+ "<SPECIAL_240>",
244
+ "<SPECIAL_241>",
245
+ "<SPECIAL_242>",
246
+ "<SPECIAL_243>",
247
+ "<SPECIAL_244>",
248
+ "<SPECIAL_245>",
249
+ "<SPECIAL_246>",
250
+ "<SPECIAL_247>",
251
+ "<SPECIAL_248>",
252
+ "<SPECIAL_249>",
253
+ "<SPECIAL_250>",
254
+ "<SPECIAL_251>",
255
+ "<SPECIAL_252>",
256
+ "<SPECIAL_253>",
257
+ "<SPECIAL_254>",
258
+ "<SPECIAL_255>",
259
+ "<SPECIAL_256>",
260
+ "<SPECIAL_257>",
261
+ "<SPECIAL_258>",
262
+ "<SPECIAL_259>",
263
+ "<SPECIAL_260>",
264
+ "<SPECIAL_261>",
265
+ "<SPECIAL_262>",
266
+ "<SPECIAL_263>",
267
+ "<SPECIAL_264>",
268
+ "<SPECIAL_265>",
269
+ "<SPECIAL_266>",
270
+ "<SPECIAL_267>",
271
+ "<SPECIAL_268>",
272
+ "<SPECIAL_269>",
273
+ "<SPECIAL_270>",
274
+ "<SPECIAL_271>",
275
+ "<SPECIAL_272>",
276
+ "<SPECIAL_273>",
277
+ "<SPECIAL_274>",
278
+ "<SPECIAL_275>",
279
+ "<SPECIAL_276>",
280
+ "<SPECIAL_277>",
281
+ "<SPECIAL_278>",
282
+ "<SPECIAL_279>",
283
+ "<SPECIAL_280>",
284
+ "<SPECIAL_281>",
285
+ "<SPECIAL_282>",
286
+ "<SPECIAL_283>",
287
+ "<SPECIAL_284>",
288
+ "<SPECIAL_285>",
289
+ "<SPECIAL_286>",
290
+ "<SPECIAL_287>",
291
+ "<SPECIAL_288>",
292
+ "<SPECIAL_289>",
293
+ "<SPECIAL_290>",
294
+ "<SPECIAL_291>",
295
+ "<SPECIAL_292>",
296
+ "<SPECIAL_293>",
297
+ "<SPECIAL_294>",
298
+ "<SPECIAL_295>",
299
+ "<SPECIAL_296>",
300
+ "<SPECIAL_297>",
301
+ "<SPECIAL_298>",
302
+ "<SPECIAL_299>",
303
+ "<SPECIAL_300>",
304
+ "<SPECIAL_301>",
305
+ "<SPECIAL_302>",
306
+ "<SPECIAL_303>",
307
+ "<SPECIAL_304>",
308
+ "<SPECIAL_305>",
309
+ "<SPECIAL_306>",
310
+ "<SPECIAL_307>",
311
+ "<SPECIAL_308>",
312
+ "<SPECIAL_309>",
313
+ "<SPECIAL_310>",
314
+ "<SPECIAL_311>",
315
+ "<SPECIAL_312>",
316
+ "<SPECIAL_313>",
317
+ "<SPECIAL_314>",
318
+ "<SPECIAL_315>",
319
+ "<SPECIAL_316>",
320
+ "<SPECIAL_317>",
321
+ "<SPECIAL_318>",
322
+ "<SPECIAL_319>",
323
+ "<SPECIAL_320>",
324
+ "<SPECIAL_321>",
325
+ "<SPECIAL_322>",
326
+ "<SPECIAL_323>",
327
+ "<SPECIAL_324>",
328
+ "<SPECIAL_325>",
329
+ "<SPECIAL_326>",
330
+ "<SPECIAL_327>",
331
+ "<SPECIAL_328>",
332
+ "<SPECIAL_329>",
333
+ "<SPECIAL_330>",
334
+ "<SPECIAL_331>",
335
+ "<SPECIAL_332>",
336
+ "<SPECIAL_333>",
337
+ "<SPECIAL_334>",
338
+ "<SPECIAL_335>",
339
+ "<SPECIAL_336>",
340
+ "<SPECIAL_337>",
341
+ "<SPECIAL_338>",
342
+ "<SPECIAL_339>",
343
+ "<SPECIAL_340>",
344
+ "<SPECIAL_341>",
345
+ "<SPECIAL_342>",
346
+ "<SPECIAL_343>",
347
+ "<SPECIAL_344>",
348
+ "<SPECIAL_345>",
349
+ "<SPECIAL_346>",
350
+ "<SPECIAL_347>",
351
+ "<SPECIAL_348>",
352
+ "<SPECIAL_349>",
353
+ "<SPECIAL_350>",
354
+ "<SPECIAL_351>",
355
+ "<SPECIAL_352>",
356
+ "<SPECIAL_353>",
357
+ "<SPECIAL_354>",
358
+ "<SPECIAL_355>",
359
+ "<SPECIAL_356>",
360
+ "<SPECIAL_357>",
361
+ "<SPECIAL_358>",
362
+ "<SPECIAL_359>",
363
+ "<SPECIAL_360>",
364
+ "<SPECIAL_361>",
365
+ "<SPECIAL_362>",
366
+ "<SPECIAL_363>",
367
+ "<SPECIAL_364>",
368
+ "<SPECIAL_365>",
369
+ "<SPECIAL_366>",
370
+ "<SPECIAL_367>",
371
+ "<SPECIAL_368>",
372
+ "<SPECIAL_369>",
373
+ "<SPECIAL_370>",
374
+ "<SPECIAL_371>",
375
+ "<SPECIAL_372>",
376
+ "<SPECIAL_373>",
377
+ "<SPECIAL_374>",
378
+ "<SPECIAL_375>",
379
+ "<SPECIAL_376>",
380
+ "<SPECIAL_377>",
381
+ "<SPECIAL_378>",
382
+ "<SPECIAL_379>",
383
+ "<SPECIAL_380>",
384
+ "<SPECIAL_381>",
385
+ "<SPECIAL_382>",
386
+ "<SPECIAL_383>",
387
+ "<SPECIAL_384>",
388
+ "<SPECIAL_385>",
389
+ "<SPECIAL_386>",
390
+ "<SPECIAL_387>",
391
+ "<SPECIAL_388>",
392
+ "<SPECIAL_389>",
393
+ "<SPECIAL_390>",
394
+ "<SPECIAL_391>",
395
+ "<SPECIAL_392>",
396
+ "<SPECIAL_393>",
397
+ "<SPECIAL_394>",
398
+ "<SPECIAL_395>",
399
+ "<SPECIAL_396>",
400
+ "<SPECIAL_397>",
401
+ "<SPECIAL_398>",
402
+ "<SPECIAL_399>",
403
+ "<SPECIAL_400>",
404
+ "<SPECIAL_401>",
405
+ "<SPECIAL_402>",
406
+ "<SPECIAL_403>",
407
+ "<SPECIAL_404>",
408
+ "<SPECIAL_405>",
409
+ "<SPECIAL_406>",
410
+ "<SPECIAL_407>",
411
+ "<SPECIAL_408>",
412
+ "<SPECIAL_409>",
413
+ "<SPECIAL_410>",
414
+ "<SPECIAL_411>",
415
+ "<SPECIAL_412>",
416
+ "<SPECIAL_413>",
417
+ "<SPECIAL_414>",
418
+ "<SPECIAL_415>",
419
+ "<SPECIAL_416>",
420
+ "<SPECIAL_417>",
421
+ "<SPECIAL_418>",
422
+ "<SPECIAL_419>",
423
+ "<SPECIAL_420>",
424
+ "<SPECIAL_421>",
425
+ "<SPECIAL_422>",
426
+ "<SPECIAL_423>",
427
+ "<SPECIAL_424>",
428
+ "<SPECIAL_425>",
429
+ "<SPECIAL_426>",
430
+ "<SPECIAL_427>",
431
+ "<SPECIAL_428>",
432
+ "<SPECIAL_429>",
433
+ "<SPECIAL_430>",
434
+ "<SPECIAL_431>",
435
+ "<SPECIAL_432>",
436
+ "<SPECIAL_433>",
437
+ "<SPECIAL_434>",
438
+ "<SPECIAL_435>",
439
+ "<SPECIAL_436>",
440
+ "<SPECIAL_437>",
441
+ "<SPECIAL_438>",
442
+ "<SPECIAL_439>",
443
+ "<SPECIAL_440>",
444
+ "<SPECIAL_441>",
445
+ "<SPECIAL_442>",
446
+ "<SPECIAL_443>",
447
+ "<SPECIAL_444>",
448
+ "<SPECIAL_445>",
449
+ "<SPECIAL_446>",
450
+ "<SPECIAL_447>",
451
+ "<SPECIAL_448>",
452
+ "<SPECIAL_449>",
453
+ "<SPECIAL_450>",
454
+ "<SPECIAL_451>",
455
+ "<SPECIAL_452>",
456
+ "<SPECIAL_453>",
457
+ "<SPECIAL_454>",
458
+ "<SPECIAL_455>",
459
+ "<SPECIAL_456>",
460
+ "<SPECIAL_457>",
461
+ "<SPECIAL_458>",
462
+ "<SPECIAL_459>",
463
+ "<SPECIAL_460>",
464
+ "<SPECIAL_461>",
465
+ "<SPECIAL_462>",
466
+ "<SPECIAL_463>",
467
+ "<SPECIAL_464>",
468
+ "<SPECIAL_465>",
469
+ "<SPECIAL_466>",
470
+ "<SPECIAL_467>",
471
+ "<SPECIAL_468>",
472
+ "<SPECIAL_469>",
473
+ "<SPECIAL_470>",
474
+ "<SPECIAL_471>",
475
+ "<SPECIAL_472>",
476
+ "<SPECIAL_473>",
477
+ "<SPECIAL_474>",
478
+ "<SPECIAL_475>",
479
+ "<SPECIAL_476>",
480
+ "<SPECIAL_477>",
481
+ "<SPECIAL_478>",
482
+ "<SPECIAL_479>",
483
+ "<SPECIAL_480>",
484
+ "<SPECIAL_481>",
485
+ "<SPECIAL_482>",
486
+ "<SPECIAL_483>",
487
+ "<SPECIAL_484>",
488
+ "<SPECIAL_485>",
489
+ "<SPECIAL_486>",
490
+ "<SPECIAL_487>",
491
+ "<SPECIAL_488>",
492
+ "<SPECIAL_489>",
493
+ "<SPECIAL_490>",
494
+ "<SPECIAL_491>",
495
+ "<SPECIAL_492>",
496
+ "<SPECIAL_493>",
497
+ "<SPECIAL_494>",
498
+ "<SPECIAL_495>",
499
+ "<SPECIAL_496>",
500
+ "<SPECIAL_497>",
501
+ "<SPECIAL_498>",
502
+ "<SPECIAL_499>",
503
+ "<SPECIAL_500>",
504
+ "<SPECIAL_501>",
505
+ "<SPECIAL_502>",
506
+ "<SPECIAL_503>",
507
+ "<SPECIAL_504>",
508
+ "<SPECIAL_505>",
509
+ "<SPECIAL_506>",
510
+ "<SPECIAL_507>",
511
+ "<SPECIAL_508>",
512
+ "<SPECIAL_509>",
513
+ "<SPECIAL_510>",
514
+ "<SPECIAL_511>",
515
+ "<SPECIAL_512>",
516
+ "<SPECIAL_513>",
517
+ "<SPECIAL_514>",
518
+ "<SPECIAL_515>",
519
+ "<SPECIAL_516>",
520
+ "<SPECIAL_517>",
521
+ "<SPECIAL_518>",
522
+ "<SPECIAL_519>",
523
+ "<SPECIAL_520>",
524
+ "<SPECIAL_521>",
525
+ "<SPECIAL_522>",
526
+ "<SPECIAL_523>",
527
+ "<SPECIAL_524>",
528
+ "<SPECIAL_525>",
529
+ "<SPECIAL_526>",
530
+ "<SPECIAL_527>",
531
+ "<SPECIAL_528>",
532
+ "<SPECIAL_529>",
533
+ "<SPECIAL_530>",
534
+ "<SPECIAL_531>",
535
+ "<SPECIAL_532>",
536
+ "<SPECIAL_533>",
537
+ "<SPECIAL_534>",
538
+ "<SPECIAL_535>",
539
+ "<SPECIAL_536>",
540
+ "<SPECIAL_537>",
541
+ "<SPECIAL_538>",
542
+ "<SPECIAL_539>",
543
+ "<SPECIAL_540>",
544
+ "<SPECIAL_541>",
545
+ "<SPECIAL_542>",
546
+ "<SPECIAL_543>",
547
+ "<SPECIAL_544>",
548
+ "<SPECIAL_545>",
549
+ "<SPECIAL_546>",
550
+ "<SPECIAL_547>",
551
+ "<SPECIAL_548>",
552
+ "<SPECIAL_549>",
553
+ "<SPECIAL_550>",
554
+ "<SPECIAL_551>",
555
+ "<SPECIAL_552>",
556
+ "<SPECIAL_553>",
557
+ "<SPECIAL_554>",
558
+ "<SPECIAL_555>",
559
+ "<SPECIAL_556>",
560
+ "<SPECIAL_557>",
561
+ "<SPECIAL_558>",
562
+ "<SPECIAL_559>",
563
+ "<SPECIAL_560>",
564
+ "<SPECIAL_561>",
565
+ "<SPECIAL_562>",
566
+ "<SPECIAL_563>",
567
+ "<SPECIAL_564>",
568
+ "<SPECIAL_565>",
569
+ "<SPECIAL_566>",
570
+ "<SPECIAL_567>",
571
+ "<SPECIAL_568>",
572
+ "<SPECIAL_569>",
573
+ "<SPECIAL_570>",
574
+ "<SPECIAL_571>",
575
+ "<SPECIAL_572>",
576
+ "<SPECIAL_573>",
577
+ "<SPECIAL_574>",
578
+ "<SPECIAL_575>",
579
+ "<SPECIAL_576>",
580
+ "<SPECIAL_577>",
581
+ "<SPECIAL_578>",
582
+ "<SPECIAL_579>",
583
+ "<SPECIAL_580>",
584
+ "<SPECIAL_581>",
585
+ "<SPECIAL_582>",
586
+ "<SPECIAL_583>",
587
+ "<SPECIAL_584>",
588
+ "<SPECIAL_585>",
589
+ "<SPECIAL_586>",
590
+ "<SPECIAL_587>",
591
+ "<SPECIAL_588>",
592
+ "<SPECIAL_589>",
593
+ "<SPECIAL_590>",
594
+ "<SPECIAL_591>",
595
+ "<SPECIAL_592>",
596
+ "<SPECIAL_593>",
597
+ "<SPECIAL_594>",
598
+ "<SPECIAL_595>",
599
+ "<SPECIAL_596>",
600
+ "<SPECIAL_597>",
601
+ "<SPECIAL_598>",
602
+ "<SPECIAL_599>",
603
+ "<SPECIAL_600>",
604
+ "<SPECIAL_601>",
605
+ "<SPECIAL_602>",
606
+ "<SPECIAL_603>",
607
+ "<SPECIAL_604>",
608
+ "<SPECIAL_605>",
609
+ "<SPECIAL_606>",
610
+ "<SPECIAL_607>",
611
+ "<SPECIAL_608>",
612
+ "<SPECIAL_609>",
613
+ "<SPECIAL_610>",
614
+ "<SPECIAL_611>",
615
+ "<SPECIAL_612>",
616
+ "<SPECIAL_613>",
617
+ "<SPECIAL_614>",
618
+ "<SPECIAL_615>",
619
+ "<SPECIAL_616>",
620
+ "<SPECIAL_617>",
621
+ "<SPECIAL_618>",
622
+ "<SPECIAL_619>",
623
+ "<SPECIAL_620>",
624
+ "<SPECIAL_621>",
625
+ "<SPECIAL_622>",
626
+ "<SPECIAL_623>",
627
+ "<SPECIAL_624>",
628
+ "<SPECIAL_625>",
629
+ "<SPECIAL_626>",
630
+ "<SPECIAL_627>",
631
+ "<SPECIAL_628>",
632
+ "<SPECIAL_629>",
633
+ "<SPECIAL_630>",
634
+ "<SPECIAL_631>",
635
+ "<SPECIAL_632>",
636
+ "<SPECIAL_633>",
637
+ "<SPECIAL_634>",
638
+ "<SPECIAL_635>",
639
+ "<SPECIAL_636>",
640
+ "<SPECIAL_637>",
641
+ "<SPECIAL_638>",
642
+ "<SPECIAL_639>",
643
+ "<SPECIAL_640>",
644
+ "<SPECIAL_641>",
645
+ "<SPECIAL_642>",
646
+ "<SPECIAL_643>",
647
+ "<SPECIAL_644>",
648
+ "<SPECIAL_645>",
649
+ "<SPECIAL_646>",
650
+ "<SPECIAL_647>",
651
+ "<SPECIAL_648>",
652
+ "<SPECIAL_649>",
653
+ "<SPECIAL_650>",
654
+ "<SPECIAL_651>",
655
+ "<SPECIAL_652>",
656
+ "<SPECIAL_653>",
657
+ "<SPECIAL_654>",
658
+ "<SPECIAL_655>",
659
+ "<SPECIAL_656>",
660
+ "<SPECIAL_657>",
661
+ "<SPECIAL_658>",
662
+ "<SPECIAL_659>",
663
+ "<SPECIAL_660>",
664
+ "<SPECIAL_661>",
665
+ "<SPECIAL_662>",
666
+ "<SPECIAL_663>",
667
+ "<SPECIAL_664>",
668
+ "<SPECIAL_665>",
669
+ "<SPECIAL_666>",
670
+ "<SPECIAL_667>",
671
+ "<SPECIAL_668>",
672
+ "<SPECIAL_669>",
673
+ "<SPECIAL_670>",
674
+ "<SPECIAL_671>",
675
+ "<SPECIAL_672>",
676
+ "<SPECIAL_673>",
677
+ "<SPECIAL_674>",
678
+ "<SPECIAL_675>",
679
+ "<SPECIAL_676>",
680
+ "<SPECIAL_677>",
681
+ "<SPECIAL_678>",
682
+ "<SPECIAL_679>",
683
+ "<SPECIAL_680>",
684
+ "<SPECIAL_681>",
685
+ "<SPECIAL_682>",
686
+ "<SPECIAL_683>",
687
+ "<SPECIAL_684>",
688
+ "<SPECIAL_685>",
689
+ "<SPECIAL_686>",
690
+ "<SPECIAL_687>",
691
+ "<SPECIAL_688>",
692
+ "<SPECIAL_689>",
693
+ "<SPECIAL_690>",
694
+ "<SPECIAL_691>",
695
+ "<SPECIAL_692>",
696
+ "<SPECIAL_693>",
697
+ "<SPECIAL_694>",
698
+ "<SPECIAL_695>",
699
+ "<SPECIAL_696>",
700
+ "<SPECIAL_697>",
701
+ "<SPECIAL_698>",
702
+ "<SPECIAL_699>",
703
+ "<SPECIAL_700>",
704
+ "<SPECIAL_701>",
705
+ "<SPECIAL_702>",
706
+ "<SPECIAL_703>",
707
+ "<SPECIAL_704>",
708
+ "<SPECIAL_705>",
709
+ "<SPECIAL_706>",
710
+ "<SPECIAL_707>",
711
+ "<SPECIAL_708>",
712
+ "<SPECIAL_709>",
713
+ "<SPECIAL_710>",
714
+ "<SPECIAL_711>",
715
+ "<SPECIAL_712>",
716
+ "<SPECIAL_713>",
717
+ "<SPECIAL_714>",
718
+ "<SPECIAL_715>",
719
+ "<SPECIAL_716>",
720
+ "<SPECIAL_717>",
721
+ "<SPECIAL_718>",
722
+ "<SPECIAL_719>",
723
+ "<SPECIAL_720>",
724
+ "<SPECIAL_721>",
725
+ "<SPECIAL_722>",
726
+ "<SPECIAL_723>",
727
+ "<SPECIAL_724>",
728
+ "<SPECIAL_725>",
729
+ "<SPECIAL_726>",
730
+ "<SPECIAL_727>",
731
+ "<SPECIAL_728>",
732
+ "<SPECIAL_729>",
733
+ "<SPECIAL_730>",
734
+ "<SPECIAL_731>",
735
+ "<SPECIAL_732>",
736
+ "<SPECIAL_733>",
737
+ "<SPECIAL_734>",
738
+ "<SPECIAL_735>",
739
+ "<SPECIAL_736>",
740
+ "<SPECIAL_737>",
741
+ "<SPECIAL_738>",
742
+ "<SPECIAL_739>",
743
+ "<SPECIAL_740>",
744
+ "<SPECIAL_741>",
745
+ "<SPECIAL_742>",
746
+ "<SPECIAL_743>",
747
+ "<SPECIAL_744>",
748
+ "<SPECIAL_745>",
749
+ "<SPECIAL_746>",
750
+ "<SPECIAL_747>",
751
+ "<SPECIAL_748>",
752
+ "<SPECIAL_749>",
753
+ "<SPECIAL_750>",
754
+ "<SPECIAL_751>",
755
+ "<SPECIAL_752>",
756
+ "<SPECIAL_753>",
757
+ "<SPECIAL_754>",
758
+ "<SPECIAL_755>",
759
+ "<SPECIAL_756>",
760
+ "<SPECIAL_757>",
761
+ "<SPECIAL_758>",
762
+ "<SPECIAL_759>",
763
+ "<SPECIAL_760>",
764
+ "<SPECIAL_761>",
765
+ "<SPECIAL_762>",
766
+ "<SPECIAL_763>",
767
+ "<SPECIAL_764>",
768
+ "<SPECIAL_765>",
769
+ "<SPECIAL_766>",
770
+ "<SPECIAL_767>",
771
+ "<SPECIAL_768>",
772
+ "<SPECIAL_769>",
773
+ "<SPECIAL_770>",
774
+ "<SPECIAL_771>",
775
+ "<SPECIAL_772>",
776
+ "<SPECIAL_773>",
777
+ "<SPECIAL_774>",
778
+ "<SPECIAL_775>",
779
+ "<SPECIAL_776>",
780
+ "<SPECIAL_777>",
781
+ "<SPECIAL_778>",
782
+ "<SPECIAL_779>",
783
+ "<SPECIAL_780>",
784
+ "<SPECIAL_781>",
785
+ "<SPECIAL_782>",
786
+ "<SPECIAL_783>",
787
+ "<SPECIAL_784>",
788
+ "<SPECIAL_785>",
789
+ "<SPECIAL_786>",
790
+ "<SPECIAL_787>",
791
+ "<SPECIAL_788>",
792
+ "<SPECIAL_789>",
793
+ "<SPECIAL_790>",
794
+ "<SPECIAL_791>",
795
+ "<SPECIAL_792>",
796
+ "<SPECIAL_793>",
797
+ "<SPECIAL_794>",
798
+ "<SPECIAL_795>",
799
+ "<SPECIAL_796>",
800
+ "<SPECIAL_797>",
801
+ "<SPECIAL_798>",
802
+ "<SPECIAL_799>",
803
+ "<SPECIAL_800>",
804
+ "<SPECIAL_801>",
805
+ "<SPECIAL_802>",
806
+ "<SPECIAL_803>",
807
+ "<SPECIAL_804>",
808
+ "<SPECIAL_805>",
809
+ "<SPECIAL_806>",
810
+ "<SPECIAL_807>",
811
+ "<SPECIAL_808>",
812
+ "<SPECIAL_809>",
813
+ "<SPECIAL_810>",
814
+ "<SPECIAL_811>",
815
+ "<SPECIAL_812>",
816
+ "<SPECIAL_813>",
817
+ "<SPECIAL_814>",
818
+ "<SPECIAL_815>",
819
+ "<SPECIAL_816>",
820
+ "<SPECIAL_817>",
821
+ "<SPECIAL_818>",
822
+ "<SPECIAL_819>",
823
+ "<SPECIAL_820>",
824
+ "<SPECIAL_821>",
825
+ "<SPECIAL_822>",
826
+ "<SPECIAL_823>",
827
+ "<SPECIAL_824>",
828
+ "<SPECIAL_825>",
829
+ "<SPECIAL_826>",
830
+ "<SPECIAL_827>",
831
+ "<SPECIAL_828>",
832
+ "<SPECIAL_829>",
833
+ "<SPECIAL_830>",
834
+ "<SPECIAL_831>",
835
+ "<SPECIAL_832>",
836
+ "<SPECIAL_833>",
837
+ "<SPECIAL_834>",
838
+ "<SPECIAL_835>",
839
+ "<SPECIAL_836>",
840
+ "<SPECIAL_837>",
841
+ "<SPECIAL_838>",
842
+ "<SPECIAL_839>",
843
+ "<SPECIAL_840>",
844
+ "<SPECIAL_841>",
845
+ "<SPECIAL_842>",
846
+ "<SPECIAL_843>",
847
+ "<SPECIAL_844>",
848
+ "<SPECIAL_845>",
849
+ "<SPECIAL_846>",
850
+ "<SPECIAL_847>",
851
+ "<SPECIAL_848>",
852
+ "<SPECIAL_849>",
853
+ "<SPECIAL_850>",
854
+ "<SPECIAL_851>",
855
+ "<SPECIAL_852>",
856
+ "<SPECIAL_853>",
857
+ "<SPECIAL_854>",
858
+ "<SPECIAL_855>",
859
+ "<SPECIAL_856>",
860
+ "<SPECIAL_857>",
861
+ "<SPECIAL_858>",
862
+ "<SPECIAL_859>",
863
+ "<SPECIAL_860>",
864
+ "<SPECIAL_861>",
865
+ "<SPECIAL_862>",
866
+ "<SPECIAL_863>",
867
+ "<SPECIAL_864>",
868
+ "<SPECIAL_865>",
869
+ "<SPECIAL_866>",
870
+ "<SPECIAL_867>",
871
+ "<SPECIAL_868>",
872
+ "<SPECIAL_869>",
873
+ "<SPECIAL_870>",
874
+ "<SPECIAL_871>",
875
+ "<SPECIAL_872>",
876
+ "<SPECIAL_873>",
877
+ "<SPECIAL_874>",
878
+ "<SPECIAL_875>",
879
+ "<SPECIAL_876>",
880
+ "<SPECIAL_877>",
881
+ "<SPECIAL_878>",
882
+ "<SPECIAL_879>",
883
+ "<SPECIAL_880>",
884
+ "<SPECIAL_881>",
885
+ "<SPECIAL_882>",
886
+ "<SPECIAL_883>",
887
+ "<SPECIAL_884>",
888
+ "<SPECIAL_885>",
889
+ "<SPECIAL_886>",
890
+ "<SPECIAL_887>",
891
+ "<SPECIAL_888>",
892
+ "<SPECIAL_889>",
893
+ "<SPECIAL_890>",
894
+ "<SPECIAL_891>",
895
+ "<SPECIAL_892>",
896
+ "<SPECIAL_893>",
897
+ "<SPECIAL_894>",
898
+ "<SPECIAL_895>",
899
+ "<SPECIAL_896>",
900
+ "<SPECIAL_897>",
901
+ "<SPECIAL_898>",
902
+ "<SPECIAL_899>",
903
+ "<SPECIAL_900>",
904
+ "<SPECIAL_901>",
905
+ "<SPECIAL_902>",
906
+ "<SPECIAL_903>",
907
+ "<SPECIAL_904>",
908
+ "<SPECIAL_905>",
909
+ "<SPECIAL_906>",
910
+ "<SPECIAL_907>",
911
+ "<SPECIAL_908>",
912
+ "<SPECIAL_909>",
913
+ "<SPECIAL_910>",
914
+ "<SPECIAL_911>",
915
+ "<SPECIAL_912>",
916
+ "<SPECIAL_913>",
917
+ "<SPECIAL_914>",
918
+ "<SPECIAL_915>",
919
+ "<SPECIAL_916>",
920
+ "<SPECIAL_917>",
921
+ "<SPECIAL_918>",
922
+ "<SPECIAL_919>",
923
+ "<SPECIAL_920>",
924
+ "<SPECIAL_921>",
925
+ "<SPECIAL_922>",
926
+ "<SPECIAL_923>",
927
+ "<SPECIAL_924>",
928
+ "<SPECIAL_925>",
929
+ "<SPECIAL_926>",
930
+ "<SPECIAL_927>",
931
+ "<SPECIAL_928>",
932
+ "<SPECIAL_929>",
933
+ "<SPECIAL_930>",
934
+ "<SPECIAL_931>",
935
+ "<SPECIAL_932>",
936
+ "<SPECIAL_933>",
937
+ "<SPECIAL_934>",
938
+ "<SPECIAL_935>",
939
+ "<SPECIAL_936>",
940
+ "<SPECIAL_937>",
941
+ "<SPECIAL_938>",
942
+ "<SPECIAL_939>",
943
+ "<SPECIAL_940>",
944
+ "<SPECIAL_941>",
945
+ "<SPECIAL_942>",
946
+ "<SPECIAL_943>",
947
+ "<SPECIAL_944>",
948
+ "<SPECIAL_945>",
949
+ "<SPECIAL_946>",
950
+ "<SPECIAL_947>",
951
+ "<SPECIAL_948>",
952
+ "<SPECIAL_949>",
953
+ "<SPECIAL_950>",
954
+ "<SPECIAL_951>",
955
+ "<SPECIAL_952>",
956
+ "<SPECIAL_953>",
957
+ "<SPECIAL_954>",
958
+ "<SPECIAL_955>",
959
+ "<SPECIAL_956>",
960
+ "<SPECIAL_957>",
961
+ "<SPECIAL_958>",
962
+ "<SPECIAL_959>",
963
+ "<SPECIAL_960>",
964
+ "<SPECIAL_961>",
965
+ "<SPECIAL_962>",
966
+ "<SPECIAL_963>",
967
+ "<SPECIAL_964>",
968
+ "<SPECIAL_965>",
969
+ "<SPECIAL_966>",
970
+ "<SPECIAL_967>",
971
+ "<SPECIAL_968>",
972
+ "<SPECIAL_969>",
973
+ "<SPECIAL_970>",
974
+ "<SPECIAL_971>",
975
+ "<SPECIAL_972>",
976
+ "<SPECIAL_973>",
977
+ "<SPECIAL_974>",
978
+ "<SPECIAL_975>",
979
+ "<SPECIAL_976>",
980
+ "<SPECIAL_977>",
981
+ "<SPECIAL_978>",
982
+ "<SPECIAL_979>",
983
+ "<SPECIAL_980>",
984
+ "<SPECIAL_981>",
985
+ "<SPECIAL_982>",
986
+ "<SPECIAL_983>",
987
+ "<SPECIAL_984>",
988
+ "<SPECIAL_985>",
989
+ "<SPECIAL_986>",
990
+ "<SPECIAL_987>",
991
+ "<SPECIAL_988>",
992
+ "<SPECIAL_989>",
993
+ "<SPECIAL_990>",
994
+ "<SPECIAL_991>",
995
+ "<SPECIAL_992>",
996
+ "<SPECIAL_993>",
997
+ "<SPECIAL_994>",
998
+ "<SPECIAL_995>",
999
+ "<SPECIAL_996>",
1000
+ "<SPECIAL_997>",
1001
+ "<SPECIAL_998>",
1002
+ "<SPECIAL_999>"
1003
+ ],
1004
+ "bos_token": {
1005
+ "content": "<s>",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false
1010
+ },
1011
+ "eos_token": {
1012
+ "content": "</s>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false
1017
+ },
1018
+ "pad_token": {
1019
+ "content": "<pad>",
1020
+ "lstrip": false,
1021
+ "normalized": false,
1022
+ "rstrip": false,
1023
+ "single_word": false
1024
+ },
1025
+ "unk_token": {
1026
+ "content": "<unk>",
1027
+ "lstrip": false,
1028
+ "normalized": false,
1029
+ "rstrip": false,
1030
+ "single_word": false
1031
+ }
1032
+ }
checkpoint-102/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76085f9923309d873994d444989f7eb6ec074b06f25b58f1e8d7b7741070949
3
+ size 17078037
checkpoint-102/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-102/trainer_state.json ADDED
@@ -0,0 +1,1054 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.7531149053991694,
6
+ "eval_steps": 500,
7
+ "global_step": 102,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.007383479464697739,
14
+ "grad_norm": 1.9591929912567139,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.6228,
17
+ "memory/device_mem_reserved(gib)": 21.61,
18
+ "memory/max_mem_active(gib)": 21.2,
19
+ "memory/max_mem_allocated(gib)": 21.2,
20
+ "step": 1
21
+ },
22
+ {
23
+ "epoch": 0.014766958929395477,
24
+ "grad_norm": 1.4523507356643677,
25
+ "learning_rate": 1.5384615384615387e-05,
26
+ "loss": 1.5769,
27
+ "memory/device_mem_reserved(gib)": 21.8,
28
+ "memory/max_mem_active(gib)": 21.55,
29
+ "memory/max_mem_allocated(gib)": 21.55,
30
+ "step": 2
31
+ },
32
+ {
33
+ "epoch": 0.022150438394093218,
34
+ "grad_norm": 1.1918187141418457,
35
+ "learning_rate": 3.0769230769230774e-05,
36
+ "loss": 1.5435,
37
+ "memory/device_mem_reserved(gib)": 21.8,
38
+ "memory/max_mem_active(gib)": 21.55,
39
+ "memory/max_mem_allocated(gib)": 21.55,
40
+ "step": 3
41
+ },
42
+ {
43
+ "epoch": 0.029533917858790955,
44
+ "grad_norm": 0.8260876536369324,
45
+ "learning_rate": 4.615384615384616e-05,
46
+ "loss": 1.6523,
47
+ "memory/device_mem_reserved(gib)": 21.8,
48
+ "memory/max_mem_active(gib)": 21.55,
49
+ "memory/max_mem_allocated(gib)": 21.55,
50
+ "step": 4
51
+ },
52
+ {
53
+ "epoch": 0.03691739732348869,
54
+ "grad_norm": 0.8584926128387451,
55
+ "learning_rate": 6.153846153846155e-05,
56
+ "loss": 1.5745,
57
+ "memory/device_mem_reserved(gib)": 21.8,
58
+ "memory/max_mem_active(gib)": 21.55,
59
+ "memory/max_mem_allocated(gib)": 21.55,
60
+ "step": 5
61
+ },
62
+ {
63
+ "epoch": 0.044300876788186436,
64
+ "grad_norm": 0.6466429829597473,
65
+ "learning_rate": 7.692307692307693e-05,
66
+ "loss": 1.4759,
67
+ "memory/device_mem_reserved(gib)": 21.8,
68
+ "memory/max_mem_active(gib)": 21.55,
69
+ "memory/max_mem_allocated(gib)": 21.55,
70
+ "step": 6
71
+ },
72
+ {
73
+ "epoch": 0.05168435625288417,
74
+ "grad_norm": 0.5014482140541077,
75
+ "learning_rate": 9.230769230769232e-05,
76
+ "loss": 1.602,
77
+ "memory/device_mem_reserved(gib)": 21.8,
78
+ "memory/max_mem_active(gib)": 21.55,
79
+ "memory/max_mem_allocated(gib)": 21.55,
80
+ "step": 7
81
+ },
82
+ {
83
+ "epoch": 0.05906783571758191,
84
+ "grad_norm": 0.6017433404922485,
85
+ "learning_rate": 0.0001076923076923077,
86
+ "loss": 1.4176,
87
+ "memory/device_mem_reserved(gib)": 21.8,
88
+ "memory/max_mem_active(gib)": 21.55,
89
+ "memory/max_mem_allocated(gib)": 21.55,
90
+ "step": 8
91
+ },
92
+ {
93
+ "epoch": 0.06645131518227965,
94
+ "grad_norm": 0.4612258970737457,
95
+ "learning_rate": 0.0001230769230769231,
96
+ "loss": 1.5819,
97
+ "memory/device_mem_reserved(gib)": 21.8,
98
+ "memory/max_mem_active(gib)": 21.55,
99
+ "memory/max_mem_allocated(gib)": 21.55,
100
+ "step": 9
101
+ },
102
+ {
103
+ "epoch": 0.07383479464697738,
104
+ "grad_norm": 0.4430214464664459,
105
+ "learning_rate": 0.00013846153846153847,
106
+ "loss": 1.561,
107
+ "memory/device_mem_reserved(gib)": 21.8,
108
+ "memory/max_mem_active(gib)": 21.55,
109
+ "memory/max_mem_allocated(gib)": 21.55,
110
+ "step": 10
111
+ },
112
+ {
113
+ "epoch": 0.08121827411167512,
114
+ "grad_norm": 0.3746771216392517,
115
+ "learning_rate": 0.00015384615384615385,
116
+ "loss": 1.6744,
117
+ "memory/device_mem_reserved(gib)": 21.8,
118
+ "memory/max_mem_active(gib)": 21.55,
119
+ "memory/max_mem_allocated(gib)": 21.55,
120
+ "step": 11
121
+ },
122
+ {
123
+ "epoch": 0.08860175357637287,
124
+ "grad_norm": 0.38248857855796814,
125
+ "learning_rate": 0.00016923076923076923,
126
+ "loss": 1.5629,
127
+ "memory/device_mem_reserved(gib)": 21.8,
128
+ "memory/max_mem_active(gib)": 21.55,
129
+ "memory/max_mem_allocated(gib)": 21.55,
130
+ "step": 12
131
+ },
132
+ {
133
+ "epoch": 0.09598523304107061,
134
+ "grad_norm": 0.515844464302063,
135
+ "learning_rate": 0.00018461538461538463,
136
+ "loss": 1.5264,
137
+ "memory/device_mem_reserved(gib)": 21.8,
138
+ "memory/max_mem_active(gib)": 21.55,
139
+ "memory/max_mem_allocated(gib)": 21.55,
140
+ "step": 13
141
+ },
142
+ {
143
+ "epoch": 0.10336871250576835,
144
+ "grad_norm": 0.3964424431324005,
145
+ "learning_rate": 0.0002,
146
+ "loss": 1.5398,
147
+ "memory/device_mem_reserved(gib)": 21.8,
148
+ "memory/max_mem_active(gib)": 21.55,
149
+ "memory/max_mem_allocated(gib)": 21.55,
150
+ "step": 14
151
+ },
152
+ {
153
+ "epoch": 0.11075219197046608,
154
+ "grad_norm": 0.4010593891143799,
155
+ "learning_rate": 0.0001999668467514313,
156
+ "loss": 1.4618,
157
+ "memory/device_mem_reserved(gib)": 21.8,
158
+ "memory/max_mem_active(gib)": 21.55,
159
+ "memory/max_mem_allocated(gib)": 21.55,
160
+ "step": 15
161
+ },
162
+ {
163
+ "epoch": 0.11813567143516382,
164
+ "grad_norm": 0.3192802965641022,
165
+ "learning_rate": 0.00019986740898848306,
166
+ "loss": 1.6994,
167
+ "memory/device_mem_reserved(gib)": 21.8,
168
+ "memory/max_mem_active(gib)": 21.55,
169
+ "memory/max_mem_allocated(gib)": 21.55,
170
+ "step": 16
171
+ },
172
+ {
173
+ "epoch": 0.12551915089986157,
174
+ "grad_norm": 0.410099059343338,
175
+ "learning_rate": 0.00019970175264485266,
176
+ "loss": 1.5913,
177
+ "memory/device_mem_reserved(gib)": 21.8,
178
+ "memory/max_mem_active(gib)": 21.55,
179
+ "memory/max_mem_allocated(gib)": 21.55,
180
+ "step": 17
181
+ },
182
+ {
183
+ "epoch": 0.1329026303645593,
184
+ "grad_norm": 0.312429815530777,
185
+ "learning_rate": 0.0001994699875614589,
186
+ "loss": 1.5701,
187
+ "memory/device_mem_reserved(gib)": 21.8,
188
+ "memory/max_mem_active(gib)": 21.55,
189
+ "memory/max_mem_allocated(gib)": 21.55,
190
+ "step": 18
191
+ },
192
+ {
193
+ "epoch": 0.14028610982925704,
194
+ "grad_norm": 0.2831230163574219,
195
+ "learning_rate": 0.00019917226741361015,
196
+ "loss": 1.5744,
197
+ "memory/device_mem_reserved(gib)": 21.8,
198
+ "memory/max_mem_active(gib)": 21.55,
199
+ "memory/max_mem_allocated(gib)": 21.55,
200
+ "step": 19
201
+ },
202
+ {
203
+ "epoch": 0.14766958929395477,
204
+ "grad_norm": 0.3618868291378021,
205
+ "learning_rate": 0.00019880878960910772,
206
+ "loss": 1.5185,
207
+ "memory/device_mem_reserved(gib)": 21.8,
208
+ "memory/max_mem_active(gib)": 21.55,
209
+ "memory/max_mem_allocated(gib)": 21.55,
210
+ "step": 20
211
+ },
212
+ {
213
+ "epoch": 0.15505306875865252,
214
+ "grad_norm": 0.3151628077030182,
215
+ "learning_rate": 0.00019837979515735166,
216
+ "loss": 1.5086,
217
+ "memory/device_mem_reserved(gib)": 21.8,
218
+ "memory/max_mem_active(gib)": 21.55,
219
+ "memory/max_mem_allocated(gib)": 21.55,
220
+ "step": 21
221
+ },
222
+ {
223
+ "epoch": 0.16243654822335024,
224
+ "grad_norm": 0.31955838203430176,
225
+ "learning_rate": 0.0001978855685095358,
226
+ "loss": 1.6329,
227
+ "memory/device_mem_reserved(gib)": 21.8,
228
+ "memory/max_mem_active(gib)": 21.55,
229
+ "memory/max_mem_allocated(gib)": 21.55,
230
+ "step": 22
231
+ },
232
+ {
233
+ "epoch": 0.169820027688048,
234
+ "grad_norm": 0.3030437231063843,
235
+ "learning_rate": 0.00019732643737003827,
236
+ "loss": 1.6697,
237
+ "memory/device_mem_reserved(gib)": 21.8,
238
+ "memory/max_mem_active(gib)": 21.55,
239
+ "memory/max_mem_allocated(gib)": 21.55,
240
+ "step": 23
241
+ },
242
+ {
243
+ "epoch": 0.17720350715274574,
244
+ "grad_norm": 0.41288134455680847,
245
+ "learning_rate": 0.00019670277247913205,
246
+ "loss": 1.7094,
247
+ "memory/device_mem_reserved(gib)": 21.8,
248
+ "memory/max_mem_active(gib)": 21.55,
249
+ "memory/max_mem_allocated(gib)": 21.55,
250
+ "step": 24
251
+ },
252
+ {
253
+ "epoch": 0.18458698661744347,
254
+ "grad_norm": 0.2887294888496399,
255
+ "learning_rate": 0.00019601498736716017,
256
+ "loss": 1.5554,
257
+ "memory/device_mem_reserved(gib)": 21.8,
258
+ "memory/max_mem_active(gib)": 21.55,
259
+ "memory/max_mem_allocated(gib)": 21.55,
260
+ "step": 25
261
+ },
262
+ {
263
+ "epoch": 0.19197046608214122,
264
+ "grad_norm": 0.3173791170120239,
265
+ "learning_rate": 0.00019526353808033825,
266
+ "loss": 1.4404,
267
+ "memory/device_mem_reserved(gib)": 21.8,
268
+ "memory/max_mem_active(gib)": 21.55,
269
+ "memory/max_mem_allocated(gib)": 21.55,
270
+ "step": 26
271
+ },
272
+ {
273
+ "epoch": 0.19935394554683894,
274
+ "grad_norm": 0.2877439558506012,
275
+ "learning_rate": 0.00019444892287836613,
276
+ "loss": 1.4766,
277
+ "memory/device_mem_reserved(gib)": 21.8,
278
+ "memory/max_mem_active(gib)": 21.55,
279
+ "memory/max_mem_allocated(gib)": 21.55,
280
+ "step": 27
281
+ },
282
+ {
283
+ "epoch": 0.2067374250115367,
284
+ "grad_norm": 0.29286038875579834,
285
+ "learning_rate": 0.00019357168190404936,
286
+ "loss": 1.5156,
287
+ "memory/device_mem_reserved(gib)": 21.8,
288
+ "memory/max_mem_active(gib)": 21.55,
289
+ "memory/max_mem_allocated(gib)": 21.55,
290
+ "step": 28
291
+ },
292
+ {
293
+ "epoch": 0.2141209044762344,
294
+ "grad_norm": 0.27713659405708313,
295
+ "learning_rate": 0.00019263239682514952,
296
+ "loss": 1.5153,
297
+ "memory/device_mem_reserved(gib)": 21.8,
298
+ "memory/max_mem_active(gib)": 21.55,
299
+ "memory/max_mem_allocated(gib)": 21.55,
300
+ "step": 29
301
+ },
302
+ {
303
+ "epoch": 0.22150438394093216,
304
+ "grad_norm": 0.29187655448913574,
305
+ "learning_rate": 0.0001916316904487005,
306
+ "loss": 1.6036,
307
+ "memory/device_mem_reserved(gib)": 21.8,
308
+ "memory/max_mem_active(gib)": 21.55,
309
+ "memory/max_mem_allocated(gib)": 21.55,
310
+ "step": 30
311
+ },
312
+ {
313
+ "epoch": 0.22888786340562992,
314
+ "grad_norm": 0.2671583890914917,
315
+ "learning_rate": 0.00019057022630804716,
316
+ "loss": 1.4675,
317
+ "memory/device_mem_reserved(gib)": 21.8,
318
+ "memory/max_mem_active(gib)": 21.55,
319
+ "memory/max_mem_allocated(gib)": 21.55,
320
+ "step": 31
321
+ },
322
+ {
323
+ "epoch": 0.23627134287032764,
324
+ "grad_norm": 0.2679831087589264,
325
+ "learning_rate": 0.00018944870822287956,
326
+ "loss": 1.581,
327
+ "memory/device_mem_reserved(gib)": 21.8,
328
+ "memory/max_mem_active(gib)": 21.55,
329
+ "memory/max_mem_allocated(gib)": 21.55,
330
+ "step": 32
331
+ },
332
+ {
333
+ "epoch": 0.2436548223350254,
334
+ "grad_norm": 0.26359617710113525,
335
+ "learning_rate": 0.00018826787983255473,
336
+ "loss": 1.4674,
337
+ "memory/device_mem_reserved(gib)": 21.8,
338
+ "memory/max_mem_active(gib)": 21.55,
339
+ "memory/max_mem_allocated(gib)": 21.55,
340
+ "step": 33
341
+ },
342
+ {
343
+ "epoch": 0.25103830179972314,
344
+ "grad_norm": 0.30446046590805054,
345
+ "learning_rate": 0.00018702852410301554,
346
+ "loss": 1.5038,
347
+ "memory/device_mem_reserved(gib)": 21.8,
348
+ "memory/max_mem_active(gib)": 21.55,
349
+ "memory/max_mem_allocated(gib)": 21.55,
350
+ "step": 34
351
+ },
352
+ {
353
+ "epoch": 0.25842178126442084,
354
+ "grad_norm": 0.3004315197467804,
355
+ "learning_rate": 0.00018573146280763324,
356
+ "loss": 1.4024,
357
+ "memory/device_mem_reserved(gib)": 21.8,
358
+ "memory/max_mem_active(gib)": 21.55,
359
+ "memory/max_mem_allocated(gib)": 21.55,
360
+ "step": 35
361
+ },
362
+ {
363
+ "epoch": 0.2658052607291186,
364
+ "grad_norm": 0.27353399991989136,
365
+ "learning_rate": 0.00018437755598231856,
366
+ "loss": 1.3652,
367
+ "memory/device_mem_reserved(gib)": 21.8,
368
+ "memory/max_mem_active(gib)": 21.55,
369
+ "memory/max_mem_allocated(gib)": 21.55,
370
+ "step": 36
371
+ },
372
+ {
373
+ "epoch": 0.27318874019381634,
374
+ "grad_norm": 0.2659265995025635,
375
+ "learning_rate": 0.0001829677013552619,
376
+ "loss": 1.4905,
377
+ "memory/device_mem_reserved(gib)": 21.8,
378
+ "memory/max_mem_active(gib)": 21.55,
379
+ "memory/max_mem_allocated(gib)": 21.55,
380
+ "step": 37
381
+ },
382
+ {
383
+ "epoch": 0.2805722196585141,
384
+ "grad_norm": 0.2703750431537628,
385
+ "learning_rate": 0.00018150283375168114,
386
+ "loss": 1.3298,
387
+ "memory/device_mem_reserved(gib)": 21.8,
388
+ "memory/max_mem_active(gib)": 21.55,
389
+ "memory/max_mem_allocated(gib)": 21.55,
390
+ "step": 38
391
+ },
392
+ {
393
+ "epoch": 0.28795569912321184,
394
+ "grad_norm": 0.29322877526283264,
395
+ "learning_rate": 0.00017998392447397197,
396
+ "loss": 1.3639,
397
+ "memory/device_mem_reserved(gib)": 21.8,
398
+ "memory/max_mem_active(gib)": 21.55,
399
+ "memory/max_mem_allocated(gib)": 21.55,
400
+ "step": 39
401
+ },
402
+ {
403
+ "epoch": 0.29533917858790953,
404
+ "grad_norm": 0.26927265524864197,
405
+ "learning_rate": 0.00017841198065767107,
406
+ "loss": 1.4849,
407
+ "memory/device_mem_reserved(gib)": 21.8,
408
+ "memory/max_mem_active(gib)": 21.55,
409
+ "memory/max_mem_allocated(gib)": 21.55,
410
+ "step": 40
411
+ },
412
+ {
413
+ "epoch": 0.3027226580526073,
414
+ "grad_norm": 0.26683205366134644,
415
+ "learning_rate": 0.00017678804460366,
416
+ "loss": 1.4523,
417
+ "memory/device_mem_reserved(gib)": 21.8,
418
+ "memory/max_mem_active(gib)": 21.55,
419
+ "memory/max_mem_allocated(gib)": 21.55,
420
+ "step": 41
421
+ },
422
+ {
423
+ "epoch": 0.31010613751730504,
424
+ "grad_norm": 0.26909339427948,
425
+ "learning_rate": 0.00017511319308705198,
426
+ "loss": 1.6047,
427
+ "memory/device_mem_reserved(gib)": 21.8,
428
+ "memory/max_mem_active(gib)": 21.55,
429
+ "memory/max_mem_allocated(gib)": 21.55,
430
+ "step": 42
431
+ },
432
+ {
433
+ "epoch": 0.3174896169820028,
434
+ "grad_norm": 0.2938016355037689,
435
+ "learning_rate": 0.00017338853664321992,
436
+ "loss": 1.3858,
437
+ "memory/device_mem_reserved(gib)": 21.8,
438
+ "memory/max_mem_active(gib)": 21.55,
439
+ "memory/max_mem_allocated(gib)": 21.55,
440
+ "step": 43
441
+ },
442
+ {
443
+ "epoch": 0.3248730964467005,
444
+ "grad_norm": 0.28290048241615295,
445
+ "learning_rate": 0.00017161521883143934,
446
+ "loss": 1.3671,
447
+ "memory/device_mem_reserved(gib)": 21.8,
448
+ "memory/max_mem_active(gib)": 21.55,
449
+ "memory/max_mem_allocated(gib)": 21.55,
450
+ "step": 44
451
+ },
452
+ {
453
+ "epoch": 0.33225657591139823,
454
+ "grad_norm": 0.2870519161224365,
455
+ "learning_rate": 0.00016979441547663435,
456
+ "loss": 1.5334,
457
+ "memory/device_mem_reserved(gib)": 21.8,
458
+ "memory/max_mem_active(gib)": 21.55,
459
+ "memory/max_mem_allocated(gib)": 21.55,
460
+ "step": 45
461
+ },
462
+ {
463
+ "epoch": 0.339640055376096,
464
+ "grad_norm": 0.26375913619995117,
465
+ "learning_rate": 0.00016792733388972932,
466
+ "loss": 1.5627,
467
+ "memory/device_mem_reserved(gib)": 21.8,
468
+ "memory/max_mem_active(gib)": 21.55,
469
+ "memory/max_mem_allocated(gib)": 21.55,
470
+ "step": 46
471
+ },
472
+ {
473
+ "epoch": 0.34702353484079373,
474
+ "grad_norm": 0.26975446939468384,
475
+ "learning_rate": 0.00016601521206712318,
476
+ "loss": 1.4987,
477
+ "memory/device_mem_reserved(gib)": 21.8,
478
+ "memory/max_mem_active(gib)": 21.55,
479
+ "memory/max_mem_allocated(gib)": 21.55,
480
+ "step": 47
481
+ },
482
+ {
483
+ "epoch": 0.3544070143054915,
484
+ "grad_norm": 0.30166226625442505,
485
+ "learning_rate": 0.00016405931786981755,
486
+ "loss": 1.5128,
487
+ "memory/device_mem_reserved(gib)": 21.8,
488
+ "memory/max_mem_active(gib)": 21.55,
489
+ "memory/max_mem_allocated(gib)": 21.55,
490
+ "step": 48
491
+ },
492
+ {
493
+ "epoch": 0.3617904937701892,
494
+ "grad_norm": 0.29190436005592346,
495
+ "learning_rate": 0.00016206094818274229,
496
+ "loss": 1.4914,
497
+ "memory/device_mem_reserved(gib)": 21.8,
498
+ "memory/max_mem_active(gib)": 21.55,
499
+ "memory/max_mem_allocated(gib)": 21.55,
500
+ "step": 49
501
+ },
502
+ {
503
+ "epoch": 0.36917397323488693,
504
+ "grad_norm": 0.2847207486629486,
505
+ "learning_rate": 0.00016002142805483685,
506
+ "loss": 1.4755,
507
+ "memory/device_mem_reserved(gib)": 21.8,
508
+ "memory/max_mem_active(gib)": 21.55,
509
+ "memory/max_mem_allocated(gib)": 21.55,
510
+ "step": 50
511
+ },
512
+ {
513
+ "epoch": 0.3765574526995847,
514
+ "grad_norm": 0.2877140939235687,
515
+ "learning_rate": 0.00015794210982045636,
516
+ "loss": 1.422,
517
+ "memory/device_mem_reserved(gib)": 21.8,
518
+ "memory/max_mem_active(gib)": 21.55,
519
+ "memory/max_mem_allocated(gib)": 21.55,
520
+ "step": 51
521
+ },
522
+ {
523
+ "epoch": 0.38394093216428243,
524
+ "grad_norm": 0.2705255150794983,
525
+ "learning_rate": 0.00015582437220268647,
526
+ "loss": 1.4822,
527
+ "memory/device_mem_reserved(gib)": 21.8,
528
+ "memory/max_mem_active(gib)": 21.55,
529
+ "memory/max_mem_allocated(gib)": 21.55,
530
+ "step": 52
531
+ },
532
+ {
533
+ "epoch": 0.3913244116289802,
534
+ "grad_norm": 0.2597866654396057,
535
+ "learning_rate": 0.00015366961939916008,
536
+ "loss": 1.5088,
537
+ "memory/device_mem_reserved(gib)": 21.8,
538
+ "memory/max_mem_active(gib)": 21.55,
539
+ "memory/max_mem_allocated(gib)": 21.55,
540
+ "step": 53
541
+ },
542
+ {
543
+ "epoch": 0.3987078910936779,
544
+ "grad_norm": 0.2965547740459442,
545
+ "learning_rate": 0.0001514792801509831,
546
+ "loss": 1.5346,
547
+ "memory/device_mem_reserved(gib)": 21.8,
548
+ "memory/max_mem_active(gib)": 21.55,
549
+ "memory/max_mem_allocated(gib)": 21.55,
550
+ "step": 54
551
+ },
552
+ {
553
+ "epoch": 0.40609137055837563,
554
+ "grad_norm": 0.2670862078666687,
555
+ "learning_rate": 0.00014925480679538647,
556
+ "loss": 1.5695,
557
+ "memory/device_mem_reserved(gib)": 21.8,
558
+ "memory/max_mem_active(gib)": 21.55,
559
+ "memory/max_mem_allocated(gib)": 21.55,
560
+ "step": 55
561
+ },
562
+ {
563
+ "epoch": 0.4134748500230734,
564
+ "grad_norm": 0.30679062008857727,
565
+ "learning_rate": 0.000146997674302732,
566
+ "loss": 1.6911,
567
+ "memory/device_mem_reserved(gib)": 21.8,
568
+ "memory/max_mem_active(gib)": 21.55,
569
+ "memory/max_mem_allocated(gib)": 21.55,
570
+ "step": 56
571
+ },
572
+ {
573
+ "epoch": 0.42085832948777113,
574
+ "grad_norm": 0.2812528908252716,
575
+ "learning_rate": 0.0001447093792985114,
576
+ "loss": 1.664,
577
+ "memory/device_mem_reserved(gib)": 21.8,
578
+ "memory/max_mem_active(gib)": 21.55,
579
+ "memory/max_mem_allocated(gib)": 21.55,
580
+ "step": 57
581
+ },
582
+ {
583
+ "epoch": 0.4282418089524688,
584
+ "grad_norm": 0.26079821586608887,
585
+ "learning_rate": 0.0001423914390709861,
586
+ "loss": 1.3911,
587
+ "memory/device_mem_reserved(gib)": 21.8,
588
+ "memory/max_mem_active(gib)": 21.55,
589
+ "memory/max_mem_allocated(gib)": 21.55,
590
+ "step": 58
591
+ },
592
+ {
593
+ "epoch": 0.4356252884171666,
594
+ "grad_norm": 0.3026648461818695,
595
+ "learning_rate": 0.00014004539056512667,
596
+ "loss": 1.5685,
597
+ "memory/device_mem_reserved(gib)": 21.8,
598
+ "memory/max_mem_active(gib)": 21.55,
599
+ "memory/max_mem_allocated(gib)": 21.55,
600
+ "step": 59
601
+ },
602
+ {
603
+ "epoch": 0.44300876788186433,
604
+ "grad_norm": 0.28435277938842773,
605
+ "learning_rate": 0.00013767278936351854,
606
+ "loss": 1.3599,
607
+ "memory/device_mem_reserved(gib)": 21.8,
608
+ "memory/max_mem_active(gib)": 21.55,
609
+ "memory/max_mem_allocated(gib)": 21.55,
610
+ "step": 60
611
+ },
612
+ {
613
+ "epoch": 0.4503922473465621,
614
+ "grad_norm": 0.29877325892448425,
615
+ "learning_rate": 0.0001352752086549095,
616
+ "loss": 1.5173,
617
+ "memory/device_mem_reserved(gib)": 21.8,
618
+ "memory/max_mem_active(gib)": 21.55,
619
+ "memory/max_mem_allocated(gib)": 21.55,
620
+ "step": 61
621
+ },
622
+ {
623
+ "epoch": 0.45777572681125983,
624
+ "grad_norm": 0.29666033387184143,
625
+ "learning_rate": 0.0001328542381910835,
626
+ "loss": 1.5017,
627
+ "memory/device_mem_reserved(gib)": 21.8,
628
+ "memory/max_mem_active(gib)": 21.55,
629
+ "memory/max_mem_allocated(gib)": 21.55,
630
+ "step": 62
631
+ },
632
+ {
633
+ "epoch": 0.4651592062759575,
634
+ "grad_norm": 0.26934438943862915,
635
+ "learning_rate": 0.0001304114832327518,
636
+ "loss": 1.4674,
637
+ "memory/device_mem_reserved(gib)": 21.8,
638
+ "memory/max_mem_active(gib)": 21.55,
639
+ "memory/max_mem_allocated(gib)": 21.55,
640
+ "step": 63
641
+ },
642
+ {
643
+ "epoch": 0.4725426857406553,
644
+ "grad_norm": 0.30038923025131226,
645
+ "learning_rate": 0.00012794856348516095,
646
+ "loss": 1.5306,
647
+ "memory/device_mem_reserved(gib)": 21.8,
648
+ "memory/max_mem_active(gib)": 21.55,
649
+ "memory/max_mem_allocated(gib)": 21.55,
650
+ "step": 64
651
+ },
652
+ {
653
+ "epoch": 0.47992616520535303,
654
+ "grad_norm": 0.2799171805381775,
655
+ "learning_rate": 0.00012546711202412287,
656
+ "loss": 1.4696,
657
+ "memory/device_mem_reserved(gib)": 21.8,
658
+ "memory/max_mem_active(gib)": 21.55,
659
+ "memory/max_mem_allocated(gib)": 21.55,
660
+ "step": 65
661
+ },
662
+ {
663
+ "epoch": 0.4873096446700508,
664
+ "grad_norm": 0.313919335603714,
665
+ "learning_rate": 0.0001229687742131796,
666
+ "loss": 1.5927,
667
+ "memory/device_mem_reserved(gib)": 21.8,
668
+ "memory/max_mem_active(gib)": 21.55,
669
+ "memory/max_mem_allocated(gib)": 21.55,
670
+ "step": 66
671
+ },
672
+ {
673
+ "epoch": 0.4946931241347485,
674
+ "grad_norm": 0.27579808235168457,
675
+ "learning_rate": 0.0001204552066126201,
676
+ "loss": 1.4654,
677
+ "memory/device_mem_reserved(gib)": 21.8,
678
+ "memory/max_mem_active(gib)": 21.55,
679
+ "memory/max_mem_allocated(gib)": 21.55,
680
+ "step": 67
681
+ },
682
+ {
683
+ "epoch": 0.5020766035994463,
684
+ "grad_norm": 0.28434908390045166,
685
+ "learning_rate": 0.00011792807588107357,
686
+ "loss": 1.5039,
687
+ "memory/device_mem_reserved(gib)": 21.8,
688
+ "memory/max_mem_active(gib)": 21.55,
689
+ "memory/max_mem_allocated(gib)": 21.55,
690
+ "step": 68
691
+ },
692
+ {
693
+ "epoch": 0.509460083064144,
694
+ "grad_norm": 0.2828267514705658,
695
+ "learning_rate": 0.0001153890576704062,
696
+ "loss": 1.6203,
697
+ "memory/device_mem_reserved(gib)": 21.8,
698
+ "memory/max_mem_active(gib)": 21.55,
699
+ "memory/max_mem_allocated(gib)": 21.55,
700
+ "step": 69
701
+ },
702
+ {
703
+ "epoch": 0.5168435625288417,
704
+ "grad_norm": 0.30293530225753784,
705
+ "learning_rate": 0.00011283983551465511,
706
+ "loss": 1.5628,
707
+ "memory/device_mem_reserved(gib)": 21.8,
708
+ "memory/max_mem_active(gib)": 21.55,
709
+ "memory/max_mem_allocated(gib)": 21.55,
710
+ "step": 70
711
+ },
712
+ {
713
+ "epoch": 0.5242270419935394,
714
+ "grad_norm": 0.2633240520954132,
715
+ "learning_rate": 0.00011028209971373605,
716
+ "loss": 1.5666,
717
+ "memory/device_mem_reserved(gib)": 21.8,
718
+ "memory/max_mem_active(gib)": 21.55,
719
+ "memory/max_mem_allocated(gib)": 21.55,
720
+ "step": 71
721
+ },
722
+ {
723
+ "epoch": 0.5316105214582372,
724
+ "grad_norm": 0.24525777995586395,
725
+ "learning_rate": 0.00010771754621266466,
726
+ "loss": 1.592,
727
+ "memory/device_mem_reserved(gib)": 21.8,
728
+ "memory/max_mem_active(gib)": 21.55,
729
+ "memory/max_mem_allocated(gib)": 21.55,
730
+ "step": 72
731
+ },
732
+ {
733
+ "epoch": 0.5389940009229349,
734
+ "grad_norm": 0.27619901299476624,
735
+ "learning_rate": 0.00010514787547703466,
736
+ "loss": 1.6212,
737
+ "memory/device_mem_reserved(gib)": 21.8,
738
+ "memory/max_mem_active(gib)": 21.55,
739
+ "memory/max_mem_allocated(gib)": 21.55,
740
+ "step": 73
741
+ },
742
+ {
743
+ "epoch": 0.5463774803876327,
744
+ "grad_norm": 0.2783447504043579,
745
+ "learning_rate": 0.00010257479136549889,
746
+ "loss": 1.457,
747
+ "memory/device_mem_reserved(gib)": 21.8,
748
+ "memory/max_mem_active(gib)": 21.55,
749
+ "memory/max_mem_allocated(gib)": 21.55,
750
+ "step": 74
751
+ },
752
+ {
753
+ "epoch": 0.5537609598523304,
754
+ "grad_norm": 0.2755623459815979,
755
+ "learning_rate": 0.0001,
756
+ "loss": 1.3652,
757
+ "memory/device_mem_reserved(gib)": 21.8,
758
+ "memory/max_mem_active(gib)": 21.55,
759
+ "memory/max_mem_allocated(gib)": 21.55,
760
+ "step": 75
761
+ },
762
+ {
763
+ "epoch": 0.5611444393170282,
764
+ "grad_norm": 0.28049108386039734,
765
+ "learning_rate": 9.742520863450115e-05,
766
+ "loss": 1.4187,
767
+ "memory/device_mem_reserved(gib)": 21.8,
768
+ "memory/max_mem_active(gib)": 21.55,
769
+ "memory/max_mem_allocated(gib)": 21.55,
770
+ "step": 76
771
+ },
772
+ {
773
+ "epoch": 0.5685279187817259,
774
+ "grad_norm": 0.27499496936798096,
775
+ "learning_rate": 9.485212452296535e-05,
776
+ "loss": 1.5488,
777
+ "memory/device_mem_reserved(gib)": 21.8,
778
+ "memory/max_mem_active(gib)": 21.55,
779
+ "memory/max_mem_allocated(gib)": 21.55,
780
+ "step": 77
781
+ },
782
+ {
783
+ "epoch": 0.5759113982464237,
784
+ "grad_norm": 0.288296639919281,
785
+ "learning_rate": 9.228245378733537e-05,
786
+ "loss": 1.412,
787
+ "memory/device_mem_reserved(gib)": 21.8,
788
+ "memory/max_mem_active(gib)": 21.55,
789
+ "memory/max_mem_allocated(gib)": 21.55,
790
+ "step": 78
791
+ },
792
+ {
793
+ "epoch": 0.5832948777111213,
794
+ "grad_norm": 0.35849323868751526,
795
+ "learning_rate": 8.971790028626395e-05,
796
+ "loss": 1.5214,
797
+ "memory/device_mem_reserved(gib)": 21.8,
798
+ "memory/max_mem_active(gib)": 21.55,
799
+ "memory/max_mem_allocated(gib)": 21.55,
800
+ "step": 79
801
+ },
802
+ {
803
+ "epoch": 0.5906783571758191,
804
+ "grad_norm": 0.2951800525188446,
805
+ "learning_rate": 8.71601644853449e-05,
806
+ "loss": 1.4837,
807
+ "memory/device_mem_reserved(gib)": 21.8,
808
+ "memory/max_mem_active(gib)": 21.55,
809
+ "memory/max_mem_allocated(gib)": 21.55,
810
+ "step": 80
811
+ },
812
+ {
813
+ "epoch": 0.5980618366405168,
814
+ "grad_norm": 0.2763918340206146,
815
+ "learning_rate": 8.461094232959381e-05,
816
+ "loss": 1.5419,
817
+ "memory/device_mem_reserved(gib)": 21.8,
818
+ "memory/max_mem_active(gib)": 21.55,
819
+ "memory/max_mem_allocated(gib)": 21.55,
820
+ "step": 81
821
+ },
822
+ {
823
+ "epoch": 0.6054453161052146,
824
+ "grad_norm": 0.2745305895805359,
825
+ "learning_rate": 8.207192411892646e-05,
826
+ "loss": 1.4921,
827
+ "memory/device_mem_reserved(gib)": 21.8,
828
+ "memory/max_mem_active(gib)": 21.55,
829
+ "memory/max_mem_allocated(gib)": 21.55,
830
+ "step": 82
831
+ },
832
+ {
833
+ "epoch": 0.6128287955699123,
834
+ "grad_norm": 0.30081912875175476,
835
+ "learning_rate": 7.954479338737995e-05,
836
+ "loss": 1.4745,
837
+ "memory/device_mem_reserved(gib)": 21.8,
838
+ "memory/max_mem_active(gib)": 21.55,
839
+ "memory/max_mem_allocated(gib)": 21.55,
840
+ "step": 83
841
+ },
842
+ {
843
+ "epoch": 0.6202122750346101,
844
+ "grad_norm": 0.27640482783317566,
845
+ "learning_rate": 7.703122578682046e-05,
846
+ "loss": 1.4461,
847
+ "memory/device_mem_reserved(gib)": 21.8,
848
+ "memory/max_mem_active(gib)": 21.55,
849
+ "memory/max_mem_allocated(gib)": 21.55,
850
+ "step": 84
851
+ },
852
+ {
853
+ "epoch": 0.6275957544993078,
854
+ "grad_norm": 0.3407949209213257,
855
+ "learning_rate": 7.453288797587714e-05,
856
+ "loss": 1.617,
857
+ "memory/device_mem_reserved(gib)": 21.8,
858
+ "memory/max_mem_active(gib)": 21.55,
859
+ "memory/max_mem_allocated(gib)": 21.55,
860
+ "step": 85
861
+ },
862
+ {
863
+ "epoch": 0.6349792339640056,
864
+ "grad_norm": 0.2856479287147522,
865
+ "learning_rate": 7.205143651483906e-05,
866
+ "loss": 1.6538,
867
+ "memory/device_mem_reserved(gib)": 21.8,
868
+ "memory/max_mem_active(gib)": 21.55,
869
+ "memory/max_mem_allocated(gib)": 21.55,
870
+ "step": 86
871
+ },
872
+ {
873
+ "epoch": 0.6423627134287033,
874
+ "grad_norm": 0.39668434858322144,
875
+ "learning_rate": 6.958851676724823e-05,
876
+ "loss": 1.5753,
877
+ "memory/device_mem_reserved(gib)": 21.8,
878
+ "memory/max_mem_active(gib)": 21.55,
879
+ "memory/max_mem_allocated(gib)": 21.55,
880
+ "step": 87
881
+ },
882
+ {
883
+ "epoch": 0.649746192893401,
884
+ "grad_norm": 0.28521108627319336,
885
+ "learning_rate": 6.714576180891654e-05,
886
+ "loss": 1.3448,
887
+ "memory/device_mem_reserved(gib)": 21.8,
888
+ "memory/max_mem_active(gib)": 21.55,
889
+ "memory/max_mem_allocated(gib)": 21.55,
890
+ "step": 88
891
+ },
892
+ {
893
+ "epoch": 0.6571296723580987,
894
+ "grad_norm": 0.2806543707847595,
895
+ "learning_rate": 6.472479134509052e-05,
896
+ "loss": 1.6431,
897
+ "memory/device_mem_reserved(gib)": 21.8,
898
+ "memory/max_mem_active(gib)": 21.55,
899
+ "memory/max_mem_allocated(gib)": 21.55,
900
+ "step": 89
901
+ },
902
+ {
903
+ "epoch": 0.6645131518227965,
904
+ "grad_norm": 0.28897204995155334,
905
+ "learning_rate": 6.232721063648148e-05,
906
+ "loss": 1.5744,
907
+ "memory/device_mem_reserved(gib)": 21.8,
908
+ "memory/max_mem_active(gib)": 21.55,
909
+ "memory/max_mem_allocated(gib)": 21.55,
910
+ "step": 90
911
+ },
912
+ {
913
+ "epoch": 0.6718966312874942,
914
+ "grad_norm": 0.25295817852020264,
915
+ "learning_rate": 5.9954609434873344e-05,
916
+ "loss": 1.4552,
917
+ "memory/device_mem_reserved(gib)": 21.8,
918
+ "memory/max_mem_active(gib)": 21.55,
919
+ "memory/max_mem_allocated(gib)": 21.55,
920
+ "step": 91
921
+ },
922
+ {
923
+ "epoch": 0.679280110752192,
924
+ "grad_norm": 0.2824646234512329,
925
+ "learning_rate": 5.7608560929013946e-05,
926
+ "loss": 1.4193,
927
+ "memory/device_mem_reserved(gib)": 21.8,
928
+ "memory/max_mem_active(gib)": 21.55,
929
+ "memory/max_mem_allocated(gib)": 21.55,
930
+ "step": 92
931
+ },
932
+ {
933
+ "epoch": 0.6866635902168897,
934
+ "grad_norm": 0.27227288484573364,
935
+ "learning_rate": 5.5290620701488594e-05,
936
+ "loss": 1.4602,
937
+ "memory/device_mem_reserved(gib)": 21.8,
938
+ "memory/max_mem_active(gib)": 21.55,
939
+ "memory/max_mem_allocated(gib)": 21.55,
940
+ "step": 93
941
+ },
942
+ {
943
+ "epoch": 0.6940470696815875,
944
+ "grad_norm": 0.26284658908843994,
945
+ "learning_rate": 5.300232569726804e-05,
946
+ "loss": 1.5947,
947
+ "memory/device_mem_reserved(gib)": 21.8,
948
+ "memory/max_mem_active(gib)": 21.55,
949
+ "memory/max_mem_allocated(gib)": 21.55,
950
+ "step": 94
951
+ },
952
+ {
953
+ "epoch": 0.7014305491462852,
954
+ "grad_norm": 0.26174792647361755,
955
+ "learning_rate": 5.074519320461357e-05,
956
+ "loss": 1.4122,
957
+ "memory/device_mem_reserved(gib)": 21.8,
958
+ "memory/max_mem_active(gib)": 21.55,
959
+ "memory/max_mem_allocated(gib)": 21.55,
960
+ "step": 95
961
+ },
962
+ {
963
+ "epoch": 0.708814028610983,
964
+ "grad_norm": 0.3069747984409332,
965
+ "learning_rate": 4.852071984901696e-05,
966
+ "loss": 1.4805,
967
+ "memory/device_mem_reserved(gib)": 21.8,
968
+ "memory/max_mem_active(gib)": 21.55,
969
+ "memory/max_mem_allocated(gib)": 21.55,
970
+ "step": 96
971
+ },
972
+ {
973
+ "epoch": 0.7161975080756806,
974
+ "grad_norm": 0.32007896900177,
975
+ "learning_rate": 4.633038060083996e-05,
976
+ "loss": 1.3798,
977
+ "memory/device_mem_reserved(gib)": 21.8,
978
+ "memory/max_mem_active(gib)": 21.55,
979
+ "memory/max_mem_allocated(gib)": 21.55,
980
+ "step": 97
981
+ },
982
+ {
983
+ "epoch": 0.7235809875403784,
984
+ "grad_norm": 0.26006585359573364,
985
+ "learning_rate": 4.417562779731355e-05,
986
+ "loss": 1.4974,
987
+ "memory/device_mem_reserved(gib)": 21.8,
988
+ "memory/max_mem_active(gib)": 21.55,
989
+ "memory/max_mem_allocated(gib)": 21.55,
990
+ "step": 98
991
+ },
992
+ {
993
+ "epoch": 0.7309644670050761,
994
+ "grad_norm": 0.2552710473537445,
995
+ "learning_rate": 4.205789017954364e-05,
996
+ "loss": 1.4851,
997
+ "memory/device_mem_reserved(gib)": 21.8,
998
+ "memory/max_mem_active(gib)": 21.55,
999
+ "memory/max_mem_allocated(gib)": 21.55,
1000
+ "step": 99
1001
+ },
1002
+ {
1003
+ "epoch": 0.7383479464697739,
1004
+ "grad_norm": 0.23933957517147064,
1005
+ "learning_rate": 3.997857194516319e-05,
1006
+ "loss": 1.5046,
1007
+ "memory/device_mem_reserved(gib)": 21.8,
1008
+ "memory/max_mem_active(gib)": 21.55,
1009
+ "memory/max_mem_allocated(gib)": 21.55,
1010
+ "step": 100
1011
+ },
1012
+ {
1013
+ "epoch": 0.7457314259344716,
1014
+ "grad_norm": 0.2627595067024231,
1015
+ "learning_rate": 3.793905181725772e-05,
1016
+ "loss": 1.4958,
1017
+ "memory/device_mem_reserved(gib)": 21.8,
1018
+ "memory/max_mem_active(gib)": 21.55,
1019
+ "memory/max_mem_allocated(gib)": 21.55,
1020
+ "step": 101
1021
+ },
1022
+ {
1023
+ "epoch": 0.7531149053991694,
1024
+ "grad_norm": 0.3138872981071472,
1025
+ "learning_rate": 3.594068213018249e-05,
1026
+ "loss": 1.4714,
1027
+ "memory/device_mem_reserved(gib)": 21.8,
1028
+ "memory/max_mem_active(gib)": 21.55,
1029
+ "memory/max_mem_allocated(gib)": 21.55,
1030
+ "step": 102
1031
+ }
1032
+ ],
1033
+ "logging_steps": 1,
1034
+ "max_steps": 135,
1035
+ "num_input_tokens_seen": 0,
1036
+ "num_train_epochs": 1,
1037
+ "save_steps": 34,
1038
+ "stateful_callbacks": {
1039
+ "TrainerControl": {
1040
+ "args": {
1041
+ "should_epoch_stop": false,
1042
+ "should_evaluate": false,
1043
+ "should_log": false,
1044
+ "should_save": true,
1045
+ "should_training_stop": false
1046
+ },
1047
+ "attributes": {}
1048
+ }
1049
+ },
1050
+ "total_flos": 1.851878167145349e+18,
1051
+ "train_batch_size": 1,
1052
+ "trial_name": null,
1053
+ "trial_params": null
1054
+ }
checkpoint-102/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2fcfaa0586b6a2ecea53c5d5918e29b57140459bd84f8ccd10b223317f2666e
3
+ size 10001
checkpoint-135/README.md ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: model
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - axolotl
7
+ - base_model:adapter:model
8
+ - lora
9
+ - transformers
10
+ ---
11
+
12
+ # Model Card for Model ID
13
+
14
+ <!-- Provide a quick summary of what the model is/does. -->
15
+
16
+
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ <!-- Provide a longer summary of what this model is. -->
23
+
24
+
25
+
26
+ - **Developed by:** [More Information Needed]
27
+ - **Funded by [optional]:** [More Information Needed]
28
+ - **Shared by [optional]:** [More Information Needed]
29
+ - **Model type:** [More Information Needed]
30
+ - **Language(s) (NLP):** [More Information Needed]
31
+ - **License:** [More Information Needed]
32
+ - **Finetuned from model [optional]:** [More Information Needed]
33
+
34
+ ### Model Sources [optional]
35
+
36
+ <!-- Provide the basic links for the model. -->
37
+
38
+ - **Repository:** [More Information Needed]
39
+ - **Paper [optional]:** [More Information Needed]
40
+ - **Demo [optional]:** [More Information Needed]
41
+
42
+ ## Uses
43
+
44
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
+
46
+ ### Direct Use
47
+
48
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Downstream Use [optional]
53
+
54
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
+
56
+ [More Information Needed]
57
+
58
+ ### Out-of-Scope Use
59
+
60
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ## Bias, Risks, and Limitations
65
+
66
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
+
68
+ [More Information Needed]
69
+
70
+ ### Recommendations
71
+
72
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
+
74
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
+
76
+ ## How to Get Started with the Model
77
+
78
+ Use the code below to get started with the model.
79
+
80
+ [More Information Needed]
81
+
82
+ ## Training Details
83
+
84
+ ### Training Data
85
+
86
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
+
88
+ [More Information Needed]
89
+
90
+ ### Training Procedure
91
+
92
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
+
94
+ #### Preprocessing [optional]
95
+
96
+ [More Information Needed]
97
+
98
+
99
+ #### Training Hyperparameters
100
+
101
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
+
103
+ #### Speeds, Sizes, Times [optional]
104
+
105
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
+
107
+ [More Information Needed]
108
+
109
+ ## Evaluation
110
+
111
+ <!-- This section describes the evaluation protocols and provides the results. -->
112
+
113
+ ### Testing Data, Factors & Metrics
114
+
115
+ #### Testing Data
116
+
117
+ <!-- This should link to a Dataset Card if possible. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Factors
122
+
123
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
+
125
+ [More Information Needed]
126
+
127
+ #### Metrics
128
+
129
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
+
131
+ [More Information Needed]
132
+
133
+ ### Results
134
+
135
+ [More Information Needed]
136
+
137
+ #### Summary
138
+
139
+
140
+
141
+ ## Model Examination [optional]
142
+
143
+ <!-- Relevant interpretability work for the model goes here -->
144
+
145
+ [More Information Needed]
146
+
147
+ ## Environmental Impact
148
+
149
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
+
151
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
152
+
153
+ - **Hardware Type:** [More Information Needed]
154
+ - **Hours used:** [More Information Needed]
155
+ - **Cloud Provider:** [More Information Needed]
156
+ - **Compute Region:** [More Information Needed]
157
+ - **Carbon Emitted:** [More Information Needed]
158
+
159
+ ## Technical Specifications [optional]
160
+
161
+ ### Model Architecture and Objective
162
+
163
+ [More Information Needed]
164
+
165
+ ### Compute Infrastructure
166
+
167
+ [More Information Needed]
168
+
169
+ #### Hardware
170
+
171
+ [More Information Needed]
172
+
173
+ #### Software
174
+
175
+ [More Information Needed]
176
+
177
+ ## Citation [optional]
178
+
179
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
+
181
+ **BibTeX:**
182
+
183
+ [More Information Needed]
184
+
185
+ **APA:**
186
+
187
+ [More Information Needed]
188
+
189
+ ## Glossary [optional]
190
+
191
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
+
193
+ [More Information Needed]
194
+
195
+ ## More Information [optional]
196
+
197
+ [More Information Needed]
198
+
199
+ ## Model Card Authors [optional]
200
+
201
+ [More Information Needed]
202
+
203
+ ## Model Card Contact
204
+
205
+ [More Information Needed]
206
+ ### Framework versions
207
+
208
+ - PEFT 0.17.0
checkpoint-135/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "model",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": null,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 64,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 32,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "mlp.up_proj",
29
+ "self_attn.q_proj",
30
+ "self_attn.o_proj",
31
+ "self_attn.k_proj",
32
+ "mlp.down_proj",
33
+ "mlp.gate_proj",
34
+ "self_attn.v_proj"
35
+ ],
36
+ "target_parameters": [],
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-135/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:292f11ea917be88d6cdf82d94a01c2fe0cff748f22bfff68556966618cae8920
3
+ size 739321784
checkpoint-135/chat_template.jinja ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- set today = strftime_now("%Y-%m-%d") %}
2
+ {%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \"What are some good restaurants around me?\" => \"Where are you?\" or \"When is the next flight to Tokyo\" => \"Where do you travel from?\")" %}
3
+
4
+ {{- bos_token }}
5
+
6
+ {%- if messages[0]['role'] == 'system' %}
7
+ {%- if messages[0]['content'] is string %}
8
+ {%- set system_message = messages[0]['content'] %}
9
+ {%- else %}
10
+ {%- set system_message = messages[0]['content'][0]['text'] %}
11
+ {%- endif %}
12
+ {%- set loop_messages = messages[1:] %}
13
+ {%- else %}
14
+ {%- set system_message = default_system_message %}
15
+ {%- set loop_messages = messages %}
16
+ {%- endif %}
17
+ {{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}
18
+
19
+ {%- for message in loop_messages %}
20
+ {%- if message['role'] == 'user' %}
21
+ {%- if message['content'] is string %}
22
+ {{- '[INST]' + message['content'] + '[/INST]' }}
23
+ {%- else %}
24
+ {{- '[INST]' }}
25
+ {%- for block in message['content'] %}
26
+ {%- if block['type'] == 'text' %}
27
+ {{- block['text'] }}
28
+ {%- elif block['type'] in ['image', 'image_url'] %}
29
+ {{- '[IMG]' }}
30
+ {%- else %}
31
+ {{- raise_exception('Only text and image blocks are supported in message content!') }}
32
+ {%- endif %}
33
+ {%- endfor %}
34
+ {{- '[/INST]' }}
35
+ {%- endif %}
36
+ {%- elif message['role'] == 'system' %}
37
+ {%- if message['content'] is string %}
38
+ {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}
39
+ {%- else %}
40
+ {{- '[SYSTEM_PROMPT]' + message['content'][0]['text'] + '[/SYSTEM_PROMPT]' }}
41
+ {%- endif %}
42
+ {%- elif message['role'] == 'assistant' %}
43
+ {%- if message['content'] is string %}
44
+ {{- message['content'] + eos_token }}
45
+ {%- else %}
46
+ {{- message['content'][0]['text'] + eos_token }}
47
+ {%- endif %}
48
+ {%- else %}
49
+ {{- raise_exception('Only user, system and assistant roles are supported!') }}
50
+ {%- endif %}
51
+ {%- endfor %}
checkpoint-135/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b5b44d40fdb0aa2f0eca1fa0242651ceeb819170657cb2a24da6b5fb2bbfb14
3
+ size 376056741
checkpoint-135/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bf0f29a7ba7038a6c0c83f621da840ae793b1a307ea466896e2934173348c8e
3
+ size 14645
checkpoint-135/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cfa4c2e04867bb2d10c95a968a961b1ea1c52b991cddcab18342d22891578b9
3
+ size 1465
checkpoint-135/special_tokens_map.json ADDED
@@ -0,0 +1,1032 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>",
6
+ "[INST]",
7
+ "[/INST]",
8
+ "[AVAILABLE_TOOLS]",
9
+ "[/AVAILABLE_TOOLS]",
10
+ "[TOOL_RESULTS]",
11
+ "[/TOOL_RESULTS]",
12
+ "[TOOL_CALLS]",
13
+ "[IMG]",
14
+ "<pad>",
15
+ "[IMG_BREAK]",
16
+ "[IMG_END]",
17
+ "[PREFIX]",
18
+ "[MIDDLE]",
19
+ "[SUFFIX]",
20
+ "[SYSTEM_PROMPT]",
21
+ "[/SYSTEM_PROMPT]",
22
+ "[TOOL_CONTENT]",
23
+ "<SPECIAL_20>",
24
+ "<SPECIAL_21>",
25
+ "<SPECIAL_22>",
26
+ "<SPECIAL_23>",
27
+ "<SPECIAL_24>",
28
+ "<SPECIAL_25>",
29
+ "<SPECIAL_26>",
30
+ "<SPECIAL_27>",
31
+ "<SPECIAL_28>",
32
+ "<SPECIAL_29>",
33
+ "<SPECIAL_30>",
34
+ "<SPECIAL_31>",
35
+ "<SPECIAL_32>",
36
+ "<SPECIAL_33>",
37
+ "<SPECIAL_34>",
38
+ "<SPECIAL_35>",
39
+ "<SPECIAL_36>",
40
+ "<SPECIAL_37>",
41
+ "<SPECIAL_38>",
42
+ "<SPECIAL_39>",
43
+ "<SPECIAL_40>",
44
+ "<SPECIAL_41>",
45
+ "<SPECIAL_42>",
46
+ "<SPECIAL_43>",
47
+ "<SPECIAL_44>",
48
+ "<SPECIAL_45>",
49
+ "<SPECIAL_46>",
50
+ "<SPECIAL_47>",
51
+ "<SPECIAL_48>",
52
+ "<SPECIAL_49>",
53
+ "<SPECIAL_50>",
54
+ "<SPECIAL_51>",
55
+ "<SPECIAL_52>",
56
+ "<SPECIAL_53>",
57
+ "<SPECIAL_54>",
58
+ "<SPECIAL_55>",
59
+ "<SPECIAL_56>",
60
+ "<SPECIAL_57>",
61
+ "<SPECIAL_58>",
62
+ "<SPECIAL_59>",
63
+ "<SPECIAL_60>",
64
+ "<SPECIAL_61>",
65
+ "<SPECIAL_62>",
66
+ "<SPECIAL_63>",
67
+ "<SPECIAL_64>",
68
+ "<SPECIAL_65>",
69
+ "<SPECIAL_66>",
70
+ "<SPECIAL_67>",
71
+ "<SPECIAL_68>",
72
+ "<SPECIAL_69>",
73
+ "<SPECIAL_70>",
74
+ "<SPECIAL_71>",
75
+ "<SPECIAL_72>",
76
+ "<SPECIAL_73>",
77
+ "<SPECIAL_74>",
78
+ "<SPECIAL_75>",
79
+ "<SPECIAL_76>",
80
+ "<SPECIAL_77>",
81
+ "<SPECIAL_78>",
82
+ "<SPECIAL_79>",
83
+ "<SPECIAL_80>",
84
+ "<SPECIAL_81>",
85
+ "<SPECIAL_82>",
86
+ "<SPECIAL_83>",
87
+ "<SPECIAL_84>",
88
+ "<SPECIAL_85>",
89
+ "<SPECIAL_86>",
90
+ "<SPECIAL_87>",
91
+ "<SPECIAL_88>",
92
+ "<SPECIAL_89>",
93
+ "<SPECIAL_90>",
94
+ "<SPECIAL_91>",
95
+ "<SPECIAL_92>",
96
+ "<SPECIAL_93>",
97
+ "<SPECIAL_94>",
98
+ "<SPECIAL_95>",
99
+ "<SPECIAL_96>",
100
+ "<SPECIAL_97>",
101
+ "<SPECIAL_98>",
102
+ "<SPECIAL_99>",
103
+ "<SPECIAL_100>",
104
+ "<SPECIAL_101>",
105
+ "<SPECIAL_102>",
106
+ "<SPECIAL_103>",
107
+ "<SPECIAL_104>",
108
+ "<SPECIAL_105>",
109
+ "<SPECIAL_106>",
110
+ "<SPECIAL_107>",
111
+ "<SPECIAL_108>",
112
+ "<SPECIAL_109>",
113
+ "<SPECIAL_110>",
114
+ "<SPECIAL_111>",
115
+ "<SPECIAL_112>",
116
+ "<SPECIAL_113>",
117
+ "<SPECIAL_114>",
118
+ "<SPECIAL_115>",
119
+ "<SPECIAL_116>",
120
+ "<SPECIAL_117>",
121
+ "<SPECIAL_118>",
122
+ "<SPECIAL_119>",
123
+ "<SPECIAL_120>",
124
+ "<SPECIAL_121>",
125
+ "<SPECIAL_122>",
126
+ "<SPECIAL_123>",
127
+ "<SPECIAL_124>",
128
+ "<SPECIAL_125>",
129
+ "<SPECIAL_126>",
130
+ "<SPECIAL_127>",
131
+ "<SPECIAL_128>",
132
+ "<SPECIAL_129>",
133
+ "<SPECIAL_130>",
134
+ "<SPECIAL_131>",
135
+ "<SPECIAL_132>",
136
+ "<SPECIAL_133>",
137
+ "<SPECIAL_134>",
138
+ "<SPECIAL_135>",
139
+ "<SPECIAL_136>",
140
+ "<SPECIAL_137>",
141
+ "<SPECIAL_138>",
142
+ "<SPECIAL_139>",
143
+ "<SPECIAL_140>",
144
+ "<SPECIAL_141>",
145
+ "<SPECIAL_142>",
146
+ "<SPECIAL_143>",
147
+ "<SPECIAL_144>",
148
+ "<SPECIAL_145>",
149
+ "<SPECIAL_146>",
150
+ "<SPECIAL_147>",
151
+ "<SPECIAL_148>",
152
+ "<SPECIAL_149>",
153
+ "<SPECIAL_150>",
154
+ "<SPECIAL_151>",
155
+ "<SPECIAL_152>",
156
+ "<SPECIAL_153>",
157
+ "<SPECIAL_154>",
158
+ "<SPECIAL_155>",
159
+ "<SPECIAL_156>",
160
+ "<SPECIAL_157>",
161
+ "<SPECIAL_158>",
162
+ "<SPECIAL_159>",
163
+ "<SPECIAL_160>",
164
+ "<SPECIAL_161>",
165
+ "<SPECIAL_162>",
166
+ "<SPECIAL_163>",
167
+ "<SPECIAL_164>",
168
+ "<SPECIAL_165>",
169
+ "<SPECIAL_166>",
170
+ "<SPECIAL_167>",
171
+ "<SPECIAL_168>",
172
+ "<SPECIAL_169>",
173
+ "<SPECIAL_170>",
174
+ "<SPECIAL_171>",
175
+ "<SPECIAL_172>",
176
+ "<SPECIAL_173>",
177
+ "<SPECIAL_174>",
178
+ "<SPECIAL_175>",
179
+ "<SPECIAL_176>",
180
+ "<SPECIAL_177>",
181
+ "<SPECIAL_178>",
182
+ "<SPECIAL_179>",
183
+ "<SPECIAL_180>",
184
+ "<SPECIAL_181>",
185
+ "<SPECIAL_182>",
186
+ "<SPECIAL_183>",
187
+ "<SPECIAL_184>",
188
+ "<SPECIAL_185>",
189
+ "<SPECIAL_186>",
190
+ "<SPECIAL_187>",
191
+ "<SPECIAL_188>",
192
+ "<SPECIAL_189>",
193
+ "<SPECIAL_190>",
194
+ "<SPECIAL_191>",
195
+ "<SPECIAL_192>",
196
+ "<SPECIAL_193>",
197
+ "<SPECIAL_194>",
198
+ "<SPECIAL_195>",
199
+ "<SPECIAL_196>",
200
+ "<SPECIAL_197>",
201
+ "<SPECIAL_198>",
202
+ "<SPECIAL_199>",
203
+ "<SPECIAL_200>",
204
+ "<SPECIAL_201>",
205
+ "<SPECIAL_202>",
206
+ "<SPECIAL_203>",
207
+ "<SPECIAL_204>",
208
+ "<SPECIAL_205>",
209
+ "<SPECIAL_206>",
210
+ "<SPECIAL_207>",
211
+ "<SPECIAL_208>",
212
+ "<SPECIAL_209>",
213
+ "<SPECIAL_210>",
214
+ "<SPECIAL_211>",
215
+ "<SPECIAL_212>",
216
+ "<SPECIAL_213>",
217
+ "<SPECIAL_214>",
218
+ "<SPECIAL_215>",
219
+ "<SPECIAL_216>",
220
+ "<SPECIAL_217>",
221
+ "<SPECIAL_218>",
222
+ "<SPECIAL_219>",
223
+ "<SPECIAL_220>",
224
+ "<SPECIAL_221>",
225
+ "<SPECIAL_222>",
226
+ "<SPECIAL_223>",
227
+ "<SPECIAL_224>",
228
+ "<SPECIAL_225>",
229
+ "<SPECIAL_226>",
230
+ "<SPECIAL_227>",
231
+ "<SPECIAL_228>",
232
+ "<SPECIAL_229>",
233
+ "<SPECIAL_230>",
234
+ "<SPECIAL_231>",
235
+ "<SPECIAL_232>",
236
+ "<SPECIAL_233>",
237
+ "<SPECIAL_234>",
238
+ "<SPECIAL_235>",
239
+ "<SPECIAL_236>",
240
+ "<SPECIAL_237>",
241
+ "<SPECIAL_238>",
242
+ "<SPECIAL_239>",
243
+ "<SPECIAL_240>",
244
+ "<SPECIAL_241>",
245
+ "<SPECIAL_242>",
246
+ "<SPECIAL_243>",
247
+ "<SPECIAL_244>",
248
+ "<SPECIAL_245>",
249
+ "<SPECIAL_246>",
250
+ "<SPECIAL_247>",
251
+ "<SPECIAL_248>",
252
+ "<SPECIAL_249>",
253
+ "<SPECIAL_250>",
254
+ "<SPECIAL_251>",
255
+ "<SPECIAL_252>",
256
+ "<SPECIAL_253>",
257
+ "<SPECIAL_254>",
258
+ "<SPECIAL_255>",
259
+ "<SPECIAL_256>",
260
+ "<SPECIAL_257>",
261
+ "<SPECIAL_258>",
262
+ "<SPECIAL_259>",
263
+ "<SPECIAL_260>",
264
+ "<SPECIAL_261>",
265
+ "<SPECIAL_262>",
266
+ "<SPECIAL_263>",
267
+ "<SPECIAL_264>",
268
+ "<SPECIAL_265>",
269
+ "<SPECIAL_266>",
270
+ "<SPECIAL_267>",
271
+ "<SPECIAL_268>",
272
+ "<SPECIAL_269>",
273
+ "<SPECIAL_270>",
274
+ "<SPECIAL_271>",
275
+ "<SPECIAL_272>",
276
+ "<SPECIAL_273>",
277
+ "<SPECIAL_274>",
278
+ "<SPECIAL_275>",
279
+ "<SPECIAL_276>",
280
+ "<SPECIAL_277>",
281
+ "<SPECIAL_278>",
282
+ "<SPECIAL_279>",
283
+ "<SPECIAL_280>",
284
+ "<SPECIAL_281>",
285
+ "<SPECIAL_282>",
286
+ "<SPECIAL_283>",
287
+ "<SPECIAL_284>",
288
+ "<SPECIAL_285>",
289
+ "<SPECIAL_286>",
290
+ "<SPECIAL_287>",
291
+ "<SPECIAL_288>",
292
+ "<SPECIAL_289>",
293
+ "<SPECIAL_290>",
294
+ "<SPECIAL_291>",
295
+ "<SPECIAL_292>",
296
+ "<SPECIAL_293>",
297
+ "<SPECIAL_294>",
298
+ "<SPECIAL_295>",
299
+ "<SPECIAL_296>",
300
+ "<SPECIAL_297>",
301
+ "<SPECIAL_298>",
302
+ "<SPECIAL_299>",
303
+ "<SPECIAL_300>",
304
+ "<SPECIAL_301>",
305
+ "<SPECIAL_302>",
306
+ "<SPECIAL_303>",
307
+ "<SPECIAL_304>",
308
+ "<SPECIAL_305>",
309
+ "<SPECIAL_306>",
310
+ "<SPECIAL_307>",
311
+ "<SPECIAL_308>",
312
+ "<SPECIAL_309>",
313
+ "<SPECIAL_310>",
314
+ "<SPECIAL_311>",
315
+ "<SPECIAL_312>",
316
+ "<SPECIAL_313>",
317
+ "<SPECIAL_314>",
318
+ "<SPECIAL_315>",
319
+ "<SPECIAL_316>",
320
+ "<SPECIAL_317>",
321
+ "<SPECIAL_318>",
322
+ "<SPECIAL_319>",
323
+ "<SPECIAL_320>",
324
+ "<SPECIAL_321>",
325
+ "<SPECIAL_322>",
326
+ "<SPECIAL_323>",
327
+ "<SPECIAL_324>",
328
+ "<SPECIAL_325>",
329
+ "<SPECIAL_326>",
330
+ "<SPECIAL_327>",
331
+ "<SPECIAL_328>",
332
+ "<SPECIAL_329>",
333
+ "<SPECIAL_330>",
334
+ "<SPECIAL_331>",
335
+ "<SPECIAL_332>",
336
+ "<SPECIAL_333>",
337
+ "<SPECIAL_334>",
338
+ "<SPECIAL_335>",
339
+ "<SPECIAL_336>",
340
+ "<SPECIAL_337>",
341
+ "<SPECIAL_338>",
342
+ "<SPECIAL_339>",
343
+ "<SPECIAL_340>",
344
+ "<SPECIAL_341>",
345
+ "<SPECIAL_342>",
346
+ "<SPECIAL_343>",
347
+ "<SPECIAL_344>",
348
+ "<SPECIAL_345>",
349
+ "<SPECIAL_346>",
350
+ "<SPECIAL_347>",
351
+ "<SPECIAL_348>",
352
+ "<SPECIAL_349>",
353
+ "<SPECIAL_350>",
354
+ "<SPECIAL_351>",
355
+ "<SPECIAL_352>",
356
+ "<SPECIAL_353>",
357
+ "<SPECIAL_354>",
358
+ "<SPECIAL_355>",
359
+ "<SPECIAL_356>",
360
+ "<SPECIAL_357>",
361
+ "<SPECIAL_358>",
362
+ "<SPECIAL_359>",
363
+ "<SPECIAL_360>",
364
+ "<SPECIAL_361>",
365
+ "<SPECIAL_362>",
366
+ "<SPECIAL_363>",
367
+ "<SPECIAL_364>",
368
+ "<SPECIAL_365>",
369
+ "<SPECIAL_366>",
370
+ "<SPECIAL_367>",
371
+ "<SPECIAL_368>",
372
+ "<SPECIAL_369>",
373
+ "<SPECIAL_370>",
374
+ "<SPECIAL_371>",
375
+ "<SPECIAL_372>",
376
+ "<SPECIAL_373>",
377
+ "<SPECIAL_374>",
378
+ "<SPECIAL_375>",
379
+ "<SPECIAL_376>",
380
+ "<SPECIAL_377>",
381
+ "<SPECIAL_378>",
382
+ "<SPECIAL_379>",
383
+ "<SPECIAL_380>",
384
+ "<SPECIAL_381>",
385
+ "<SPECIAL_382>",
386
+ "<SPECIAL_383>",
387
+ "<SPECIAL_384>",
388
+ "<SPECIAL_385>",
389
+ "<SPECIAL_386>",
390
+ "<SPECIAL_387>",
391
+ "<SPECIAL_388>",
392
+ "<SPECIAL_389>",
393
+ "<SPECIAL_390>",
394
+ "<SPECIAL_391>",
395
+ "<SPECIAL_392>",
396
+ "<SPECIAL_393>",
397
+ "<SPECIAL_394>",
398
+ "<SPECIAL_395>",
399
+ "<SPECIAL_396>",
400
+ "<SPECIAL_397>",
401
+ "<SPECIAL_398>",
402
+ "<SPECIAL_399>",
403
+ "<SPECIAL_400>",
404
+ "<SPECIAL_401>",
405
+ "<SPECIAL_402>",
406
+ "<SPECIAL_403>",
407
+ "<SPECIAL_404>",
408
+ "<SPECIAL_405>",
409
+ "<SPECIAL_406>",
410
+ "<SPECIAL_407>",
411
+ "<SPECIAL_408>",
412
+ "<SPECIAL_409>",
413
+ "<SPECIAL_410>",
414
+ "<SPECIAL_411>",
415
+ "<SPECIAL_412>",
416
+ "<SPECIAL_413>",
417
+ "<SPECIAL_414>",
418
+ "<SPECIAL_415>",
419
+ "<SPECIAL_416>",
420
+ "<SPECIAL_417>",
421
+ "<SPECIAL_418>",
422
+ "<SPECIAL_419>",
423
+ "<SPECIAL_420>",
424
+ "<SPECIAL_421>",
425
+ "<SPECIAL_422>",
426
+ "<SPECIAL_423>",
427
+ "<SPECIAL_424>",
428
+ "<SPECIAL_425>",
429
+ "<SPECIAL_426>",
430
+ "<SPECIAL_427>",
431
+ "<SPECIAL_428>",
432
+ "<SPECIAL_429>",
433
+ "<SPECIAL_430>",
434
+ "<SPECIAL_431>",
435
+ "<SPECIAL_432>",
436
+ "<SPECIAL_433>",
437
+ "<SPECIAL_434>",
438
+ "<SPECIAL_435>",
439
+ "<SPECIAL_436>",
440
+ "<SPECIAL_437>",
441
+ "<SPECIAL_438>",
442
+ "<SPECIAL_439>",
443
+ "<SPECIAL_440>",
444
+ "<SPECIAL_441>",
445
+ "<SPECIAL_442>",
446
+ "<SPECIAL_443>",
447
+ "<SPECIAL_444>",
448
+ "<SPECIAL_445>",
449
+ "<SPECIAL_446>",
450
+ "<SPECIAL_447>",
451
+ "<SPECIAL_448>",
452
+ "<SPECIAL_449>",
453
+ "<SPECIAL_450>",
454
+ "<SPECIAL_451>",
455
+ "<SPECIAL_452>",
456
+ "<SPECIAL_453>",
457
+ "<SPECIAL_454>",
458
+ "<SPECIAL_455>",
459
+ "<SPECIAL_456>",
460
+ "<SPECIAL_457>",
461
+ "<SPECIAL_458>",
462
+ "<SPECIAL_459>",
463
+ "<SPECIAL_460>",
464
+ "<SPECIAL_461>",
465
+ "<SPECIAL_462>",
466
+ "<SPECIAL_463>",
467
+ "<SPECIAL_464>",
468
+ "<SPECIAL_465>",
469
+ "<SPECIAL_466>",
470
+ "<SPECIAL_467>",
471
+ "<SPECIAL_468>",
472
+ "<SPECIAL_469>",
473
+ "<SPECIAL_470>",
474
+ "<SPECIAL_471>",
475
+ "<SPECIAL_472>",
476
+ "<SPECIAL_473>",
477
+ "<SPECIAL_474>",
478
+ "<SPECIAL_475>",
479
+ "<SPECIAL_476>",
480
+ "<SPECIAL_477>",
481
+ "<SPECIAL_478>",
482
+ "<SPECIAL_479>",
483
+ "<SPECIAL_480>",
484
+ "<SPECIAL_481>",
485
+ "<SPECIAL_482>",
486
+ "<SPECIAL_483>",
487
+ "<SPECIAL_484>",
488
+ "<SPECIAL_485>",
489
+ "<SPECIAL_486>",
490
+ "<SPECIAL_487>",
491
+ "<SPECIAL_488>",
492
+ "<SPECIAL_489>",
493
+ "<SPECIAL_490>",
494
+ "<SPECIAL_491>",
495
+ "<SPECIAL_492>",
496
+ "<SPECIAL_493>",
497
+ "<SPECIAL_494>",
498
+ "<SPECIAL_495>",
499
+ "<SPECIAL_496>",
500
+ "<SPECIAL_497>",
501
+ "<SPECIAL_498>",
502
+ "<SPECIAL_499>",
503
+ "<SPECIAL_500>",
504
+ "<SPECIAL_501>",
505
+ "<SPECIAL_502>",
506
+ "<SPECIAL_503>",
507
+ "<SPECIAL_504>",
508
+ "<SPECIAL_505>",
509
+ "<SPECIAL_506>",
510
+ "<SPECIAL_507>",
511
+ "<SPECIAL_508>",
512
+ "<SPECIAL_509>",
513
+ "<SPECIAL_510>",
514
+ "<SPECIAL_511>",
515
+ "<SPECIAL_512>",
516
+ "<SPECIAL_513>",
517
+ "<SPECIAL_514>",
518
+ "<SPECIAL_515>",
519
+ "<SPECIAL_516>",
520
+ "<SPECIAL_517>",
521
+ "<SPECIAL_518>",
522
+ "<SPECIAL_519>",
523
+ "<SPECIAL_520>",
524
+ "<SPECIAL_521>",
525
+ "<SPECIAL_522>",
526
+ "<SPECIAL_523>",
527
+ "<SPECIAL_524>",
528
+ "<SPECIAL_525>",
529
+ "<SPECIAL_526>",
530
+ "<SPECIAL_527>",
531
+ "<SPECIAL_528>",
532
+ "<SPECIAL_529>",
533
+ "<SPECIAL_530>",
534
+ "<SPECIAL_531>",
535
+ "<SPECIAL_532>",
536
+ "<SPECIAL_533>",
537
+ "<SPECIAL_534>",
538
+ "<SPECIAL_535>",
539
+ "<SPECIAL_536>",
540
+ "<SPECIAL_537>",
541
+ "<SPECIAL_538>",
542
+ "<SPECIAL_539>",
543
+ "<SPECIAL_540>",
544
+ "<SPECIAL_541>",
545
+ "<SPECIAL_542>",
546
+ "<SPECIAL_543>",
547
+ "<SPECIAL_544>",
548
+ "<SPECIAL_545>",
549
+ "<SPECIAL_546>",
550
+ "<SPECIAL_547>",
551
+ "<SPECIAL_548>",
552
+ "<SPECIAL_549>",
553
+ "<SPECIAL_550>",
554
+ "<SPECIAL_551>",
555
+ "<SPECIAL_552>",
556
+ "<SPECIAL_553>",
557
+ "<SPECIAL_554>",
558
+ "<SPECIAL_555>",
559
+ "<SPECIAL_556>",
560
+ "<SPECIAL_557>",
561
+ "<SPECIAL_558>",
562
+ "<SPECIAL_559>",
563
+ "<SPECIAL_560>",
564
+ "<SPECIAL_561>",
565
+ "<SPECIAL_562>",
566
+ "<SPECIAL_563>",
567
+ "<SPECIAL_564>",
568
+ "<SPECIAL_565>",
569
+ "<SPECIAL_566>",
570
+ "<SPECIAL_567>",
571
+ "<SPECIAL_568>",
572
+ "<SPECIAL_569>",
573
+ "<SPECIAL_570>",
574
+ "<SPECIAL_571>",
575
+ "<SPECIAL_572>",
576
+ "<SPECIAL_573>",
577
+ "<SPECIAL_574>",
578
+ "<SPECIAL_575>",
579
+ "<SPECIAL_576>",
580
+ "<SPECIAL_577>",
581
+ "<SPECIAL_578>",
582
+ "<SPECIAL_579>",
583
+ "<SPECIAL_580>",
584
+ "<SPECIAL_581>",
585
+ "<SPECIAL_582>",
586
+ "<SPECIAL_583>",
587
+ "<SPECIAL_584>",
588
+ "<SPECIAL_585>",
589
+ "<SPECIAL_586>",
590
+ "<SPECIAL_587>",
591
+ "<SPECIAL_588>",
592
+ "<SPECIAL_589>",
593
+ "<SPECIAL_590>",
594
+ "<SPECIAL_591>",
595
+ "<SPECIAL_592>",
596
+ "<SPECIAL_593>",
597
+ "<SPECIAL_594>",
598
+ "<SPECIAL_595>",
599
+ "<SPECIAL_596>",
600
+ "<SPECIAL_597>",
601
+ "<SPECIAL_598>",
602
+ "<SPECIAL_599>",
603
+ "<SPECIAL_600>",
604
+ "<SPECIAL_601>",
605
+ "<SPECIAL_602>",
606
+ "<SPECIAL_603>",
607
+ "<SPECIAL_604>",
608
+ "<SPECIAL_605>",
609
+ "<SPECIAL_606>",
610
+ "<SPECIAL_607>",
611
+ "<SPECIAL_608>",
612
+ "<SPECIAL_609>",
613
+ "<SPECIAL_610>",
614
+ "<SPECIAL_611>",
615
+ "<SPECIAL_612>",
616
+ "<SPECIAL_613>",
617
+ "<SPECIAL_614>",
618
+ "<SPECIAL_615>",
619
+ "<SPECIAL_616>",
620
+ "<SPECIAL_617>",
621
+ "<SPECIAL_618>",
622
+ "<SPECIAL_619>",
623
+ "<SPECIAL_620>",
624
+ "<SPECIAL_621>",
625
+ "<SPECIAL_622>",
626
+ "<SPECIAL_623>",
627
+ "<SPECIAL_624>",
628
+ "<SPECIAL_625>",
629
+ "<SPECIAL_626>",
630
+ "<SPECIAL_627>",
631
+ "<SPECIAL_628>",
632
+ "<SPECIAL_629>",
633
+ "<SPECIAL_630>",
634
+ "<SPECIAL_631>",
635
+ "<SPECIAL_632>",
636
+ "<SPECIAL_633>",
637
+ "<SPECIAL_634>",
638
+ "<SPECIAL_635>",
639
+ "<SPECIAL_636>",
640
+ "<SPECIAL_637>",
641
+ "<SPECIAL_638>",
642
+ "<SPECIAL_639>",
643
+ "<SPECIAL_640>",
644
+ "<SPECIAL_641>",
645
+ "<SPECIAL_642>",
646
+ "<SPECIAL_643>",
647
+ "<SPECIAL_644>",
648
+ "<SPECIAL_645>",
649
+ "<SPECIAL_646>",
650
+ "<SPECIAL_647>",
651
+ "<SPECIAL_648>",
652
+ "<SPECIAL_649>",
653
+ "<SPECIAL_650>",
654
+ "<SPECIAL_651>",
655
+ "<SPECIAL_652>",
656
+ "<SPECIAL_653>",
657
+ "<SPECIAL_654>",
658
+ "<SPECIAL_655>",
659
+ "<SPECIAL_656>",
660
+ "<SPECIAL_657>",
661
+ "<SPECIAL_658>",
662
+ "<SPECIAL_659>",
663
+ "<SPECIAL_660>",
664
+ "<SPECIAL_661>",
665
+ "<SPECIAL_662>",
666
+ "<SPECIAL_663>",
667
+ "<SPECIAL_664>",
668
+ "<SPECIAL_665>",
669
+ "<SPECIAL_666>",
670
+ "<SPECIAL_667>",
671
+ "<SPECIAL_668>",
672
+ "<SPECIAL_669>",
673
+ "<SPECIAL_670>",
674
+ "<SPECIAL_671>",
675
+ "<SPECIAL_672>",
676
+ "<SPECIAL_673>",
677
+ "<SPECIAL_674>",
678
+ "<SPECIAL_675>",
679
+ "<SPECIAL_676>",
680
+ "<SPECIAL_677>",
681
+ "<SPECIAL_678>",
682
+ "<SPECIAL_679>",
683
+ "<SPECIAL_680>",
684
+ "<SPECIAL_681>",
685
+ "<SPECIAL_682>",
686
+ "<SPECIAL_683>",
687
+ "<SPECIAL_684>",
688
+ "<SPECIAL_685>",
689
+ "<SPECIAL_686>",
690
+ "<SPECIAL_687>",
691
+ "<SPECIAL_688>",
692
+ "<SPECIAL_689>",
693
+ "<SPECIAL_690>",
694
+ "<SPECIAL_691>",
695
+ "<SPECIAL_692>",
696
+ "<SPECIAL_693>",
697
+ "<SPECIAL_694>",
698
+ "<SPECIAL_695>",
699
+ "<SPECIAL_696>",
700
+ "<SPECIAL_697>",
701
+ "<SPECIAL_698>",
702
+ "<SPECIAL_699>",
703
+ "<SPECIAL_700>",
704
+ "<SPECIAL_701>",
705
+ "<SPECIAL_702>",
706
+ "<SPECIAL_703>",
707
+ "<SPECIAL_704>",
708
+ "<SPECIAL_705>",
709
+ "<SPECIAL_706>",
710
+ "<SPECIAL_707>",
711
+ "<SPECIAL_708>",
712
+ "<SPECIAL_709>",
713
+ "<SPECIAL_710>",
714
+ "<SPECIAL_711>",
715
+ "<SPECIAL_712>",
716
+ "<SPECIAL_713>",
717
+ "<SPECIAL_714>",
718
+ "<SPECIAL_715>",
719
+ "<SPECIAL_716>",
720
+ "<SPECIAL_717>",
721
+ "<SPECIAL_718>",
722
+ "<SPECIAL_719>",
723
+ "<SPECIAL_720>",
724
+ "<SPECIAL_721>",
725
+ "<SPECIAL_722>",
726
+ "<SPECIAL_723>",
727
+ "<SPECIAL_724>",
728
+ "<SPECIAL_725>",
729
+ "<SPECIAL_726>",
730
+ "<SPECIAL_727>",
731
+ "<SPECIAL_728>",
732
+ "<SPECIAL_729>",
733
+ "<SPECIAL_730>",
734
+ "<SPECIAL_731>",
735
+ "<SPECIAL_732>",
736
+ "<SPECIAL_733>",
737
+ "<SPECIAL_734>",
738
+ "<SPECIAL_735>",
739
+ "<SPECIAL_736>",
740
+ "<SPECIAL_737>",
741
+ "<SPECIAL_738>",
742
+ "<SPECIAL_739>",
743
+ "<SPECIAL_740>",
744
+ "<SPECIAL_741>",
745
+ "<SPECIAL_742>",
746
+ "<SPECIAL_743>",
747
+ "<SPECIAL_744>",
748
+ "<SPECIAL_745>",
749
+ "<SPECIAL_746>",
750
+ "<SPECIAL_747>",
751
+ "<SPECIAL_748>",
752
+ "<SPECIAL_749>",
753
+ "<SPECIAL_750>",
754
+ "<SPECIAL_751>",
755
+ "<SPECIAL_752>",
756
+ "<SPECIAL_753>",
757
+ "<SPECIAL_754>",
758
+ "<SPECIAL_755>",
759
+ "<SPECIAL_756>",
760
+ "<SPECIAL_757>",
761
+ "<SPECIAL_758>",
762
+ "<SPECIAL_759>",
763
+ "<SPECIAL_760>",
764
+ "<SPECIAL_761>",
765
+ "<SPECIAL_762>",
766
+ "<SPECIAL_763>",
767
+ "<SPECIAL_764>",
768
+ "<SPECIAL_765>",
769
+ "<SPECIAL_766>",
770
+ "<SPECIAL_767>",
771
+ "<SPECIAL_768>",
772
+ "<SPECIAL_769>",
773
+ "<SPECIAL_770>",
774
+ "<SPECIAL_771>",
775
+ "<SPECIAL_772>",
776
+ "<SPECIAL_773>",
777
+ "<SPECIAL_774>",
778
+ "<SPECIAL_775>",
779
+ "<SPECIAL_776>",
780
+ "<SPECIAL_777>",
781
+ "<SPECIAL_778>",
782
+ "<SPECIAL_779>",
783
+ "<SPECIAL_780>",
784
+ "<SPECIAL_781>",
785
+ "<SPECIAL_782>",
786
+ "<SPECIAL_783>",
787
+ "<SPECIAL_784>",
788
+ "<SPECIAL_785>",
789
+ "<SPECIAL_786>",
790
+ "<SPECIAL_787>",
791
+ "<SPECIAL_788>",
792
+ "<SPECIAL_789>",
793
+ "<SPECIAL_790>",
794
+ "<SPECIAL_791>",
795
+ "<SPECIAL_792>",
796
+ "<SPECIAL_793>",
797
+ "<SPECIAL_794>",
798
+ "<SPECIAL_795>",
799
+ "<SPECIAL_796>",
800
+ "<SPECIAL_797>",
801
+ "<SPECIAL_798>",
802
+ "<SPECIAL_799>",
803
+ "<SPECIAL_800>",
804
+ "<SPECIAL_801>",
805
+ "<SPECIAL_802>",
806
+ "<SPECIAL_803>",
807
+ "<SPECIAL_804>",
808
+ "<SPECIAL_805>",
809
+ "<SPECIAL_806>",
810
+ "<SPECIAL_807>",
811
+ "<SPECIAL_808>",
812
+ "<SPECIAL_809>",
813
+ "<SPECIAL_810>",
814
+ "<SPECIAL_811>",
815
+ "<SPECIAL_812>",
816
+ "<SPECIAL_813>",
817
+ "<SPECIAL_814>",
818
+ "<SPECIAL_815>",
819
+ "<SPECIAL_816>",
820
+ "<SPECIAL_817>",
821
+ "<SPECIAL_818>",
822
+ "<SPECIAL_819>",
823
+ "<SPECIAL_820>",
824
+ "<SPECIAL_821>",
825
+ "<SPECIAL_822>",
826
+ "<SPECIAL_823>",
827
+ "<SPECIAL_824>",
828
+ "<SPECIAL_825>",
829
+ "<SPECIAL_826>",
830
+ "<SPECIAL_827>",
831
+ "<SPECIAL_828>",
832
+ "<SPECIAL_829>",
833
+ "<SPECIAL_830>",
834
+ "<SPECIAL_831>",
835
+ "<SPECIAL_832>",
836
+ "<SPECIAL_833>",
837
+ "<SPECIAL_834>",
838
+ "<SPECIAL_835>",
839
+ "<SPECIAL_836>",
840
+ "<SPECIAL_837>",
841
+ "<SPECIAL_838>",
842
+ "<SPECIAL_839>",
843
+ "<SPECIAL_840>",
844
+ "<SPECIAL_841>",
845
+ "<SPECIAL_842>",
846
+ "<SPECIAL_843>",
847
+ "<SPECIAL_844>",
848
+ "<SPECIAL_845>",
849
+ "<SPECIAL_846>",
850
+ "<SPECIAL_847>",
851
+ "<SPECIAL_848>",
852
+ "<SPECIAL_849>",
853
+ "<SPECIAL_850>",
854
+ "<SPECIAL_851>",
855
+ "<SPECIAL_852>",
856
+ "<SPECIAL_853>",
857
+ "<SPECIAL_854>",
858
+ "<SPECIAL_855>",
859
+ "<SPECIAL_856>",
860
+ "<SPECIAL_857>",
861
+ "<SPECIAL_858>",
862
+ "<SPECIAL_859>",
863
+ "<SPECIAL_860>",
864
+ "<SPECIAL_861>",
865
+ "<SPECIAL_862>",
866
+ "<SPECIAL_863>",
867
+ "<SPECIAL_864>",
868
+ "<SPECIAL_865>",
869
+ "<SPECIAL_866>",
870
+ "<SPECIAL_867>",
871
+ "<SPECIAL_868>",
872
+ "<SPECIAL_869>",
873
+ "<SPECIAL_870>",
874
+ "<SPECIAL_871>",
875
+ "<SPECIAL_872>",
876
+ "<SPECIAL_873>",
877
+ "<SPECIAL_874>",
878
+ "<SPECIAL_875>",
879
+ "<SPECIAL_876>",
880
+ "<SPECIAL_877>",
881
+ "<SPECIAL_878>",
882
+ "<SPECIAL_879>",
883
+ "<SPECIAL_880>",
884
+ "<SPECIAL_881>",
885
+ "<SPECIAL_882>",
886
+ "<SPECIAL_883>",
887
+ "<SPECIAL_884>",
888
+ "<SPECIAL_885>",
889
+ "<SPECIAL_886>",
890
+ "<SPECIAL_887>",
891
+ "<SPECIAL_888>",
892
+ "<SPECIAL_889>",
893
+ "<SPECIAL_890>",
894
+ "<SPECIAL_891>",
895
+ "<SPECIAL_892>",
896
+ "<SPECIAL_893>",
897
+ "<SPECIAL_894>",
898
+ "<SPECIAL_895>",
899
+ "<SPECIAL_896>",
900
+ "<SPECIAL_897>",
901
+ "<SPECIAL_898>",
902
+ "<SPECIAL_899>",
903
+ "<SPECIAL_900>",
904
+ "<SPECIAL_901>",
905
+ "<SPECIAL_902>",
906
+ "<SPECIAL_903>",
907
+ "<SPECIAL_904>",
908
+ "<SPECIAL_905>",
909
+ "<SPECIAL_906>",
910
+ "<SPECIAL_907>",
911
+ "<SPECIAL_908>",
912
+ "<SPECIAL_909>",
913
+ "<SPECIAL_910>",
914
+ "<SPECIAL_911>",
915
+ "<SPECIAL_912>",
916
+ "<SPECIAL_913>",
917
+ "<SPECIAL_914>",
918
+ "<SPECIAL_915>",
919
+ "<SPECIAL_916>",
920
+ "<SPECIAL_917>",
921
+ "<SPECIAL_918>",
922
+ "<SPECIAL_919>",
923
+ "<SPECIAL_920>",
924
+ "<SPECIAL_921>",
925
+ "<SPECIAL_922>",
926
+ "<SPECIAL_923>",
927
+ "<SPECIAL_924>",
928
+ "<SPECIAL_925>",
929
+ "<SPECIAL_926>",
930
+ "<SPECIAL_927>",
931
+ "<SPECIAL_928>",
932
+ "<SPECIAL_929>",
933
+ "<SPECIAL_930>",
934
+ "<SPECIAL_931>",
935
+ "<SPECIAL_932>",
936
+ "<SPECIAL_933>",
937
+ "<SPECIAL_934>",
938
+ "<SPECIAL_935>",
939
+ "<SPECIAL_936>",
940
+ "<SPECIAL_937>",
941
+ "<SPECIAL_938>",
942
+ "<SPECIAL_939>",
943
+ "<SPECIAL_940>",
944
+ "<SPECIAL_941>",
945
+ "<SPECIAL_942>",
946
+ "<SPECIAL_943>",
947
+ "<SPECIAL_944>",
948
+ "<SPECIAL_945>",
949
+ "<SPECIAL_946>",
950
+ "<SPECIAL_947>",
951
+ "<SPECIAL_948>",
952
+ "<SPECIAL_949>",
953
+ "<SPECIAL_950>",
954
+ "<SPECIAL_951>",
955
+ "<SPECIAL_952>",
956
+ "<SPECIAL_953>",
957
+ "<SPECIAL_954>",
958
+ "<SPECIAL_955>",
959
+ "<SPECIAL_956>",
960
+ "<SPECIAL_957>",
961
+ "<SPECIAL_958>",
962
+ "<SPECIAL_959>",
963
+ "<SPECIAL_960>",
964
+ "<SPECIAL_961>",
965
+ "<SPECIAL_962>",
966
+ "<SPECIAL_963>",
967
+ "<SPECIAL_964>",
968
+ "<SPECIAL_965>",
969
+ "<SPECIAL_966>",
970
+ "<SPECIAL_967>",
971
+ "<SPECIAL_968>",
972
+ "<SPECIAL_969>",
973
+ "<SPECIAL_970>",
974
+ "<SPECIAL_971>",
975
+ "<SPECIAL_972>",
976
+ "<SPECIAL_973>",
977
+ "<SPECIAL_974>",
978
+ "<SPECIAL_975>",
979
+ "<SPECIAL_976>",
980
+ "<SPECIAL_977>",
981
+ "<SPECIAL_978>",
982
+ "<SPECIAL_979>",
983
+ "<SPECIAL_980>",
984
+ "<SPECIAL_981>",
985
+ "<SPECIAL_982>",
986
+ "<SPECIAL_983>",
987
+ "<SPECIAL_984>",
988
+ "<SPECIAL_985>",
989
+ "<SPECIAL_986>",
990
+ "<SPECIAL_987>",
991
+ "<SPECIAL_988>",
992
+ "<SPECIAL_989>",
993
+ "<SPECIAL_990>",
994
+ "<SPECIAL_991>",
995
+ "<SPECIAL_992>",
996
+ "<SPECIAL_993>",
997
+ "<SPECIAL_994>",
998
+ "<SPECIAL_995>",
999
+ "<SPECIAL_996>",
1000
+ "<SPECIAL_997>",
1001
+ "<SPECIAL_998>",
1002
+ "<SPECIAL_999>"
1003
+ ],
1004
+ "bos_token": {
1005
+ "content": "<s>",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false
1010
+ },
1011
+ "eos_token": {
1012
+ "content": "</s>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false
1017
+ },
1018
+ "pad_token": {
1019
+ "content": "<pad>",
1020
+ "lstrip": false,
1021
+ "normalized": false,
1022
+ "rstrip": false,
1023
+ "single_word": false
1024
+ },
1025
+ "unk_token": {
1026
+ "content": "<unk>",
1027
+ "lstrip": false,
1028
+ "normalized": false,
1029
+ "rstrip": false,
1030
+ "single_word": false
1031
+ }
1032
+ }
checkpoint-135/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76085f9923309d873994d444989f7eb6ec074b06f25b58f1e8d7b7741070949
3
+ size 17078037
checkpoint-135/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-135/trainer_state.json ADDED
@@ -0,0 +1,1384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.9967697277341947,
6
+ "eval_steps": 500,
7
+ "global_step": 135,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.007383479464697739,
14
+ "grad_norm": 1.9591929912567139,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.6228,
17
+ "memory/device_mem_reserved(gib)": 21.61,
18
+ "memory/max_mem_active(gib)": 21.2,
19
+ "memory/max_mem_allocated(gib)": 21.2,
20
+ "step": 1
21
+ },
22
+ {
23
+ "epoch": 0.014766958929395477,
24
+ "grad_norm": 1.4523507356643677,
25
+ "learning_rate": 1.5384615384615387e-05,
26
+ "loss": 1.5769,
27
+ "memory/device_mem_reserved(gib)": 21.8,
28
+ "memory/max_mem_active(gib)": 21.55,
29
+ "memory/max_mem_allocated(gib)": 21.55,
30
+ "step": 2
31
+ },
32
+ {
33
+ "epoch": 0.022150438394093218,
34
+ "grad_norm": 1.1918187141418457,
35
+ "learning_rate": 3.0769230769230774e-05,
36
+ "loss": 1.5435,
37
+ "memory/device_mem_reserved(gib)": 21.8,
38
+ "memory/max_mem_active(gib)": 21.55,
39
+ "memory/max_mem_allocated(gib)": 21.55,
40
+ "step": 3
41
+ },
42
+ {
43
+ "epoch": 0.029533917858790955,
44
+ "grad_norm": 0.8260876536369324,
45
+ "learning_rate": 4.615384615384616e-05,
46
+ "loss": 1.6523,
47
+ "memory/device_mem_reserved(gib)": 21.8,
48
+ "memory/max_mem_active(gib)": 21.55,
49
+ "memory/max_mem_allocated(gib)": 21.55,
50
+ "step": 4
51
+ },
52
+ {
53
+ "epoch": 0.03691739732348869,
54
+ "grad_norm": 0.8584926128387451,
55
+ "learning_rate": 6.153846153846155e-05,
56
+ "loss": 1.5745,
57
+ "memory/device_mem_reserved(gib)": 21.8,
58
+ "memory/max_mem_active(gib)": 21.55,
59
+ "memory/max_mem_allocated(gib)": 21.55,
60
+ "step": 5
61
+ },
62
+ {
63
+ "epoch": 0.044300876788186436,
64
+ "grad_norm": 0.6466429829597473,
65
+ "learning_rate": 7.692307692307693e-05,
66
+ "loss": 1.4759,
67
+ "memory/device_mem_reserved(gib)": 21.8,
68
+ "memory/max_mem_active(gib)": 21.55,
69
+ "memory/max_mem_allocated(gib)": 21.55,
70
+ "step": 6
71
+ },
72
+ {
73
+ "epoch": 0.05168435625288417,
74
+ "grad_norm": 0.5014482140541077,
75
+ "learning_rate": 9.230769230769232e-05,
76
+ "loss": 1.602,
77
+ "memory/device_mem_reserved(gib)": 21.8,
78
+ "memory/max_mem_active(gib)": 21.55,
79
+ "memory/max_mem_allocated(gib)": 21.55,
80
+ "step": 7
81
+ },
82
+ {
83
+ "epoch": 0.05906783571758191,
84
+ "grad_norm": 0.6017433404922485,
85
+ "learning_rate": 0.0001076923076923077,
86
+ "loss": 1.4176,
87
+ "memory/device_mem_reserved(gib)": 21.8,
88
+ "memory/max_mem_active(gib)": 21.55,
89
+ "memory/max_mem_allocated(gib)": 21.55,
90
+ "step": 8
91
+ },
92
+ {
93
+ "epoch": 0.06645131518227965,
94
+ "grad_norm": 0.4612258970737457,
95
+ "learning_rate": 0.0001230769230769231,
96
+ "loss": 1.5819,
97
+ "memory/device_mem_reserved(gib)": 21.8,
98
+ "memory/max_mem_active(gib)": 21.55,
99
+ "memory/max_mem_allocated(gib)": 21.55,
100
+ "step": 9
101
+ },
102
+ {
103
+ "epoch": 0.07383479464697738,
104
+ "grad_norm": 0.4430214464664459,
105
+ "learning_rate": 0.00013846153846153847,
106
+ "loss": 1.561,
107
+ "memory/device_mem_reserved(gib)": 21.8,
108
+ "memory/max_mem_active(gib)": 21.55,
109
+ "memory/max_mem_allocated(gib)": 21.55,
110
+ "step": 10
111
+ },
112
+ {
113
+ "epoch": 0.08121827411167512,
114
+ "grad_norm": 0.3746771216392517,
115
+ "learning_rate": 0.00015384615384615385,
116
+ "loss": 1.6744,
117
+ "memory/device_mem_reserved(gib)": 21.8,
118
+ "memory/max_mem_active(gib)": 21.55,
119
+ "memory/max_mem_allocated(gib)": 21.55,
120
+ "step": 11
121
+ },
122
+ {
123
+ "epoch": 0.08860175357637287,
124
+ "grad_norm": 0.38248857855796814,
125
+ "learning_rate": 0.00016923076923076923,
126
+ "loss": 1.5629,
127
+ "memory/device_mem_reserved(gib)": 21.8,
128
+ "memory/max_mem_active(gib)": 21.55,
129
+ "memory/max_mem_allocated(gib)": 21.55,
130
+ "step": 12
131
+ },
132
+ {
133
+ "epoch": 0.09598523304107061,
134
+ "grad_norm": 0.515844464302063,
135
+ "learning_rate": 0.00018461538461538463,
136
+ "loss": 1.5264,
137
+ "memory/device_mem_reserved(gib)": 21.8,
138
+ "memory/max_mem_active(gib)": 21.55,
139
+ "memory/max_mem_allocated(gib)": 21.55,
140
+ "step": 13
141
+ },
142
+ {
143
+ "epoch": 0.10336871250576835,
144
+ "grad_norm": 0.3964424431324005,
145
+ "learning_rate": 0.0002,
146
+ "loss": 1.5398,
147
+ "memory/device_mem_reserved(gib)": 21.8,
148
+ "memory/max_mem_active(gib)": 21.55,
149
+ "memory/max_mem_allocated(gib)": 21.55,
150
+ "step": 14
151
+ },
152
+ {
153
+ "epoch": 0.11075219197046608,
154
+ "grad_norm": 0.4010593891143799,
155
+ "learning_rate": 0.0001999668467514313,
156
+ "loss": 1.4618,
157
+ "memory/device_mem_reserved(gib)": 21.8,
158
+ "memory/max_mem_active(gib)": 21.55,
159
+ "memory/max_mem_allocated(gib)": 21.55,
160
+ "step": 15
161
+ },
162
+ {
163
+ "epoch": 0.11813567143516382,
164
+ "grad_norm": 0.3192802965641022,
165
+ "learning_rate": 0.00019986740898848306,
166
+ "loss": 1.6994,
167
+ "memory/device_mem_reserved(gib)": 21.8,
168
+ "memory/max_mem_active(gib)": 21.55,
169
+ "memory/max_mem_allocated(gib)": 21.55,
170
+ "step": 16
171
+ },
172
+ {
173
+ "epoch": 0.12551915089986157,
174
+ "grad_norm": 0.410099059343338,
175
+ "learning_rate": 0.00019970175264485266,
176
+ "loss": 1.5913,
177
+ "memory/device_mem_reserved(gib)": 21.8,
178
+ "memory/max_mem_active(gib)": 21.55,
179
+ "memory/max_mem_allocated(gib)": 21.55,
180
+ "step": 17
181
+ },
182
+ {
183
+ "epoch": 0.1329026303645593,
184
+ "grad_norm": 0.312429815530777,
185
+ "learning_rate": 0.0001994699875614589,
186
+ "loss": 1.5701,
187
+ "memory/device_mem_reserved(gib)": 21.8,
188
+ "memory/max_mem_active(gib)": 21.55,
189
+ "memory/max_mem_allocated(gib)": 21.55,
190
+ "step": 18
191
+ },
192
+ {
193
+ "epoch": 0.14028610982925704,
194
+ "grad_norm": 0.2831230163574219,
195
+ "learning_rate": 0.00019917226741361015,
196
+ "loss": 1.5744,
197
+ "memory/device_mem_reserved(gib)": 21.8,
198
+ "memory/max_mem_active(gib)": 21.55,
199
+ "memory/max_mem_allocated(gib)": 21.55,
200
+ "step": 19
201
+ },
202
+ {
203
+ "epoch": 0.14766958929395477,
204
+ "grad_norm": 0.3618868291378021,
205
+ "learning_rate": 0.00019880878960910772,
206
+ "loss": 1.5185,
207
+ "memory/device_mem_reserved(gib)": 21.8,
208
+ "memory/max_mem_active(gib)": 21.55,
209
+ "memory/max_mem_allocated(gib)": 21.55,
210
+ "step": 20
211
+ },
212
+ {
213
+ "epoch": 0.15505306875865252,
214
+ "grad_norm": 0.3151628077030182,
215
+ "learning_rate": 0.00019837979515735166,
216
+ "loss": 1.5086,
217
+ "memory/device_mem_reserved(gib)": 21.8,
218
+ "memory/max_mem_active(gib)": 21.55,
219
+ "memory/max_mem_allocated(gib)": 21.55,
220
+ "step": 21
221
+ },
222
+ {
223
+ "epoch": 0.16243654822335024,
224
+ "grad_norm": 0.31955838203430176,
225
+ "learning_rate": 0.0001978855685095358,
226
+ "loss": 1.6329,
227
+ "memory/device_mem_reserved(gib)": 21.8,
228
+ "memory/max_mem_active(gib)": 21.55,
229
+ "memory/max_mem_allocated(gib)": 21.55,
230
+ "step": 22
231
+ },
232
+ {
233
+ "epoch": 0.169820027688048,
234
+ "grad_norm": 0.3030437231063843,
235
+ "learning_rate": 0.00019732643737003827,
236
+ "loss": 1.6697,
237
+ "memory/device_mem_reserved(gib)": 21.8,
238
+ "memory/max_mem_active(gib)": 21.55,
239
+ "memory/max_mem_allocated(gib)": 21.55,
240
+ "step": 23
241
+ },
242
+ {
243
+ "epoch": 0.17720350715274574,
244
+ "grad_norm": 0.41288134455680847,
245
+ "learning_rate": 0.00019670277247913205,
246
+ "loss": 1.7094,
247
+ "memory/device_mem_reserved(gib)": 21.8,
248
+ "memory/max_mem_active(gib)": 21.55,
249
+ "memory/max_mem_allocated(gib)": 21.55,
250
+ "step": 24
251
+ },
252
+ {
253
+ "epoch": 0.18458698661744347,
254
+ "grad_norm": 0.2887294888496399,
255
+ "learning_rate": 0.00019601498736716017,
256
+ "loss": 1.5554,
257
+ "memory/device_mem_reserved(gib)": 21.8,
258
+ "memory/max_mem_active(gib)": 21.55,
259
+ "memory/max_mem_allocated(gib)": 21.55,
260
+ "step": 25
261
+ },
262
+ {
263
+ "epoch": 0.19197046608214122,
264
+ "grad_norm": 0.3173791170120239,
265
+ "learning_rate": 0.00019526353808033825,
266
+ "loss": 1.4404,
267
+ "memory/device_mem_reserved(gib)": 21.8,
268
+ "memory/max_mem_active(gib)": 21.55,
269
+ "memory/max_mem_allocated(gib)": 21.55,
270
+ "step": 26
271
+ },
272
+ {
273
+ "epoch": 0.19935394554683894,
274
+ "grad_norm": 0.2877439558506012,
275
+ "learning_rate": 0.00019444892287836613,
276
+ "loss": 1.4766,
277
+ "memory/device_mem_reserved(gib)": 21.8,
278
+ "memory/max_mem_active(gib)": 21.55,
279
+ "memory/max_mem_allocated(gib)": 21.55,
280
+ "step": 27
281
+ },
282
+ {
283
+ "epoch": 0.2067374250115367,
284
+ "grad_norm": 0.29286038875579834,
285
+ "learning_rate": 0.00019357168190404936,
286
+ "loss": 1.5156,
287
+ "memory/device_mem_reserved(gib)": 21.8,
288
+ "memory/max_mem_active(gib)": 21.55,
289
+ "memory/max_mem_allocated(gib)": 21.55,
290
+ "step": 28
291
+ },
292
+ {
293
+ "epoch": 0.2141209044762344,
294
+ "grad_norm": 0.27713659405708313,
295
+ "learning_rate": 0.00019263239682514952,
296
+ "loss": 1.5153,
297
+ "memory/device_mem_reserved(gib)": 21.8,
298
+ "memory/max_mem_active(gib)": 21.55,
299
+ "memory/max_mem_allocated(gib)": 21.55,
300
+ "step": 29
301
+ },
302
+ {
303
+ "epoch": 0.22150438394093216,
304
+ "grad_norm": 0.29187655448913574,
305
+ "learning_rate": 0.0001916316904487005,
306
+ "loss": 1.6036,
307
+ "memory/device_mem_reserved(gib)": 21.8,
308
+ "memory/max_mem_active(gib)": 21.55,
309
+ "memory/max_mem_allocated(gib)": 21.55,
310
+ "step": 30
311
+ },
312
+ {
313
+ "epoch": 0.22888786340562992,
314
+ "grad_norm": 0.2671583890914917,
315
+ "learning_rate": 0.00019057022630804716,
316
+ "loss": 1.4675,
317
+ "memory/device_mem_reserved(gib)": 21.8,
318
+ "memory/max_mem_active(gib)": 21.55,
319
+ "memory/max_mem_allocated(gib)": 21.55,
320
+ "step": 31
321
+ },
322
+ {
323
+ "epoch": 0.23627134287032764,
324
+ "grad_norm": 0.2679831087589264,
325
+ "learning_rate": 0.00018944870822287956,
326
+ "loss": 1.581,
327
+ "memory/device_mem_reserved(gib)": 21.8,
328
+ "memory/max_mem_active(gib)": 21.55,
329
+ "memory/max_mem_allocated(gib)": 21.55,
330
+ "step": 32
331
+ },
332
+ {
333
+ "epoch": 0.2436548223350254,
334
+ "grad_norm": 0.26359617710113525,
335
+ "learning_rate": 0.00018826787983255473,
336
+ "loss": 1.4674,
337
+ "memory/device_mem_reserved(gib)": 21.8,
338
+ "memory/max_mem_active(gib)": 21.55,
339
+ "memory/max_mem_allocated(gib)": 21.55,
340
+ "step": 33
341
+ },
342
+ {
343
+ "epoch": 0.25103830179972314,
344
+ "grad_norm": 0.30446046590805054,
345
+ "learning_rate": 0.00018702852410301554,
346
+ "loss": 1.5038,
347
+ "memory/device_mem_reserved(gib)": 21.8,
348
+ "memory/max_mem_active(gib)": 21.55,
349
+ "memory/max_mem_allocated(gib)": 21.55,
350
+ "step": 34
351
+ },
352
+ {
353
+ "epoch": 0.25842178126442084,
354
+ "grad_norm": 0.3004315197467804,
355
+ "learning_rate": 0.00018573146280763324,
356
+ "loss": 1.4024,
357
+ "memory/device_mem_reserved(gib)": 21.8,
358
+ "memory/max_mem_active(gib)": 21.55,
359
+ "memory/max_mem_allocated(gib)": 21.55,
360
+ "step": 35
361
+ },
362
+ {
363
+ "epoch": 0.2658052607291186,
364
+ "grad_norm": 0.27353399991989136,
365
+ "learning_rate": 0.00018437755598231856,
366
+ "loss": 1.3652,
367
+ "memory/device_mem_reserved(gib)": 21.8,
368
+ "memory/max_mem_active(gib)": 21.55,
369
+ "memory/max_mem_allocated(gib)": 21.55,
370
+ "step": 36
371
+ },
372
+ {
373
+ "epoch": 0.27318874019381634,
374
+ "grad_norm": 0.2659265995025635,
375
+ "learning_rate": 0.0001829677013552619,
376
+ "loss": 1.4905,
377
+ "memory/device_mem_reserved(gib)": 21.8,
378
+ "memory/max_mem_active(gib)": 21.55,
379
+ "memory/max_mem_allocated(gib)": 21.55,
380
+ "step": 37
381
+ },
382
+ {
383
+ "epoch": 0.2805722196585141,
384
+ "grad_norm": 0.2703750431537628,
385
+ "learning_rate": 0.00018150283375168114,
386
+ "loss": 1.3298,
387
+ "memory/device_mem_reserved(gib)": 21.8,
388
+ "memory/max_mem_active(gib)": 21.55,
389
+ "memory/max_mem_allocated(gib)": 21.55,
390
+ "step": 38
391
+ },
392
+ {
393
+ "epoch": 0.28795569912321184,
394
+ "grad_norm": 0.29322877526283264,
395
+ "learning_rate": 0.00017998392447397197,
396
+ "loss": 1.3639,
397
+ "memory/device_mem_reserved(gib)": 21.8,
398
+ "memory/max_mem_active(gib)": 21.55,
399
+ "memory/max_mem_allocated(gib)": 21.55,
400
+ "step": 39
401
+ },
402
+ {
403
+ "epoch": 0.29533917858790953,
404
+ "grad_norm": 0.26927265524864197,
405
+ "learning_rate": 0.00017841198065767107,
406
+ "loss": 1.4849,
407
+ "memory/device_mem_reserved(gib)": 21.8,
408
+ "memory/max_mem_active(gib)": 21.55,
409
+ "memory/max_mem_allocated(gib)": 21.55,
410
+ "step": 40
411
+ },
412
+ {
413
+ "epoch": 0.3027226580526073,
414
+ "grad_norm": 0.26683205366134644,
415
+ "learning_rate": 0.00017678804460366,
416
+ "loss": 1.4523,
417
+ "memory/device_mem_reserved(gib)": 21.8,
418
+ "memory/max_mem_active(gib)": 21.55,
419
+ "memory/max_mem_allocated(gib)": 21.55,
420
+ "step": 41
421
+ },
422
+ {
423
+ "epoch": 0.31010613751730504,
424
+ "grad_norm": 0.26909339427948,
425
+ "learning_rate": 0.00017511319308705198,
426
+ "loss": 1.6047,
427
+ "memory/device_mem_reserved(gib)": 21.8,
428
+ "memory/max_mem_active(gib)": 21.55,
429
+ "memory/max_mem_allocated(gib)": 21.55,
430
+ "step": 42
431
+ },
432
+ {
433
+ "epoch": 0.3174896169820028,
434
+ "grad_norm": 0.2938016355037689,
435
+ "learning_rate": 0.00017338853664321992,
436
+ "loss": 1.3858,
437
+ "memory/device_mem_reserved(gib)": 21.8,
438
+ "memory/max_mem_active(gib)": 21.55,
439
+ "memory/max_mem_allocated(gib)": 21.55,
440
+ "step": 43
441
+ },
442
+ {
443
+ "epoch": 0.3248730964467005,
444
+ "grad_norm": 0.28290048241615295,
445
+ "learning_rate": 0.00017161521883143934,
446
+ "loss": 1.3671,
447
+ "memory/device_mem_reserved(gib)": 21.8,
448
+ "memory/max_mem_active(gib)": 21.55,
449
+ "memory/max_mem_allocated(gib)": 21.55,
450
+ "step": 44
451
+ },
452
+ {
453
+ "epoch": 0.33225657591139823,
454
+ "grad_norm": 0.2870519161224365,
455
+ "learning_rate": 0.00016979441547663435,
456
+ "loss": 1.5334,
457
+ "memory/device_mem_reserved(gib)": 21.8,
458
+ "memory/max_mem_active(gib)": 21.55,
459
+ "memory/max_mem_allocated(gib)": 21.55,
460
+ "step": 45
461
+ },
462
+ {
463
+ "epoch": 0.339640055376096,
464
+ "grad_norm": 0.26375913619995117,
465
+ "learning_rate": 0.00016792733388972932,
466
+ "loss": 1.5627,
467
+ "memory/device_mem_reserved(gib)": 21.8,
468
+ "memory/max_mem_active(gib)": 21.55,
469
+ "memory/max_mem_allocated(gib)": 21.55,
470
+ "step": 46
471
+ },
472
+ {
473
+ "epoch": 0.34702353484079373,
474
+ "grad_norm": 0.26975446939468384,
475
+ "learning_rate": 0.00016601521206712318,
476
+ "loss": 1.4987,
477
+ "memory/device_mem_reserved(gib)": 21.8,
478
+ "memory/max_mem_active(gib)": 21.55,
479
+ "memory/max_mem_allocated(gib)": 21.55,
480
+ "step": 47
481
+ },
482
+ {
483
+ "epoch": 0.3544070143054915,
484
+ "grad_norm": 0.30166226625442505,
485
+ "learning_rate": 0.00016405931786981755,
486
+ "loss": 1.5128,
487
+ "memory/device_mem_reserved(gib)": 21.8,
488
+ "memory/max_mem_active(gib)": 21.55,
489
+ "memory/max_mem_allocated(gib)": 21.55,
490
+ "step": 48
491
+ },
492
+ {
493
+ "epoch": 0.3617904937701892,
494
+ "grad_norm": 0.29190436005592346,
495
+ "learning_rate": 0.00016206094818274229,
496
+ "loss": 1.4914,
497
+ "memory/device_mem_reserved(gib)": 21.8,
498
+ "memory/max_mem_active(gib)": 21.55,
499
+ "memory/max_mem_allocated(gib)": 21.55,
500
+ "step": 49
501
+ },
502
+ {
503
+ "epoch": 0.36917397323488693,
504
+ "grad_norm": 0.2847207486629486,
505
+ "learning_rate": 0.00016002142805483685,
506
+ "loss": 1.4755,
507
+ "memory/device_mem_reserved(gib)": 21.8,
508
+ "memory/max_mem_active(gib)": 21.55,
509
+ "memory/max_mem_allocated(gib)": 21.55,
510
+ "step": 50
511
+ },
512
+ {
513
+ "epoch": 0.3765574526995847,
514
+ "grad_norm": 0.2877140939235687,
515
+ "learning_rate": 0.00015794210982045636,
516
+ "loss": 1.422,
517
+ "memory/device_mem_reserved(gib)": 21.8,
518
+ "memory/max_mem_active(gib)": 21.55,
519
+ "memory/max_mem_allocated(gib)": 21.55,
520
+ "step": 51
521
+ },
522
+ {
523
+ "epoch": 0.38394093216428243,
524
+ "grad_norm": 0.2705255150794983,
525
+ "learning_rate": 0.00015582437220268647,
526
+ "loss": 1.4822,
527
+ "memory/device_mem_reserved(gib)": 21.8,
528
+ "memory/max_mem_active(gib)": 21.55,
529
+ "memory/max_mem_allocated(gib)": 21.55,
530
+ "step": 52
531
+ },
532
+ {
533
+ "epoch": 0.3913244116289802,
534
+ "grad_norm": 0.2597866654396057,
535
+ "learning_rate": 0.00015366961939916008,
536
+ "loss": 1.5088,
537
+ "memory/device_mem_reserved(gib)": 21.8,
538
+ "memory/max_mem_active(gib)": 21.55,
539
+ "memory/max_mem_allocated(gib)": 21.55,
540
+ "step": 53
541
+ },
542
+ {
543
+ "epoch": 0.3987078910936779,
544
+ "grad_norm": 0.2965547740459442,
545
+ "learning_rate": 0.0001514792801509831,
546
+ "loss": 1.5346,
547
+ "memory/device_mem_reserved(gib)": 21.8,
548
+ "memory/max_mem_active(gib)": 21.55,
549
+ "memory/max_mem_allocated(gib)": 21.55,
550
+ "step": 54
551
+ },
552
+ {
553
+ "epoch": 0.40609137055837563,
554
+ "grad_norm": 0.2670862078666687,
555
+ "learning_rate": 0.00014925480679538647,
556
+ "loss": 1.5695,
557
+ "memory/device_mem_reserved(gib)": 21.8,
558
+ "memory/max_mem_active(gib)": 21.55,
559
+ "memory/max_mem_allocated(gib)": 21.55,
560
+ "step": 55
561
+ },
562
+ {
563
+ "epoch": 0.4134748500230734,
564
+ "grad_norm": 0.30679062008857727,
565
+ "learning_rate": 0.000146997674302732,
566
+ "loss": 1.6911,
567
+ "memory/device_mem_reserved(gib)": 21.8,
568
+ "memory/max_mem_active(gib)": 21.55,
569
+ "memory/max_mem_allocated(gib)": 21.55,
570
+ "step": 56
571
+ },
572
+ {
573
+ "epoch": 0.42085832948777113,
574
+ "grad_norm": 0.2812528908252716,
575
+ "learning_rate": 0.0001447093792985114,
576
+ "loss": 1.664,
577
+ "memory/device_mem_reserved(gib)": 21.8,
578
+ "memory/max_mem_active(gib)": 21.55,
579
+ "memory/max_mem_allocated(gib)": 21.55,
580
+ "step": 57
581
+ },
582
+ {
583
+ "epoch": 0.4282418089524688,
584
+ "grad_norm": 0.26079821586608887,
585
+ "learning_rate": 0.0001423914390709861,
586
+ "loss": 1.3911,
587
+ "memory/device_mem_reserved(gib)": 21.8,
588
+ "memory/max_mem_active(gib)": 21.55,
589
+ "memory/max_mem_allocated(gib)": 21.55,
590
+ "step": 58
591
+ },
592
+ {
593
+ "epoch": 0.4356252884171666,
594
+ "grad_norm": 0.3026648461818695,
595
+ "learning_rate": 0.00014004539056512667,
596
+ "loss": 1.5685,
597
+ "memory/device_mem_reserved(gib)": 21.8,
598
+ "memory/max_mem_active(gib)": 21.55,
599
+ "memory/max_mem_allocated(gib)": 21.55,
600
+ "step": 59
601
+ },
602
+ {
603
+ "epoch": 0.44300876788186433,
604
+ "grad_norm": 0.28435277938842773,
605
+ "learning_rate": 0.00013767278936351854,
606
+ "loss": 1.3599,
607
+ "memory/device_mem_reserved(gib)": 21.8,
608
+ "memory/max_mem_active(gib)": 21.55,
609
+ "memory/max_mem_allocated(gib)": 21.55,
610
+ "step": 60
611
+ },
612
+ {
613
+ "epoch": 0.4503922473465621,
614
+ "grad_norm": 0.29877325892448425,
615
+ "learning_rate": 0.0001352752086549095,
616
+ "loss": 1.5173,
617
+ "memory/device_mem_reserved(gib)": 21.8,
618
+ "memory/max_mem_active(gib)": 21.55,
619
+ "memory/max_mem_allocated(gib)": 21.55,
620
+ "step": 61
621
+ },
622
+ {
623
+ "epoch": 0.45777572681125983,
624
+ "grad_norm": 0.29666033387184143,
625
+ "learning_rate": 0.0001328542381910835,
626
+ "loss": 1.5017,
627
+ "memory/device_mem_reserved(gib)": 21.8,
628
+ "memory/max_mem_active(gib)": 21.55,
629
+ "memory/max_mem_allocated(gib)": 21.55,
630
+ "step": 62
631
+ },
632
+ {
633
+ "epoch": 0.4651592062759575,
634
+ "grad_norm": 0.26934438943862915,
635
+ "learning_rate": 0.0001304114832327518,
636
+ "loss": 1.4674,
637
+ "memory/device_mem_reserved(gib)": 21.8,
638
+ "memory/max_mem_active(gib)": 21.55,
639
+ "memory/max_mem_allocated(gib)": 21.55,
640
+ "step": 63
641
+ },
642
+ {
643
+ "epoch": 0.4725426857406553,
644
+ "grad_norm": 0.30038923025131226,
645
+ "learning_rate": 0.00012794856348516095,
646
+ "loss": 1.5306,
647
+ "memory/device_mem_reserved(gib)": 21.8,
648
+ "memory/max_mem_active(gib)": 21.55,
649
+ "memory/max_mem_allocated(gib)": 21.55,
650
+ "step": 64
651
+ },
652
+ {
653
+ "epoch": 0.47992616520535303,
654
+ "grad_norm": 0.2799171805381775,
655
+ "learning_rate": 0.00012546711202412287,
656
+ "loss": 1.4696,
657
+ "memory/device_mem_reserved(gib)": 21.8,
658
+ "memory/max_mem_active(gib)": 21.55,
659
+ "memory/max_mem_allocated(gib)": 21.55,
660
+ "step": 65
661
+ },
662
+ {
663
+ "epoch": 0.4873096446700508,
664
+ "grad_norm": 0.313919335603714,
665
+ "learning_rate": 0.0001229687742131796,
666
+ "loss": 1.5927,
667
+ "memory/device_mem_reserved(gib)": 21.8,
668
+ "memory/max_mem_active(gib)": 21.55,
669
+ "memory/max_mem_allocated(gib)": 21.55,
670
+ "step": 66
671
+ },
672
+ {
673
+ "epoch": 0.4946931241347485,
674
+ "grad_norm": 0.27579808235168457,
675
+ "learning_rate": 0.0001204552066126201,
676
+ "loss": 1.4654,
677
+ "memory/device_mem_reserved(gib)": 21.8,
678
+ "memory/max_mem_active(gib)": 21.55,
679
+ "memory/max_mem_allocated(gib)": 21.55,
680
+ "step": 67
681
+ },
682
+ {
683
+ "epoch": 0.5020766035994463,
684
+ "grad_norm": 0.28434908390045166,
685
+ "learning_rate": 0.00011792807588107357,
686
+ "loss": 1.5039,
687
+ "memory/device_mem_reserved(gib)": 21.8,
688
+ "memory/max_mem_active(gib)": 21.55,
689
+ "memory/max_mem_allocated(gib)": 21.55,
690
+ "step": 68
691
+ },
692
+ {
693
+ "epoch": 0.509460083064144,
694
+ "grad_norm": 0.2828267514705658,
695
+ "learning_rate": 0.0001153890576704062,
696
+ "loss": 1.6203,
697
+ "memory/device_mem_reserved(gib)": 21.8,
698
+ "memory/max_mem_active(gib)": 21.55,
699
+ "memory/max_mem_allocated(gib)": 21.55,
700
+ "step": 69
701
+ },
702
+ {
703
+ "epoch": 0.5168435625288417,
704
+ "grad_norm": 0.30293530225753784,
705
+ "learning_rate": 0.00011283983551465511,
706
+ "loss": 1.5628,
707
+ "memory/device_mem_reserved(gib)": 21.8,
708
+ "memory/max_mem_active(gib)": 21.55,
709
+ "memory/max_mem_allocated(gib)": 21.55,
710
+ "step": 70
711
+ },
712
+ {
713
+ "epoch": 0.5242270419935394,
714
+ "grad_norm": 0.2633240520954132,
715
+ "learning_rate": 0.00011028209971373605,
716
+ "loss": 1.5666,
717
+ "memory/device_mem_reserved(gib)": 21.8,
718
+ "memory/max_mem_active(gib)": 21.55,
719
+ "memory/max_mem_allocated(gib)": 21.55,
720
+ "step": 71
721
+ },
722
+ {
723
+ "epoch": 0.5316105214582372,
724
+ "grad_norm": 0.24525777995586395,
725
+ "learning_rate": 0.00010771754621266466,
726
+ "loss": 1.592,
727
+ "memory/device_mem_reserved(gib)": 21.8,
728
+ "memory/max_mem_active(gib)": 21.55,
729
+ "memory/max_mem_allocated(gib)": 21.55,
730
+ "step": 72
731
+ },
732
+ {
733
+ "epoch": 0.5389940009229349,
734
+ "grad_norm": 0.27619901299476624,
735
+ "learning_rate": 0.00010514787547703466,
736
+ "loss": 1.6212,
737
+ "memory/device_mem_reserved(gib)": 21.8,
738
+ "memory/max_mem_active(gib)": 21.55,
739
+ "memory/max_mem_allocated(gib)": 21.55,
740
+ "step": 73
741
+ },
742
+ {
743
+ "epoch": 0.5463774803876327,
744
+ "grad_norm": 0.2783447504043579,
745
+ "learning_rate": 0.00010257479136549889,
746
+ "loss": 1.457,
747
+ "memory/device_mem_reserved(gib)": 21.8,
748
+ "memory/max_mem_active(gib)": 21.55,
749
+ "memory/max_mem_allocated(gib)": 21.55,
750
+ "step": 74
751
+ },
752
+ {
753
+ "epoch": 0.5537609598523304,
754
+ "grad_norm": 0.2755623459815979,
755
+ "learning_rate": 0.0001,
756
+ "loss": 1.3652,
757
+ "memory/device_mem_reserved(gib)": 21.8,
758
+ "memory/max_mem_active(gib)": 21.55,
759
+ "memory/max_mem_allocated(gib)": 21.55,
760
+ "step": 75
761
+ },
762
+ {
763
+ "epoch": 0.5611444393170282,
764
+ "grad_norm": 0.28049108386039734,
765
+ "learning_rate": 9.742520863450115e-05,
766
+ "loss": 1.4187,
767
+ "memory/device_mem_reserved(gib)": 21.8,
768
+ "memory/max_mem_active(gib)": 21.55,
769
+ "memory/max_mem_allocated(gib)": 21.55,
770
+ "step": 76
771
+ },
772
+ {
773
+ "epoch": 0.5685279187817259,
774
+ "grad_norm": 0.27499496936798096,
775
+ "learning_rate": 9.485212452296535e-05,
776
+ "loss": 1.5488,
777
+ "memory/device_mem_reserved(gib)": 21.8,
778
+ "memory/max_mem_active(gib)": 21.55,
779
+ "memory/max_mem_allocated(gib)": 21.55,
780
+ "step": 77
781
+ },
782
+ {
783
+ "epoch": 0.5759113982464237,
784
+ "grad_norm": 0.288296639919281,
785
+ "learning_rate": 9.228245378733537e-05,
786
+ "loss": 1.412,
787
+ "memory/device_mem_reserved(gib)": 21.8,
788
+ "memory/max_mem_active(gib)": 21.55,
789
+ "memory/max_mem_allocated(gib)": 21.55,
790
+ "step": 78
791
+ },
792
+ {
793
+ "epoch": 0.5832948777111213,
794
+ "grad_norm": 0.35849323868751526,
795
+ "learning_rate": 8.971790028626395e-05,
796
+ "loss": 1.5214,
797
+ "memory/device_mem_reserved(gib)": 21.8,
798
+ "memory/max_mem_active(gib)": 21.55,
799
+ "memory/max_mem_allocated(gib)": 21.55,
800
+ "step": 79
801
+ },
802
+ {
803
+ "epoch": 0.5906783571758191,
804
+ "grad_norm": 0.2951800525188446,
805
+ "learning_rate": 8.71601644853449e-05,
806
+ "loss": 1.4837,
807
+ "memory/device_mem_reserved(gib)": 21.8,
808
+ "memory/max_mem_active(gib)": 21.55,
809
+ "memory/max_mem_allocated(gib)": 21.55,
810
+ "step": 80
811
+ },
812
+ {
813
+ "epoch": 0.5980618366405168,
814
+ "grad_norm": 0.2763918340206146,
815
+ "learning_rate": 8.461094232959381e-05,
816
+ "loss": 1.5419,
817
+ "memory/device_mem_reserved(gib)": 21.8,
818
+ "memory/max_mem_active(gib)": 21.55,
819
+ "memory/max_mem_allocated(gib)": 21.55,
820
+ "step": 81
821
+ },
822
+ {
823
+ "epoch": 0.6054453161052146,
824
+ "grad_norm": 0.2745305895805359,
825
+ "learning_rate": 8.207192411892646e-05,
826
+ "loss": 1.4921,
827
+ "memory/device_mem_reserved(gib)": 21.8,
828
+ "memory/max_mem_active(gib)": 21.55,
829
+ "memory/max_mem_allocated(gib)": 21.55,
830
+ "step": 82
831
+ },
832
+ {
833
+ "epoch": 0.6128287955699123,
834
+ "grad_norm": 0.30081912875175476,
835
+ "learning_rate": 7.954479338737995e-05,
836
+ "loss": 1.4745,
837
+ "memory/device_mem_reserved(gib)": 21.8,
838
+ "memory/max_mem_active(gib)": 21.55,
839
+ "memory/max_mem_allocated(gib)": 21.55,
840
+ "step": 83
841
+ },
842
+ {
843
+ "epoch": 0.6202122750346101,
844
+ "grad_norm": 0.27640482783317566,
845
+ "learning_rate": 7.703122578682046e-05,
846
+ "loss": 1.4461,
847
+ "memory/device_mem_reserved(gib)": 21.8,
848
+ "memory/max_mem_active(gib)": 21.55,
849
+ "memory/max_mem_allocated(gib)": 21.55,
850
+ "step": 84
851
+ },
852
+ {
853
+ "epoch": 0.6275957544993078,
854
+ "grad_norm": 0.3407949209213257,
855
+ "learning_rate": 7.453288797587714e-05,
856
+ "loss": 1.617,
857
+ "memory/device_mem_reserved(gib)": 21.8,
858
+ "memory/max_mem_active(gib)": 21.55,
859
+ "memory/max_mem_allocated(gib)": 21.55,
860
+ "step": 85
861
+ },
862
+ {
863
+ "epoch": 0.6349792339640056,
864
+ "grad_norm": 0.2856479287147522,
865
+ "learning_rate": 7.205143651483906e-05,
866
+ "loss": 1.6538,
867
+ "memory/device_mem_reserved(gib)": 21.8,
868
+ "memory/max_mem_active(gib)": 21.55,
869
+ "memory/max_mem_allocated(gib)": 21.55,
870
+ "step": 86
871
+ },
872
+ {
873
+ "epoch": 0.6423627134287033,
874
+ "grad_norm": 0.39668434858322144,
875
+ "learning_rate": 6.958851676724823e-05,
876
+ "loss": 1.5753,
877
+ "memory/device_mem_reserved(gib)": 21.8,
878
+ "memory/max_mem_active(gib)": 21.55,
879
+ "memory/max_mem_allocated(gib)": 21.55,
880
+ "step": 87
881
+ },
882
+ {
883
+ "epoch": 0.649746192893401,
884
+ "grad_norm": 0.28521108627319336,
885
+ "learning_rate": 6.714576180891654e-05,
886
+ "loss": 1.3448,
887
+ "memory/device_mem_reserved(gib)": 21.8,
888
+ "memory/max_mem_active(gib)": 21.55,
889
+ "memory/max_mem_allocated(gib)": 21.55,
890
+ "step": 88
891
+ },
892
+ {
893
+ "epoch": 0.6571296723580987,
894
+ "grad_norm": 0.2806543707847595,
895
+ "learning_rate": 6.472479134509052e-05,
896
+ "loss": 1.6431,
897
+ "memory/device_mem_reserved(gib)": 21.8,
898
+ "memory/max_mem_active(gib)": 21.55,
899
+ "memory/max_mem_allocated(gib)": 21.55,
900
+ "step": 89
901
+ },
902
+ {
903
+ "epoch": 0.6645131518227965,
904
+ "grad_norm": 0.28897204995155334,
905
+ "learning_rate": 6.232721063648148e-05,
906
+ "loss": 1.5744,
907
+ "memory/device_mem_reserved(gib)": 21.8,
908
+ "memory/max_mem_active(gib)": 21.55,
909
+ "memory/max_mem_allocated(gib)": 21.55,
910
+ "step": 90
911
+ },
912
+ {
913
+ "epoch": 0.6718966312874942,
914
+ "grad_norm": 0.25295817852020264,
915
+ "learning_rate": 5.9954609434873344e-05,
916
+ "loss": 1.4552,
917
+ "memory/device_mem_reserved(gib)": 21.8,
918
+ "memory/max_mem_active(gib)": 21.55,
919
+ "memory/max_mem_allocated(gib)": 21.55,
920
+ "step": 91
921
+ },
922
+ {
923
+ "epoch": 0.679280110752192,
924
+ "grad_norm": 0.2824646234512329,
925
+ "learning_rate": 5.7608560929013946e-05,
926
+ "loss": 1.4193,
927
+ "memory/device_mem_reserved(gib)": 21.8,
928
+ "memory/max_mem_active(gib)": 21.55,
929
+ "memory/max_mem_allocated(gib)": 21.55,
930
+ "step": 92
931
+ },
932
+ {
933
+ "epoch": 0.6866635902168897,
934
+ "grad_norm": 0.27227288484573364,
935
+ "learning_rate": 5.5290620701488594e-05,
936
+ "loss": 1.4602,
937
+ "memory/device_mem_reserved(gib)": 21.8,
938
+ "memory/max_mem_active(gib)": 21.55,
939
+ "memory/max_mem_allocated(gib)": 21.55,
940
+ "step": 93
941
+ },
942
+ {
943
+ "epoch": 0.6940470696815875,
944
+ "grad_norm": 0.26284658908843994,
945
+ "learning_rate": 5.300232569726804e-05,
946
+ "loss": 1.5947,
947
+ "memory/device_mem_reserved(gib)": 21.8,
948
+ "memory/max_mem_active(gib)": 21.55,
949
+ "memory/max_mem_allocated(gib)": 21.55,
950
+ "step": 94
951
+ },
952
+ {
953
+ "epoch": 0.7014305491462852,
954
+ "grad_norm": 0.26174792647361755,
955
+ "learning_rate": 5.074519320461357e-05,
956
+ "loss": 1.4122,
957
+ "memory/device_mem_reserved(gib)": 21.8,
958
+ "memory/max_mem_active(gib)": 21.55,
959
+ "memory/max_mem_allocated(gib)": 21.55,
960
+ "step": 95
961
+ },
962
+ {
963
+ "epoch": 0.708814028610983,
964
+ "grad_norm": 0.3069747984409332,
965
+ "learning_rate": 4.852071984901696e-05,
966
+ "loss": 1.4805,
967
+ "memory/device_mem_reserved(gib)": 21.8,
968
+ "memory/max_mem_active(gib)": 21.55,
969
+ "memory/max_mem_allocated(gib)": 21.55,
970
+ "step": 96
971
+ },
972
+ {
973
+ "epoch": 0.7161975080756806,
974
+ "grad_norm": 0.32007896900177,
975
+ "learning_rate": 4.633038060083996e-05,
976
+ "loss": 1.3798,
977
+ "memory/device_mem_reserved(gib)": 21.8,
978
+ "memory/max_mem_active(gib)": 21.55,
979
+ "memory/max_mem_allocated(gib)": 21.55,
980
+ "step": 97
981
+ },
982
+ {
983
+ "epoch": 0.7235809875403784,
984
+ "grad_norm": 0.26006585359573364,
985
+ "learning_rate": 4.417562779731355e-05,
986
+ "loss": 1.4974,
987
+ "memory/device_mem_reserved(gib)": 21.8,
988
+ "memory/max_mem_active(gib)": 21.55,
989
+ "memory/max_mem_allocated(gib)": 21.55,
990
+ "step": 98
991
+ },
992
+ {
993
+ "epoch": 0.7309644670050761,
994
+ "grad_norm": 0.2552710473537445,
995
+ "learning_rate": 4.205789017954364e-05,
996
+ "loss": 1.4851,
997
+ "memory/device_mem_reserved(gib)": 21.8,
998
+ "memory/max_mem_active(gib)": 21.55,
999
+ "memory/max_mem_allocated(gib)": 21.55,
1000
+ "step": 99
1001
+ },
1002
+ {
1003
+ "epoch": 0.7383479464697739,
1004
+ "grad_norm": 0.23933957517147064,
1005
+ "learning_rate": 3.997857194516319e-05,
1006
+ "loss": 1.5046,
1007
+ "memory/device_mem_reserved(gib)": 21.8,
1008
+ "memory/max_mem_active(gib)": 21.55,
1009
+ "memory/max_mem_allocated(gib)": 21.55,
1010
+ "step": 100
1011
+ },
1012
+ {
1013
+ "epoch": 0.7457314259344716,
1014
+ "grad_norm": 0.2627595067024231,
1015
+ "learning_rate": 3.793905181725772e-05,
1016
+ "loss": 1.4958,
1017
+ "memory/device_mem_reserved(gib)": 21.8,
1018
+ "memory/max_mem_active(gib)": 21.55,
1019
+ "memory/max_mem_allocated(gib)": 21.55,
1020
+ "step": 101
1021
+ },
1022
+ {
1023
+ "epoch": 0.7531149053991694,
1024
+ "grad_norm": 0.3138872981071472,
1025
+ "learning_rate": 3.594068213018249e-05,
1026
+ "loss": 1.4714,
1027
+ "memory/device_mem_reserved(gib)": 21.8,
1028
+ "memory/max_mem_active(gib)": 21.55,
1029
+ "memory/max_mem_allocated(gib)": 21.55,
1030
+ "step": 102
1031
+ },
1032
+ {
1033
+ "epoch": 0.7604983848638671,
1034
+ "grad_norm": 0.2678472697734833,
1035
+ "learning_rate": 3.3984787932876814e-05,
1036
+ "loss": 1.5767,
1037
+ "memory/device_mem_reserved(gib)": 21.8,
1038
+ "memory/max_mem_active(gib)": 21.55,
1039
+ "memory/max_mem_allocated(gib)": 21.55,
1040
+ "step": 103
1041
+ },
1042
+ {
1043
+ "epoch": 0.7678818643285649,
1044
+ "grad_norm": 0.29931122064590454,
1045
+ "learning_rate": 3.207266611027069e-05,
1046
+ "loss": 1.5006,
1047
+ "memory/device_mem_reserved(gib)": 21.8,
1048
+ "memory/max_mem_active(gib)": 21.55,
1049
+ "memory/max_mem_allocated(gib)": 21.55,
1050
+ "step": 104
1051
+ },
1052
+ {
1053
+ "epoch": 0.7752653437932626,
1054
+ "grad_norm": 0.27635884284973145,
1055
+ "learning_rate": 3.0205584523365626e-05,
1056
+ "loss": 1.4236,
1057
+ "memory/device_mem_reserved(gib)": 21.8,
1058
+ "memory/max_mem_active(gib)": 21.55,
1059
+ "memory/max_mem_allocated(gib)": 21.55,
1060
+ "step": 105
1061
+ },
1062
+ {
1063
+ "epoch": 0.7826488232579604,
1064
+ "grad_norm": 0.2608022093772888,
1065
+ "learning_rate": 2.8384781168560693e-05,
1066
+ "loss": 1.3451,
1067
+ "memory/device_mem_reserved(gib)": 21.8,
1068
+ "memory/max_mem_active(gib)": 21.55,
1069
+ "memory/max_mem_allocated(gib)": 21.55,
1070
+ "step": 106
1071
+ },
1072
+ {
1073
+ "epoch": 0.790032302722658,
1074
+ "grad_norm": 0.271505743265152,
1075
+ "learning_rate": 2.6611463356780096e-05,
1076
+ "loss": 1.5161,
1077
+ "memory/device_mem_reserved(gib)": 21.8,
1078
+ "memory/max_mem_active(gib)": 21.55,
1079
+ "memory/max_mem_allocated(gib)": 21.55,
1080
+ "step": 107
1081
+ },
1082
+ {
1083
+ "epoch": 0.7974157821873558,
1084
+ "grad_norm": 0.26420703530311584,
1085
+ "learning_rate": 2.4886806912948035e-05,
1086
+ "loss": 1.5567,
1087
+ "memory/device_mem_reserved(gib)": 21.8,
1088
+ "memory/max_mem_active(gib)": 21.55,
1089
+ "memory/max_mem_allocated(gib)": 21.55,
1090
+ "step": 108
1091
+ },
1092
+ {
1093
+ "epoch": 0.8047992616520535,
1094
+ "grad_norm": 0.2610979974269867,
1095
+ "learning_rate": 2.3211955396340002e-05,
1096
+ "loss": 1.6357,
1097
+ "memory/device_mem_reserved(gib)": 21.8,
1098
+ "memory/max_mem_active(gib)": 21.55,
1099
+ "memory/max_mem_allocated(gib)": 21.55,
1100
+ "step": 109
1101
+ },
1102
+ {
1103
+ "epoch": 0.8121827411167513,
1104
+ "grad_norm": 0.25315845012664795,
1105
+ "learning_rate": 2.1588019342328968e-05,
1106
+ "loss": 1.4353,
1107
+ "memory/device_mem_reserved(gib)": 21.8,
1108
+ "memory/max_mem_active(gib)": 21.55,
1109
+ "memory/max_mem_allocated(gib)": 21.55,
1110
+ "step": 110
1111
+ },
1112
+ {
1113
+ "epoch": 0.819566220581449,
1114
+ "grad_norm": 0.27436307072639465,
1115
+ "learning_rate": 2.0016075526028065e-05,
1116
+ "loss": 1.4613,
1117
+ "memory/device_mem_reserved(gib)": 21.8,
1118
+ "memory/max_mem_active(gib)": 21.55,
1119
+ "memory/max_mem_allocated(gib)": 21.55,
1120
+ "step": 111
1121
+ },
1122
+ {
1123
+ "epoch": 0.8269497000461468,
1124
+ "grad_norm": 0.2581930458545685,
1125
+ "learning_rate": 1.8497166248318876e-05,
1126
+ "loss": 1.4317,
1127
+ "memory/device_mem_reserved(gib)": 21.8,
1128
+ "memory/max_mem_active(gib)": 21.55,
1129
+ "memory/max_mem_allocated(gib)": 21.55,
1130
+ "step": 112
1131
+ },
1132
+ {
1133
+ "epoch": 0.8343331795108445,
1134
+ "grad_norm": 0.3470868170261383,
1135
+ "learning_rate": 1.703229864473811e-05,
1136
+ "loss": 1.5637,
1137
+ "memory/device_mem_reserved(gib)": 21.8,
1138
+ "memory/max_mem_active(gib)": 21.55,
1139
+ "memory/max_mem_allocated(gib)": 21.55,
1140
+ "step": 113
1141
+ },
1142
+ {
1143
+ "epoch": 0.8417166589755423,
1144
+ "grad_norm": 0.2554042339324951,
1145
+ "learning_rate": 1.562244401768144e-05,
1146
+ "loss": 1.597,
1147
+ "memory/device_mem_reserved(gib)": 21.8,
1148
+ "memory/max_mem_active(gib)": 21.55,
1149
+ "memory/max_mem_allocated(gib)": 21.55,
1150
+ "step": 114
1151
+ },
1152
+ {
1153
+ "epoch": 0.84910013844024,
1154
+ "grad_norm": 0.26158565282821655,
1155
+ "learning_rate": 1.426853719236676e-05,
1156
+ "loss": 1.3765,
1157
+ "memory/device_mem_reserved(gib)": 21.8,
1158
+ "memory/max_mem_active(gib)": 21.55,
1159
+ "memory/max_mem_allocated(gib)": 21.55,
1160
+ "step": 115
1161
+ },
1162
+ {
1163
+ "epoch": 0.8564836179049377,
1164
+ "grad_norm": 0.27990010380744934,
1165
+ "learning_rate": 1.2971475896984475e-05,
1166
+ "loss": 1.2698,
1167
+ "memory/device_mem_reserved(gib)": 21.8,
1168
+ "memory/max_mem_active(gib)": 21.55,
1169
+ "memory/max_mem_allocated(gib)": 21.55,
1170
+ "step": 116
1171
+ },
1172
+ {
1173
+ "epoch": 0.8638670973696354,
1174
+ "grad_norm": 0.2723514139652252,
1175
+ "learning_rate": 1.1732120167445248e-05,
1176
+ "loss": 1.5009,
1177
+ "memory/device_mem_reserved(gib)": 21.8,
1178
+ "memory/max_mem_active(gib)": 21.55,
1179
+ "memory/max_mem_allocated(gib)": 21.55,
1180
+ "step": 117
1181
+ },
1182
+ {
1183
+ "epoch": 0.8712505768343332,
1184
+ "grad_norm": 0.2686865031719208,
1185
+ "learning_rate": 1.0551291777120464e-05,
1186
+ "loss": 1.4692,
1187
+ "memory/device_mem_reserved(gib)": 21.8,
1188
+ "memory/max_mem_active(gib)": 21.55,
1189
+ "memory/max_mem_allocated(gib)": 21.55,
1190
+ "step": 118
1191
+ },
1192
+ {
1193
+ "epoch": 0.8786340562990309,
1194
+ "grad_norm": 0.2559969127178192,
1195
+ "learning_rate": 9.429773691952858e-06,
1196
+ "loss": 1.4417,
1197
+ "memory/device_mem_reserved(gib)": 21.8,
1198
+ "memory/max_mem_active(gib)": 21.55,
1199
+ "memory/max_mem_allocated(gib)": 21.55,
1200
+ "step": 119
1201
+ },
1202
+ {
1203
+ "epoch": 0.8860175357637287,
1204
+ "grad_norm": 0.3991638123989105,
1205
+ "learning_rate": 8.368309551299536e-06,
1206
+ "loss": 1.5384,
1207
+ "memory/device_mem_reserved(gib)": 21.8,
1208
+ "memory/max_mem_active(gib)": 21.55,
1209
+ "memory/max_mem_allocated(gib)": 21.55,
1210
+ "step": 120
1211
+ },
1212
+ {
1213
+ "epoch": 0.8934010152284264,
1214
+ "grad_norm": 0.2762066125869751,
1215
+ "learning_rate": 7.367603174850502e-06,
1216
+ "loss": 1.4997,
1217
+ "memory/device_mem_reserved(gib)": 21.8,
1218
+ "memory/max_mem_active(gib)": 21.55,
1219
+ "memory/max_mem_allocated(gib)": 21.55,
1220
+ "step": 121
1221
+ },
1222
+ {
1223
+ "epoch": 0.9007844946931242,
1224
+ "grad_norm": 0.2837660014629364,
1225
+ "learning_rate": 6.428318095950647e-06,
1226
+ "loss": 1.448,
1227
+ "memory/device_mem_reserved(gib)": 21.8,
1228
+ "memory/max_mem_active(gib)": 21.55,
1229
+ "memory/max_mem_allocated(gib)": 21.55,
1230
+ "step": 122
1231
+ },
1232
+ {
1233
+ "epoch": 0.9081679741578219,
1234
+ "grad_norm": 0.2550673484802246,
1235
+ "learning_rate": 5.551077121633874e-06,
1236
+ "loss": 1.4488,
1237
+ "memory/device_mem_reserved(gib)": 21.8,
1238
+ "memory/max_mem_active(gib)": 21.55,
1239
+ "memory/max_mem_allocated(gib)": 21.55,
1240
+ "step": 123
1241
+ },
1242
+ {
1243
+ "epoch": 0.9155514536225197,
1244
+ "grad_norm": 0.2584616541862488,
1245
+ "learning_rate": 4.7364619196617495e-06,
1246
+ "loss": 1.3641,
1247
+ "memory/device_mem_reserved(gib)": 21.8,
1248
+ "memory/max_mem_active(gib)": 21.55,
1249
+ "memory/max_mem_allocated(gib)": 21.55,
1250
+ "step": 124
1251
+ },
1252
+ {
1253
+ "epoch": 0.9229349330872173,
1254
+ "grad_norm": 0.2741107940673828,
1255
+ "learning_rate": 3.985012632839824e-06,
1256
+ "loss": 1.4923,
1257
+ "memory/device_mem_reserved(gib)": 21.8,
1258
+ "memory/max_mem_active(gib)": 21.55,
1259
+ "memory/max_mem_allocated(gib)": 21.55,
1260
+ "step": 125
1261
+ },
1262
+ {
1263
+ "epoch": 0.930318412551915,
1264
+ "grad_norm": 0.252888023853302,
1265
+ "learning_rate": 3.2972275208679625e-06,
1266
+ "loss": 1.4971,
1267
+ "memory/device_mem_reserved(gib)": 21.8,
1268
+ "memory/max_mem_active(gib)": 21.55,
1269
+ "memory/max_mem_allocated(gib)": 21.55,
1270
+ "step": 126
1271
+ },
1272
+ {
1273
+ "epoch": 0.9377018920166128,
1274
+ "grad_norm": 0.25903505086898804,
1275
+ "learning_rate": 2.6735626299617457e-06,
1276
+ "loss": 1.3392,
1277
+ "memory/device_mem_reserved(gib)": 21.8,
1278
+ "memory/max_mem_active(gib)": 21.55,
1279
+ "memory/max_mem_allocated(gib)": 21.55,
1280
+ "step": 127
1281
+ },
1282
+ {
1283
+ "epoch": 0.9450853714813106,
1284
+ "grad_norm": 0.2537846267223358,
1285
+ "learning_rate": 2.1144314904642195e-06,
1286
+ "loss": 1.3883,
1287
+ "memory/device_mem_reserved(gib)": 21.8,
1288
+ "memory/max_mem_active(gib)": 21.55,
1289
+ "memory/max_mem_allocated(gib)": 21.55,
1290
+ "step": 128
1291
+ },
1292
+ {
1293
+ "epoch": 0.9524688509460083,
1294
+ "grad_norm": 0.2762198746204376,
1295
+ "learning_rate": 1.6202048426483651e-06,
1296
+ "loss": 1.4447,
1297
+ "memory/device_mem_reserved(gib)": 21.8,
1298
+ "memory/max_mem_active(gib)": 21.55,
1299
+ "memory/max_mem_allocated(gib)": 21.55,
1300
+ "step": 129
1301
+ },
1302
+ {
1303
+ "epoch": 0.9598523304107061,
1304
+ "grad_norm": 0.25517532229423523,
1305
+ "learning_rate": 1.1912103908922945e-06,
1306
+ "loss": 1.455,
1307
+ "memory/device_mem_reserved(gib)": 21.8,
1308
+ "memory/max_mem_active(gib)": 21.55,
1309
+ "memory/max_mem_allocated(gib)": 21.55,
1310
+ "step": 130
1311
+ },
1312
+ {
1313
+ "epoch": 0.9672358098754038,
1314
+ "grad_norm": 0.2435961812734604,
1315
+ "learning_rate": 8.277325863898511e-07,
1316
+ "loss": 1.4236,
1317
+ "memory/device_mem_reserved(gib)": 21.8,
1318
+ "memory/max_mem_active(gib)": 21.55,
1319
+ "memory/max_mem_allocated(gib)": 21.55,
1320
+ "step": 131
1321
+ },
1322
+ {
1323
+ "epoch": 0.9746192893401016,
1324
+ "grad_norm": 0.28410804271698,
1325
+ "learning_rate": 5.300124385410943e-07,
1326
+ "loss": 1.4976,
1327
+ "memory/device_mem_reserved(gib)": 21.8,
1328
+ "memory/max_mem_active(gib)": 21.55,
1329
+ "memory/max_mem_allocated(gib)": 21.55,
1330
+ "step": 132
1331
+ },
1332
+ {
1333
+ "epoch": 0.9820027688047993,
1334
+ "grad_norm": 0.2661467492580414,
1335
+ "learning_rate": 2.9824735514732974e-07,
1336
+ "loss": 1.3701,
1337
+ "memory/device_mem_reserved(gib)": 21.8,
1338
+ "memory/max_mem_active(gib)": 21.55,
1339
+ "memory/max_mem_allocated(gib)": 21.55,
1340
+ "step": 133
1341
+ },
1342
+ {
1343
+ "epoch": 0.989386248269497,
1344
+ "grad_norm": 0.2969636023044586,
1345
+ "learning_rate": 1.3259101151694708e-07,
1346
+ "loss": 1.6409,
1347
+ "memory/device_mem_reserved(gib)": 21.8,
1348
+ "memory/max_mem_active(gib)": 21.55,
1349
+ "memory/max_mem_allocated(gib)": 21.55,
1350
+ "step": 134
1351
+ },
1352
+ {
1353
+ "epoch": 0.9967697277341947,
1354
+ "grad_norm": 0.26862043142318726,
1355
+ "learning_rate": 3.3153248568695835e-08,
1356
+ "loss": 1.5537,
1357
+ "memory/device_mem_reserved(gib)": 21.8,
1358
+ "memory/max_mem_active(gib)": 21.55,
1359
+ "memory/max_mem_allocated(gib)": 21.55,
1360
+ "step": 135
1361
+ }
1362
+ ],
1363
+ "logging_steps": 1,
1364
+ "max_steps": 135,
1365
+ "num_input_tokens_seen": 0,
1366
+ "num_train_epochs": 1,
1367
+ "save_steps": 34,
1368
+ "stateful_callbacks": {
1369
+ "TrainerControl": {
1370
+ "args": {
1371
+ "should_epoch_stop": false,
1372
+ "should_evaluate": false,
1373
+ "should_log": false,
1374
+ "should_save": true,
1375
+ "should_training_stop": true
1376
+ },
1377
+ "attributes": {}
1378
+ }
1379
+ },
1380
+ "total_flos": 2.4510152212217856e+18,
1381
+ "train_batch_size": 1,
1382
+ "trial_name": null,
1383
+ "trial_params": null
1384
+ }
checkpoint-135/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2fcfaa0586b6a2ecea53c5d5918e29b57140459bd84f8ccd10b223317f2666e
3
+ size 10001
checkpoint-34/README.md ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: model
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - axolotl
7
+ - base_model:adapter:model
8
+ - lora
9
+ - transformers
10
+ ---
11
+
12
+ # Model Card for Model ID
13
+
14
+ <!-- Provide a quick summary of what the model is/does. -->
15
+
16
+
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ <!-- Provide a longer summary of what this model is. -->
23
+
24
+
25
+
26
+ - **Developed by:** [More Information Needed]
27
+ - **Funded by [optional]:** [More Information Needed]
28
+ - **Shared by [optional]:** [More Information Needed]
29
+ - **Model type:** [More Information Needed]
30
+ - **Language(s) (NLP):** [More Information Needed]
31
+ - **License:** [More Information Needed]
32
+ - **Finetuned from model [optional]:** [More Information Needed]
33
+
34
+ ### Model Sources [optional]
35
+
36
+ <!-- Provide the basic links for the model. -->
37
+
38
+ - **Repository:** [More Information Needed]
39
+ - **Paper [optional]:** [More Information Needed]
40
+ - **Demo [optional]:** [More Information Needed]
41
+
42
+ ## Uses
43
+
44
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
+
46
+ ### Direct Use
47
+
48
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Downstream Use [optional]
53
+
54
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
+
56
+ [More Information Needed]
57
+
58
+ ### Out-of-Scope Use
59
+
60
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ## Bias, Risks, and Limitations
65
+
66
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
+
68
+ [More Information Needed]
69
+
70
+ ### Recommendations
71
+
72
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
+
74
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
+
76
+ ## How to Get Started with the Model
77
+
78
+ Use the code below to get started with the model.
79
+
80
+ [More Information Needed]
81
+
82
+ ## Training Details
83
+
84
+ ### Training Data
85
+
86
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
+
88
+ [More Information Needed]
89
+
90
+ ### Training Procedure
91
+
92
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
+
94
+ #### Preprocessing [optional]
95
+
96
+ [More Information Needed]
97
+
98
+
99
+ #### Training Hyperparameters
100
+
101
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
+
103
+ #### Speeds, Sizes, Times [optional]
104
+
105
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
+
107
+ [More Information Needed]
108
+
109
+ ## Evaluation
110
+
111
+ <!-- This section describes the evaluation protocols and provides the results. -->
112
+
113
+ ### Testing Data, Factors & Metrics
114
+
115
+ #### Testing Data
116
+
117
+ <!-- This should link to a Dataset Card if possible. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Factors
122
+
123
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
+
125
+ [More Information Needed]
126
+
127
+ #### Metrics
128
+
129
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
+
131
+ [More Information Needed]
132
+
133
+ ### Results
134
+
135
+ [More Information Needed]
136
+
137
+ #### Summary
138
+
139
+
140
+
141
+ ## Model Examination [optional]
142
+
143
+ <!-- Relevant interpretability work for the model goes here -->
144
+
145
+ [More Information Needed]
146
+
147
+ ## Environmental Impact
148
+
149
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
+
151
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
152
+
153
+ - **Hardware Type:** [More Information Needed]
154
+ - **Hours used:** [More Information Needed]
155
+ - **Cloud Provider:** [More Information Needed]
156
+ - **Compute Region:** [More Information Needed]
157
+ - **Carbon Emitted:** [More Information Needed]
158
+
159
+ ## Technical Specifications [optional]
160
+
161
+ ### Model Architecture and Objective
162
+
163
+ [More Information Needed]
164
+
165
+ ### Compute Infrastructure
166
+
167
+ [More Information Needed]
168
+
169
+ #### Hardware
170
+
171
+ [More Information Needed]
172
+
173
+ #### Software
174
+
175
+ [More Information Needed]
176
+
177
+ ## Citation [optional]
178
+
179
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
+
181
+ **BibTeX:**
182
+
183
+ [More Information Needed]
184
+
185
+ **APA:**
186
+
187
+ [More Information Needed]
188
+
189
+ ## Glossary [optional]
190
+
191
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
+
193
+ [More Information Needed]
194
+
195
+ ## More Information [optional]
196
+
197
+ [More Information Needed]
198
+
199
+ ## Model Card Authors [optional]
200
+
201
+ [More Information Needed]
202
+
203
+ ## Model Card Contact
204
+
205
+ [More Information Needed]
206
+ ### Framework versions
207
+
208
+ - PEFT 0.17.0
checkpoint-34/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "model",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": null,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 64,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 32,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "mlp.up_proj",
29
+ "self_attn.q_proj",
30
+ "self_attn.o_proj",
31
+ "self_attn.k_proj",
32
+ "mlp.down_proj",
33
+ "mlp.gate_proj",
34
+ "self_attn.v_proj"
35
+ ],
36
+ "target_parameters": [],
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-34/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cee0cfbc02cf11ba8a3d0517b4ad062da5b5d21fd57cd1e3c46e42b72bd37148
3
+ size 739321784
checkpoint-34/chat_template.jinja ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- set today = strftime_now("%Y-%m-%d") %}
2
+ {%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \"What are some good restaurants around me?\" => \"Where are you?\" or \"When is the next flight to Tokyo\" => \"Where do you travel from?\")" %}
3
+
4
+ {{- bos_token }}
5
+
6
+ {%- if messages[0]['role'] == 'system' %}
7
+ {%- if messages[0]['content'] is string %}
8
+ {%- set system_message = messages[0]['content'] %}
9
+ {%- else %}
10
+ {%- set system_message = messages[0]['content'][0]['text'] %}
11
+ {%- endif %}
12
+ {%- set loop_messages = messages[1:] %}
13
+ {%- else %}
14
+ {%- set system_message = default_system_message %}
15
+ {%- set loop_messages = messages %}
16
+ {%- endif %}
17
+ {{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}
18
+
19
+ {%- for message in loop_messages %}
20
+ {%- if message['role'] == 'user' %}
21
+ {%- if message['content'] is string %}
22
+ {{- '[INST]' + message['content'] + '[/INST]' }}
23
+ {%- else %}
24
+ {{- '[INST]' }}
25
+ {%- for block in message['content'] %}
26
+ {%- if block['type'] == 'text' %}
27
+ {{- block['text'] }}
28
+ {%- elif block['type'] in ['image', 'image_url'] %}
29
+ {{- '[IMG]' }}
30
+ {%- else %}
31
+ {{- raise_exception('Only text and image blocks are supported in message content!') }}
32
+ {%- endif %}
33
+ {%- endfor %}
34
+ {{- '[/INST]' }}
35
+ {%- endif %}
36
+ {%- elif message['role'] == 'system' %}
37
+ {%- if message['content'] is string %}
38
+ {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}
39
+ {%- else %}
40
+ {{- '[SYSTEM_PROMPT]' + message['content'][0]['text'] + '[/SYSTEM_PROMPT]' }}
41
+ {%- endif %}
42
+ {%- elif message['role'] == 'assistant' %}
43
+ {%- if message['content'] is string %}
44
+ {{- message['content'] + eos_token }}
45
+ {%- else %}
46
+ {{- message['content'][0]['text'] + eos_token }}
47
+ {%- endif %}
48
+ {%- else %}
49
+ {{- raise_exception('Only user, system and assistant roles are supported!') }}
50
+ {%- endif %}
51
+ {%- endfor %}
checkpoint-34/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:595b62a4e5d5759d07d761026796bc6cdc64853d0fdd77779bf5eb2636d73ba2
3
+ size 376056741
checkpoint-34/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:752df206744310768190894600622fb72d119c128eb069316564028933e553a9
3
+ size 14645
checkpoint-34/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:608a7d43c7da47f12ba539b1648dfe152960db238228a3078753109d10f1bfc4
3
+ size 1465
checkpoint-34/special_tokens_map.json ADDED
@@ -0,0 +1,1032 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>",
6
+ "[INST]",
7
+ "[/INST]",
8
+ "[AVAILABLE_TOOLS]",
9
+ "[/AVAILABLE_TOOLS]",
10
+ "[TOOL_RESULTS]",
11
+ "[/TOOL_RESULTS]",
12
+ "[TOOL_CALLS]",
13
+ "[IMG]",
14
+ "<pad>",
15
+ "[IMG_BREAK]",
16
+ "[IMG_END]",
17
+ "[PREFIX]",
18
+ "[MIDDLE]",
19
+ "[SUFFIX]",
20
+ "[SYSTEM_PROMPT]",
21
+ "[/SYSTEM_PROMPT]",
22
+ "[TOOL_CONTENT]",
23
+ "<SPECIAL_20>",
24
+ "<SPECIAL_21>",
25
+ "<SPECIAL_22>",
26
+ "<SPECIAL_23>",
27
+ "<SPECIAL_24>",
28
+ "<SPECIAL_25>",
29
+ "<SPECIAL_26>",
30
+ "<SPECIAL_27>",
31
+ "<SPECIAL_28>",
32
+ "<SPECIAL_29>",
33
+ "<SPECIAL_30>",
34
+ "<SPECIAL_31>",
35
+ "<SPECIAL_32>",
36
+ "<SPECIAL_33>",
37
+ "<SPECIAL_34>",
38
+ "<SPECIAL_35>",
39
+ "<SPECIAL_36>",
40
+ "<SPECIAL_37>",
41
+ "<SPECIAL_38>",
42
+ "<SPECIAL_39>",
43
+ "<SPECIAL_40>",
44
+ "<SPECIAL_41>",
45
+ "<SPECIAL_42>",
46
+ "<SPECIAL_43>",
47
+ "<SPECIAL_44>",
48
+ "<SPECIAL_45>",
49
+ "<SPECIAL_46>",
50
+ "<SPECIAL_47>",
51
+ "<SPECIAL_48>",
52
+ "<SPECIAL_49>",
53
+ "<SPECIAL_50>",
54
+ "<SPECIAL_51>",
55
+ "<SPECIAL_52>",
56
+ "<SPECIAL_53>",
57
+ "<SPECIAL_54>",
58
+ "<SPECIAL_55>",
59
+ "<SPECIAL_56>",
60
+ "<SPECIAL_57>",
61
+ "<SPECIAL_58>",
62
+ "<SPECIAL_59>",
63
+ "<SPECIAL_60>",
64
+ "<SPECIAL_61>",
65
+ "<SPECIAL_62>",
66
+ "<SPECIAL_63>",
67
+ "<SPECIAL_64>",
68
+ "<SPECIAL_65>",
69
+ "<SPECIAL_66>",
70
+ "<SPECIAL_67>",
71
+ "<SPECIAL_68>",
72
+ "<SPECIAL_69>",
73
+ "<SPECIAL_70>",
74
+ "<SPECIAL_71>",
75
+ "<SPECIAL_72>",
76
+ "<SPECIAL_73>",
77
+ "<SPECIAL_74>",
78
+ "<SPECIAL_75>",
79
+ "<SPECIAL_76>",
80
+ "<SPECIAL_77>",
81
+ "<SPECIAL_78>",
82
+ "<SPECIAL_79>",
83
+ "<SPECIAL_80>",
84
+ "<SPECIAL_81>",
85
+ "<SPECIAL_82>",
86
+ "<SPECIAL_83>",
87
+ "<SPECIAL_84>",
88
+ "<SPECIAL_85>",
89
+ "<SPECIAL_86>",
90
+ "<SPECIAL_87>",
91
+ "<SPECIAL_88>",
92
+ "<SPECIAL_89>",
93
+ "<SPECIAL_90>",
94
+ "<SPECIAL_91>",
95
+ "<SPECIAL_92>",
96
+ "<SPECIAL_93>",
97
+ "<SPECIAL_94>",
98
+ "<SPECIAL_95>",
99
+ "<SPECIAL_96>",
100
+ "<SPECIAL_97>",
101
+ "<SPECIAL_98>",
102
+ "<SPECIAL_99>",
103
+ "<SPECIAL_100>",
104
+ "<SPECIAL_101>",
105
+ "<SPECIAL_102>",
106
+ "<SPECIAL_103>",
107
+ "<SPECIAL_104>",
108
+ "<SPECIAL_105>",
109
+ "<SPECIAL_106>",
110
+ "<SPECIAL_107>",
111
+ "<SPECIAL_108>",
112
+ "<SPECIAL_109>",
113
+ "<SPECIAL_110>",
114
+ "<SPECIAL_111>",
115
+ "<SPECIAL_112>",
116
+ "<SPECIAL_113>",
117
+ "<SPECIAL_114>",
118
+ "<SPECIAL_115>",
119
+ "<SPECIAL_116>",
120
+ "<SPECIAL_117>",
121
+ "<SPECIAL_118>",
122
+ "<SPECIAL_119>",
123
+ "<SPECIAL_120>",
124
+ "<SPECIAL_121>",
125
+ "<SPECIAL_122>",
126
+ "<SPECIAL_123>",
127
+ "<SPECIAL_124>",
128
+ "<SPECIAL_125>",
129
+ "<SPECIAL_126>",
130
+ "<SPECIAL_127>",
131
+ "<SPECIAL_128>",
132
+ "<SPECIAL_129>",
133
+ "<SPECIAL_130>",
134
+ "<SPECIAL_131>",
135
+ "<SPECIAL_132>",
136
+ "<SPECIAL_133>",
137
+ "<SPECIAL_134>",
138
+ "<SPECIAL_135>",
139
+ "<SPECIAL_136>",
140
+ "<SPECIAL_137>",
141
+ "<SPECIAL_138>",
142
+ "<SPECIAL_139>",
143
+ "<SPECIAL_140>",
144
+ "<SPECIAL_141>",
145
+ "<SPECIAL_142>",
146
+ "<SPECIAL_143>",
147
+ "<SPECIAL_144>",
148
+ "<SPECIAL_145>",
149
+ "<SPECIAL_146>",
150
+ "<SPECIAL_147>",
151
+ "<SPECIAL_148>",
152
+ "<SPECIAL_149>",
153
+ "<SPECIAL_150>",
154
+ "<SPECIAL_151>",
155
+ "<SPECIAL_152>",
156
+ "<SPECIAL_153>",
157
+ "<SPECIAL_154>",
158
+ "<SPECIAL_155>",
159
+ "<SPECIAL_156>",
160
+ "<SPECIAL_157>",
161
+ "<SPECIAL_158>",
162
+ "<SPECIAL_159>",
163
+ "<SPECIAL_160>",
164
+ "<SPECIAL_161>",
165
+ "<SPECIAL_162>",
166
+ "<SPECIAL_163>",
167
+ "<SPECIAL_164>",
168
+ "<SPECIAL_165>",
169
+ "<SPECIAL_166>",
170
+ "<SPECIAL_167>",
171
+ "<SPECIAL_168>",
172
+ "<SPECIAL_169>",
173
+ "<SPECIAL_170>",
174
+ "<SPECIAL_171>",
175
+ "<SPECIAL_172>",
176
+ "<SPECIAL_173>",
177
+ "<SPECIAL_174>",
178
+ "<SPECIAL_175>",
179
+ "<SPECIAL_176>",
180
+ "<SPECIAL_177>",
181
+ "<SPECIAL_178>",
182
+ "<SPECIAL_179>",
183
+ "<SPECIAL_180>",
184
+ "<SPECIAL_181>",
185
+ "<SPECIAL_182>",
186
+ "<SPECIAL_183>",
187
+ "<SPECIAL_184>",
188
+ "<SPECIAL_185>",
189
+ "<SPECIAL_186>",
190
+ "<SPECIAL_187>",
191
+ "<SPECIAL_188>",
192
+ "<SPECIAL_189>",
193
+ "<SPECIAL_190>",
194
+ "<SPECIAL_191>",
195
+ "<SPECIAL_192>",
196
+ "<SPECIAL_193>",
197
+ "<SPECIAL_194>",
198
+ "<SPECIAL_195>",
199
+ "<SPECIAL_196>",
200
+ "<SPECIAL_197>",
201
+ "<SPECIAL_198>",
202
+ "<SPECIAL_199>",
203
+ "<SPECIAL_200>",
204
+ "<SPECIAL_201>",
205
+ "<SPECIAL_202>",
206
+ "<SPECIAL_203>",
207
+ "<SPECIAL_204>",
208
+ "<SPECIAL_205>",
209
+ "<SPECIAL_206>",
210
+ "<SPECIAL_207>",
211
+ "<SPECIAL_208>",
212
+ "<SPECIAL_209>",
213
+ "<SPECIAL_210>",
214
+ "<SPECIAL_211>",
215
+ "<SPECIAL_212>",
216
+ "<SPECIAL_213>",
217
+ "<SPECIAL_214>",
218
+ "<SPECIAL_215>",
219
+ "<SPECIAL_216>",
220
+ "<SPECIAL_217>",
221
+ "<SPECIAL_218>",
222
+ "<SPECIAL_219>",
223
+ "<SPECIAL_220>",
224
+ "<SPECIAL_221>",
225
+ "<SPECIAL_222>",
226
+ "<SPECIAL_223>",
227
+ "<SPECIAL_224>",
228
+ "<SPECIAL_225>",
229
+ "<SPECIAL_226>",
230
+ "<SPECIAL_227>",
231
+ "<SPECIAL_228>",
232
+ "<SPECIAL_229>",
233
+ "<SPECIAL_230>",
234
+ "<SPECIAL_231>",
235
+ "<SPECIAL_232>",
236
+ "<SPECIAL_233>",
237
+ "<SPECIAL_234>",
238
+ "<SPECIAL_235>",
239
+ "<SPECIAL_236>",
240
+ "<SPECIAL_237>",
241
+ "<SPECIAL_238>",
242
+ "<SPECIAL_239>",
243
+ "<SPECIAL_240>",
244
+ "<SPECIAL_241>",
245
+ "<SPECIAL_242>",
246
+ "<SPECIAL_243>",
247
+ "<SPECIAL_244>",
248
+ "<SPECIAL_245>",
249
+ "<SPECIAL_246>",
250
+ "<SPECIAL_247>",
251
+ "<SPECIAL_248>",
252
+ "<SPECIAL_249>",
253
+ "<SPECIAL_250>",
254
+ "<SPECIAL_251>",
255
+ "<SPECIAL_252>",
256
+ "<SPECIAL_253>",
257
+ "<SPECIAL_254>",
258
+ "<SPECIAL_255>",
259
+ "<SPECIAL_256>",
260
+ "<SPECIAL_257>",
261
+ "<SPECIAL_258>",
262
+ "<SPECIAL_259>",
263
+ "<SPECIAL_260>",
264
+ "<SPECIAL_261>",
265
+ "<SPECIAL_262>",
266
+ "<SPECIAL_263>",
267
+ "<SPECIAL_264>",
268
+ "<SPECIAL_265>",
269
+ "<SPECIAL_266>",
270
+ "<SPECIAL_267>",
271
+ "<SPECIAL_268>",
272
+ "<SPECIAL_269>",
273
+ "<SPECIAL_270>",
274
+ "<SPECIAL_271>",
275
+ "<SPECIAL_272>",
276
+ "<SPECIAL_273>",
277
+ "<SPECIAL_274>",
278
+ "<SPECIAL_275>",
279
+ "<SPECIAL_276>",
280
+ "<SPECIAL_277>",
281
+ "<SPECIAL_278>",
282
+ "<SPECIAL_279>",
283
+ "<SPECIAL_280>",
284
+ "<SPECIAL_281>",
285
+ "<SPECIAL_282>",
286
+ "<SPECIAL_283>",
287
+ "<SPECIAL_284>",
288
+ "<SPECIAL_285>",
289
+ "<SPECIAL_286>",
290
+ "<SPECIAL_287>",
291
+ "<SPECIAL_288>",
292
+ "<SPECIAL_289>",
293
+ "<SPECIAL_290>",
294
+ "<SPECIAL_291>",
295
+ "<SPECIAL_292>",
296
+ "<SPECIAL_293>",
297
+ "<SPECIAL_294>",
298
+ "<SPECIAL_295>",
299
+ "<SPECIAL_296>",
300
+ "<SPECIAL_297>",
301
+ "<SPECIAL_298>",
302
+ "<SPECIAL_299>",
303
+ "<SPECIAL_300>",
304
+ "<SPECIAL_301>",
305
+ "<SPECIAL_302>",
306
+ "<SPECIAL_303>",
307
+ "<SPECIAL_304>",
308
+ "<SPECIAL_305>",
309
+ "<SPECIAL_306>",
310
+ "<SPECIAL_307>",
311
+ "<SPECIAL_308>",
312
+ "<SPECIAL_309>",
313
+ "<SPECIAL_310>",
314
+ "<SPECIAL_311>",
315
+ "<SPECIAL_312>",
316
+ "<SPECIAL_313>",
317
+ "<SPECIAL_314>",
318
+ "<SPECIAL_315>",
319
+ "<SPECIAL_316>",
320
+ "<SPECIAL_317>",
321
+ "<SPECIAL_318>",
322
+ "<SPECIAL_319>",
323
+ "<SPECIAL_320>",
324
+ "<SPECIAL_321>",
325
+ "<SPECIAL_322>",
326
+ "<SPECIAL_323>",
327
+ "<SPECIAL_324>",
328
+ "<SPECIAL_325>",
329
+ "<SPECIAL_326>",
330
+ "<SPECIAL_327>",
331
+ "<SPECIAL_328>",
332
+ "<SPECIAL_329>",
333
+ "<SPECIAL_330>",
334
+ "<SPECIAL_331>",
335
+ "<SPECIAL_332>",
336
+ "<SPECIAL_333>",
337
+ "<SPECIAL_334>",
338
+ "<SPECIAL_335>",
339
+ "<SPECIAL_336>",
340
+ "<SPECIAL_337>",
341
+ "<SPECIAL_338>",
342
+ "<SPECIAL_339>",
343
+ "<SPECIAL_340>",
344
+ "<SPECIAL_341>",
345
+ "<SPECIAL_342>",
346
+ "<SPECIAL_343>",
347
+ "<SPECIAL_344>",
348
+ "<SPECIAL_345>",
349
+ "<SPECIAL_346>",
350
+ "<SPECIAL_347>",
351
+ "<SPECIAL_348>",
352
+ "<SPECIAL_349>",
353
+ "<SPECIAL_350>",
354
+ "<SPECIAL_351>",
355
+ "<SPECIAL_352>",
356
+ "<SPECIAL_353>",
357
+ "<SPECIAL_354>",
358
+ "<SPECIAL_355>",
359
+ "<SPECIAL_356>",
360
+ "<SPECIAL_357>",
361
+ "<SPECIAL_358>",
362
+ "<SPECIAL_359>",
363
+ "<SPECIAL_360>",
364
+ "<SPECIAL_361>",
365
+ "<SPECIAL_362>",
366
+ "<SPECIAL_363>",
367
+ "<SPECIAL_364>",
368
+ "<SPECIAL_365>",
369
+ "<SPECIAL_366>",
370
+ "<SPECIAL_367>",
371
+ "<SPECIAL_368>",
372
+ "<SPECIAL_369>",
373
+ "<SPECIAL_370>",
374
+ "<SPECIAL_371>",
375
+ "<SPECIAL_372>",
376
+ "<SPECIAL_373>",
377
+ "<SPECIAL_374>",
378
+ "<SPECIAL_375>",
379
+ "<SPECIAL_376>",
380
+ "<SPECIAL_377>",
381
+ "<SPECIAL_378>",
382
+ "<SPECIAL_379>",
383
+ "<SPECIAL_380>",
384
+ "<SPECIAL_381>",
385
+ "<SPECIAL_382>",
386
+ "<SPECIAL_383>",
387
+ "<SPECIAL_384>",
388
+ "<SPECIAL_385>",
389
+ "<SPECIAL_386>",
390
+ "<SPECIAL_387>",
391
+ "<SPECIAL_388>",
392
+ "<SPECIAL_389>",
393
+ "<SPECIAL_390>",
394
+ "<SPECIAL_391>",
395
+ "<SPECIAL_392>",
396
+ "<SPECIAL_393>",
397
+ "<SPECIAL_394>",
398
+ "<SPECIAL_395>",
399
+ "<SPECIAL_396>",
400
+ "<SPECIAL_397>",
401
+ "<SPECIAL_398>",
402
+ "<SPECIAL_399>",
403
+ "<SPECIAL_400>",
404
+ "<SPECIAL_401>",
405
+ "<SPECIAL_402>",
406
+ "<SPECIAL_403>",
407
+ "<SPECIAL_404>",
408
+ "<SPECIAL_405>",
409
+ "<SPECIAL_406>",
410
+ "<SPECIAL_407>",
411
+ "<SPECIAL_408>",
412
+ "<SPECIAL_409>",
413
+ "<SPECIAL_410>",
414
+ "<SPECIAL_411>",
415
+ "<SPECIAL_412>",
416
+ "<SPECIAL_413>",
417
+ "<SPECIAL_414>",
418
+ "<SPECIAL_415>",
419
+ "<SPECIAL_416>",
420
+ "<SPECIAL_417>",
421
+ "<SPECIAL_418>",
422
+ "<SPECIAL_419>",
423
+ "<SPECIAL_420>",
424
+ "<SPECIAL_421>",
425
+ "<SPECIAL_422>",
426
+ "<SPECIAL_423>",
427
+ "<SPECIAL_424>",
428
+ "<SPECIAL_425>",
429
+ "<SPECIAL_426>",
430
+ "<SPECIAL_427>",
431
+ "<SPECIAL_428>",
432
+ "<SPECIAL_429>",
433
+ "<SPECIAL_430>",
434
+ "<SPECIAL_431>",
435
+ "<SPECIAL_432>",
436
+ "<SPECIAL_433>",
437
+ "<SPECIAL_434>",
438
+ "<SPECIAL_435>",
439
+ "<SPECIAL_436>",
440
+ "<SPECIAL_437>",
441
+ "<SPECIAL_438>",
442
+ "<SPECIAL_439>",
443
+ "<SPECIAL_440>",
444
+ "<SPECIAL_441>",
445
+ "<SPECIAL_442>",
446
+ "<SPECIAL_443>",
447
+ "<SPECIAL_444>",
448
+ "<SPECIAL_445>",
449
+ "<SPECIAL_446>",
450
+ "<SPECIAL_447>",
451
+ "<SPECIAL_448>",
452
+ "<SPECIAL_449>",
453
+ "<SPECIAL_450>",
454
+ "<SPECIAL_451>",
455
+ "<SPECIAL_452>",
456
+ "<SPECIAL_453>",
457
+ "<SPECIAL_454>",
458
+ "<SPECIAL_455>",
459
+ "<SPECIAL_456>",
460
+ "<SPECIAL_457>",
461
+ "<SPECIAL_458>",
462
+ "<SPECIAL_459>",
463
+ "<SPECIAL_460>",
464
+ "<SPECIAL_461>",
465
+ "<SPECIAL_462>",
466
+ "<SPECIAL_463>",
467
+ "<SPECIAL_464>",
468
+ "<SPECIAL_465>",
469
+ "<SPECIAL_466>",
470
+ "<SPECIAL_467>",
471
+ "<SPECIAL_468>",
472
+ "<SPECIAL_469>",
473
+ "<SPECIAL_470>",
474
+ "<SPECIAL_471>",
475
+ "<SPECIAL_472>",
476
+ "<SPECIAL_473>",
477
+ "<SPECIAL_474>",
478
+ "<SPECIAL_475>",
479
+ "<SPECIAL_476>",
480
+ "<SPECIAL_477>",
481
+ "<SPECIAL_478>",
482
+ "<SPECIAL_479>",
483
+ "<SPECIAL_480>",
484
+ "<SPECIAL_481>",
485
+ "<SPECIAL_482>",
486
+ "<SPECIAL_483>",
487
+ "<SPECIAL_484>",
488
+ "<SPECIAL_485>",
489
+ "<SPECIAL_486>",
490
+ "<SPECIAL_487>",
491
+ "<SPECIAL_488>",
492
+ "<SPECIAL_489>",
493
+ "<SPECIAL_490>",
494
+ "<SPECIAL_491>",
495
+ "<SPECIAL_492>",
496
+ "<SPECIAL_493>",
497
+ "<SPECIAL_494>",
498
+ "<SPECIAL_495>",
499
+ "<SPECIAL_496>",
500
+ "<SPECIAL_497>",
501
+ "<SPECIAL_498>",
502
+ "<SPECIAL_499>",
503
+ "<SPECIAL_500>",
504
+ "<SPECIAL_501>",
505
+ "<SPECIAL_502>",
506
+ "<SPECIAL_503>",
507
+ "<SPECIAL_504>",
508
+ "<SPECIAL_505>",
509
+ "<SPECIAL_506>",
510
+ "<SPECIAL_507>",
511
+ "<SPECIAL_508>",
512
+ "<SPECIAL_509>",
513
+ "<SPECIAL_510>",
514
+ "<SPECIAL_511>",
515
+ "<SPECIAL_512>",
516
+ "<SPECIAL_513>",
517
+ "<SPECIAL_514>",
518
+ "<SPECIAL_515>",
519
+ "<SPECIAL_516>",
520
+ "<SPECIAL_517>",
521
+ "<SPECIAL_518>",
522
+ "<SPECIAL_519>",
523
+ "<SPECIAL_520>",
524
+ "<SPECIAL_521>",
525
+ "<SPECIAL_522>",
526
+ "<SPECIAL_523>",
527
+ "<SPECIAL_524>",
528
+ "<SPECIAL_525>",
529
+ "<SPECIAL_526>",
530
+ "<SPECIAL_527>",
531
+ "<SPECIAL_528>",
532
+ "<SPECIAL_529>",
533
+ "<SPECIAL_530>",
534
+ "<SPECIAL_531>",
535
+ "<SPECIAL_532>",
536
+ "<SPECIAL_533>",
537
+ "<SPECIAL_534>",
538
+ "<SPECIAL_535>",
539
+ "<SPECIAL_536>",
540
+ "<SPECIAL_537>",
541
+ "<SPECIAL_538>",
542
+ "<SPECIAL_539>",
543
+ "<SPECIAL_540>",
544
+ "<SPECIAL_541>",
545
+ "<SPECIAL_542>",
546
+ "<SPECIAL_543>",
547
+ "<SPECIAL_544>",
548
+ "<SPECIAL_545>",
549
+ "<SPECIAL_546>",
550
+ "<SPECIAL_547>",
551
+ "<SPECIAL_548>",
552
+ "<SPECIAL_549>",
553
+ "<SPECIAL_550>",
554
+ "<SPECIAL_551>",
555
+ "<SPECIAL_552>",
556
+ "<SPECIAL_553>",
557
+ "<SPECIAL_554>",
558
+ "<SPECIAL_555>",
559
+ "<SPECIAL_556>",
560
+ "<SPECIAL_557>",
561
+ "<SPECIAL_558>",
562
+ "<SPECIAL_559>",
563
+ "<SPECIAL_560>",
564
+ "<SPECIAL_561>",
565
+ "<SPECIAL_562>",
566
+ "<SPECIAL_563>",
567
+ "<SPECIAL_564>",
568
+ "<SPECIAL_565>",
569
+ "<SPECIAL_566>",
570
+ "<SPECIAL_567>",
571
+ "<SPECIAL_568>",
572
+ "<SPECIAL_569>",
573
+ "<SPECIAL_570>",
574
+ "<SPECIAL_571>",
575
+ "<SPECIAL_572>",
576
+ "<SPECIAL_573>",
577
+ "<SPECIAL_574>",
578
+ "<SPECIAL_575>",
579
+ "<SPECIAL_576>",
580
+ "<SPECIAL_577>",
581
+ "<SPECIAL_578>",
582
+ "<SPECIAL_579>",
583
+ "<SPECIAL_580>",
584
+ "<SPECIAL_581>",
585
+ "<SPECIAL_582>",
586
+ "<SPECIAL_583>",
587
+ "<SPECIAL_584>",
588
+ "<SPECIAL_585>",
589
+ "<SPECIAL_586>",
590
+ "<SPECIAL_587>",
591
+ "<SPECIAL_588>",
592
+ "<SPECIAL_589>",
593
+ "<SPECIAL_590>",
594
+ "<SPECIAL_591>",
595
+ "<SPECIAL_592>",
596
+ "<SPECIAL_593>",
597
+ "<SPECIAL_594>",
598
+ "<SPECIAL_595>",
599
+ "<SPECIAL_596>",
600
+ "<SPECIAL_597>",
601
+ "<SPECIAL_598>",
602
+ "<SPECIAL_599>",
603
+ "<SPECIAL_600>",
604
+ "<SPECIAL_601>",
605
+ "<SPECIAL_602>",
606
+ "<SPECIAL_603>",
607
+ "<SPECIAL_604>",
608
+ "<SPECIAL_605>",
609
+ "<SPECIAL_606>",
610
+ "<SPECIAL_607>",
611
+ "<SPECIAL_608>",
612
+ "<SPECIAL_609>",
613
+ "<SPECIAL_610>",
614
+ "<SPECIAL_611>",
615
+ "<SPECIAL_612>",
616
+ "<SPECIAL_613>",
617
+ "<SPECIAL_614>",
618
+ "<SPECIAL_615>",
619
+ "<SPECIAL_616>",
620
+ "<SPECIAL_617>",
621
+ "<SPECIAL_618>",
622
+ "<SPECIAL_619>",
623
+ "<SPECIAL_620>",
624
+ "<SPECIAL_621>",
625
+ "<SPECIAL_622>",
626
+ "<SPECIAL_623>",
627
+ "<SPECIAL_624>",
628
+ "<SPECIAL_625>",
629
+ "<SPECIAL_626>",
630
+ "<SPECIAL_627>",
631
+ "<SPECIAL_628>",
632
+ "<SPECIAL_629>",
633
+ "<SPECIAL_630>",
634
+ "<SPECIAL_631>",
635
+ "<SPECIAL_632>",
636
+ "<SPECIAL_633>",
637
+ "<SPECIAL_634>",
638
+ "<SPECIAL_635>",
639
+ "<SPECIAL_636>",
640
+ "<SPECIAL_637>",
641
+ "<SPECIAL_638>",
642
+ "<SPECIAL_639>",
643
+ "<SPECIAL_640>",
644
+ "<SPECIAL_641>",
645
+ "<SPECIAL_642>",
646
+ "<SPECIAL_643>",
647
+ "<SPECIAL_644>",
648
+ "<SPECIAL_645>",
649
+ "<SPECIAL_646>",
650
+ "<SPECIAL_647>",
651
+ "<SPECIAL_648>",
652
+ "<SPECIAL_649>",
653
+ "<SPECIAL_650>",
654
+ "<SPECIAL_651>",
655
+ "<SPECIAL_652>",
656
+ "<SPECIAL_653>",
657
+ "<SPECIAL_654>",
658
+ "<SPECIAL_655>",
659
+ "<SPECIAL_656>",
660
+ "<SPECIAL_657>",
661
+ "<SPECIAL_658>",
662
+ "<SPECIAL_659>",
663
+ "<SPECIAL_660>",
664
+ "<SPECIAL_661>",
665
+ "<SPECIAL_662>",
666
+ "<SPECIAL_663>",
667
+ "<SPECIAL_664>",
668
+ "<SPECIAL_665>",
669
+ "<SPECIAL_666>",
670
+ "<SPECIAL_667>",
671
+ "<SPECIAL_668>",
672
+ "<SPECIAL_669>",
673
+ "<SPECIAL_670>",
674
+ "<SPECIAL_671>",
675
+ "<SPECIAL_672>",
676
+ "<SPECIAL_673>",
677
+ "<SPECIAL_674>",
678
+ "<SPECIAL_675>",
679
+ "<SPECIAL_676>",
680
+ "<SPECIAL_677>",
681
+ "<SPECIAL_678>",
682
+ "<SPECIAL_679>",
683
+ "<SPECIAL_680>",
684
+ "<SPECIAL_681>",
685
+ "<SPECIAL_682>",
686
+ "<SPECIAL_683>",
687
+ "<SPECIAL_684>",
688
+ "<SPECIAL_685>",
689
+ "<SPECIAL_686>",
690
+ "<SPECIAL_687>",
691
+ "<SPECIAL_688>",
692
+ "<SPECIAL_689>",
693
+ "<SPECIAL_690>",
694
+ "<SPECIAL_691>",
695
+ "<SPECIAL_692>",
696
+ "<SPECIAL_693>",
697
+ "<SPECIAL_694>",
698
+ "<SPECIAL_695>",
699
+ "<SPECIAL_696>",
700
+ "<SPECIAL_697>",
701
+ "<SPECIAL_698>",
702
+ "<SPECIAL_699>",
703
+ "<SPECIAL_700>",
704
+ "<SPECIAL_701>",
705
+ "<SPECIAL_702>",
706
+ "<SPECIAL_703>",
707
+ "<SPECIAL_704>",
708
+ "<SPECIAL_705>",
709
+ "<SPECIAL_706>",
710
+ "<SPECIAL_707>",
711
+ "<SPECIAL_708>",
712
+ "<SPECIAL_709>",
713
+ "<SPECIAL_710>",
714
+ "<SPECIAL_711>",
715
+ "<SPECIAL_712>",
716
+ "<SPECIAL_713>",
717
+ "<SPECIAL_714>",
718
+ "<SPECIAL_715>",
719
+ "<SPECIAL_716>",
720
+ "<SPECIAL_717>",
721
+ "<SPECIAL_718>",
722
+ "<SPECIAL_719>",
723
+ "<SPECIAL_720>",
724
+ "<SPECIAL_721>",
725
+ "<SPECIAL_722>",
726
+ "<SPECIAL_723>",
727
+ "<SPECIAL_724>",
728
+ "<SPECIAL_725>",
729
+ "<SPECIAL_726>",
730
+ "<SPECIAL_727>",
731
+ "<SPECIAL_728>",
732
+ "<SPECIAL_729>",
733
+ "<SPECIAL_730>",
734
+ "<SPECIAL_731>",
735
+ "<SPECIAL_732>",
736
+ "<SPECIAL_733>",
737
+ "<SPECIAL_734>",
738
+ "<SPECIAL_735>",
739
+ "<SPECIAL_736>",
740
+ "<SPECIAL_737>",
741
+ "<SPECIAL_738>",
742
+ "<SPECIAL_739>",
743
+ "<SPECIAL_740>",
744
+ "<SPECIAL_741>",
745
+ "<SPECIAL_742>",
746
+ "<SPECIAL_743>",
747
+ "<SPECIAL_744>",
748
+ "<SPECIAL_745>",
749
+ "<SPECIAL_746>",
750
+ "<SPECIAL_747>",
751
+ "<SPECIAL_748>",
752
+ "<SPECIAL_749>",
753
+ "<SPECIAL_750>",
754
+ "<SPECIAL_751>",
755
+ "<SPECIAL_752>",
756
+ "<SPECIAL_753>",
757
+ "<SPECIAL_754>",
758
+ "<SPECIAL_755>",
759
+ "<SPECIAL_756>",
760
+ "<SPECIAL_757>",
761
+ "<SPECIAL_758>",
762
+ "<SPECIAL_759>",
763
+ "<SPECIAL_760>",
764
+ "<SPECIAL_761>",
765
+ "<SPECIAL_762>",
766
+ "<SPECIAL_763>",
767
+ "<SPECIAL_764>",
768
+ "<SPECIAL_765>",
769
+ "<SPECIAL_766>",
770
+ "<SPECIAL_767>",
771
+ "<SPECIAL_768>",
772
+ "<SPECIAL_769>",
773
+ "<SPECIAL_770>",
774
+ "<SPECIAL_771>",
775
+ "<SPECIAL_772>",
776
+ "<SPECIAL_773>",
777
+ "<SPECIAL_774>",
778
+ "<SPECIAL_775>",
779
+ "<SPECIAL_776>",
780
+ "<SPECIAL_777>",
781
+ "<SPECIAL_778>",
782
+ "<SPECIAL_779>",
783
+ "<SPECIAL_780>",
784
+ "<SPECIAL_781>",
785
+ "<SPECIAL_782>",
786
+ "<SPECIAL_783>",
787
+ "<SPECIAL_784>",
788
+ "<SPECIAL_785>",
789
+ "<SPECIAL_786>",
790
+ "<SPECIAL_787>",
791
+ "<SPECIAL_788>",
792
+ "<SPECIAL_789>",
793
+ "<SPECIAL_790>",
794
+ "<SPECIAL_791>",
795
+ "<SPECIAL_792>",
796
+ "<SPECIAL_793>",
797
+ "<SPECIAL_794>",
798
+ "<SPECIAL_795>",
799
+ "<SPECIAL_796>",
800
+ "<SPECIAL_797>",
801
+ "<SPECIAL_798>",
802
+ "<SPECIAL_799>",
803
+ "<SPECIAL_800>",
804
+ "<SPECIAL_801>",
805
+ "<SPECIAL_802>",
806
+ "<SPECIAL_803>",
807
+ "<SPECIAL_804>",
808
+ "<SPECIAL_805>",
809
+ "<SPECIAL_806>",
810
+ "<SPECIAL_807>",
811
+ "<SPECIAL_808>",
812
+ "<SPECIAL_809>",
813
+ "<SPECIAL_810>",
814
+ "<SPECIAL_811>",
815
+ "<SPECIAL_812>",
816
+ "<SPECIAL_813>",
817
+ "<SPECIAL_814>",
818
+ "<SPECIAL_815>",
819
+ "<SPECIAL_816>",
820
+ "<SPECIAL_817>",
821
+ "<SPECIAL_818>",
822
+ "<SPECIAL_819>",
823
+ "<SPECIAL_820>",
824
+ "<SPECIAL_821>",
825
+ "<SPECIAL_822>",
826
+ "<SPECIAL_823>",
827
+ "<SPECIAL_824>",
828
+ "<SPECIAL_825>",
829
+ "<SPECIAL_826>",
830
+ "<SPECIAL_827>",
831
+ "<SPECIAL_828>",
832
+ "<SPECIAL_829>",
833
+ "<SPECIAL_830>",
834
+ "<SPECIAL_831>",
835
+ "<SPECIAL_832>",
836
+ "<SPECIAL_833>",
837
+ "<SPECIAL_834>",
838
+ "<SPECIAL_835>",
839
+ "<SPECIAL_836>",
840
+ "<SPECIAL_837>",
841
+ "<SPECIAL_838>",
842
+ "<SPECIAL_839>",
843
+ "<SPECIAL_840>",
844
+ "<SPECIAL_841>",
845
+ "<SPECIAL_842>",
846
+ "<SPECIAL_843>",
847
+ "<SPECIAL_844>",
848
+ "<SPECIAL_845>",
849
+ "<SPECIAL_846>",
850
+ "<SPECIAL_847>",
851
+ "<SPECIAL_848>",
852
+ "<SPECIAL_849>",
853
+ "<SPECIAL_850>",
854
+ "<SPECIAL_851>",
855
+ "<SPECIAL_852>",
856
+ "<SPECIAL_853>",
857
+ "<SPECIAL_854>",
858
+ "<SPECIAL_855>",
859
+ "<SPECIAL_856>",
860
+ "<SPECIAL_857>",
861
+ "<SPECIAL_858>",
862
+ "<SPECIAL_859>",
863
+ "<SPECIAL_860>",
864
+ "<SPECIAL_861>",
865
+ "<SPECIAL_862>",
866
+ "<SPECIAL_863>",
867
+ "<SPECIAL_864>",
868
+ "<SPECIAL_865>",
869
+ "<SPECIAL_866>",
870
+ "<SPECIAL_867>",
871
+ "<SPECIAL_868>",
872
+ "<SPECIAL_869>",
873
+ "<SPECIAL_870>",
874
+ "<SPECIAL_871>",
875
+ "<SPECIAL_872>",
876
+ "<SPECIAL_873>",
877
+ "<SPECIAL_874>",
878
+ "<SPECIAL_875>",
879
+ "<SPECIAL_876>",
880
+ "<SPECIAL_877>",
881
+ "<SPECIAL_878>",
882
+ "<SPECIAL_879>",
883
+ "<SPECIAL_880>",
884
+ "<SPECIAL_881>",
885
+ "<SPECIAL_882>",
886
+ "<SPECIAL_883>",
887
+ "<SPECIAL_884>",
888
+ "<SPECIAL_885>",
889
+ "<SPECIAL_886>",
890
+ "<SPECIAL_887>",
891
+ "<SPECIAL_888>",
892
+ "<SPECIAL_889>",
893
+ "<SPECIAL_890>",
894
+ "<SPECIAL_891>",
895
+ "<SPECIAL_892>",
896
+ "<SPECIAL_893>",
897
+ "<SPECIAL_894>",
898
+ "<SPECIAL_895>",
899
+ "<SPECIAL_896>",
900
+ "<SPECIAL_897>",
901
+ "<SPECIAL_898>",
902
+ "<SPECIAL_899>",
903
+ "<SPECIAL_900>",
904
+ "<SPECIAL_901>",
905
+ "<SPECIAL_902>",
906
+ "<SPECIAL_903>",
907
+ "<SPECIAL_904>",
908
+ "<SPECIAL_905>",
909
+ "<SPECIAL_906>",
910
+ "<SPECIAL_907>",
911
+ "<SPECIAL_908>",
912
+ "<SPECIAL_909>",
913
+ "<SPECIAL_910>",
914
+ "<SPECIAL_911>",
915
+ "<SPECIAL_912>",
916
+ "<SPECIAL_913>",
917
+ "<SPECIAL_914>",
918
+ "<SPECIAL_915>",
919
+ "<SPECIAL_916>",
920
+ "<SPECIAL_917>",
921
+ "<SPECIAL_918>",
922
+ "<SPECIAL_919>",
923
+ "<SPECIAL_920>",
924
+ "<SPECIAL_921>",
925
+ "<SPECIAL_922>",
926
+ "<SPECIAL_923>",
927
+ "<SPECIAL_924>",
928
+ "<SPECIAL_925>",
929
+ "<SPECIAL_926>",
930
+ "<SPECIAL_927>",
931
+ "<SPECIAL_928>",
932
+ "<SPECIAL_929>",
933
+ "<SPECIAL_930>",
934
+ "<SPECIAL_931>",
935
+ "<SPECIAL_932>",
936
+ "<SPECIAL_933>",
937
+ "<SPECIAL_934>",
938
+ "<SPECIAL_935>",
939
+ "<SPECIAL_936>",
940
+ "<SPECIAL_937>",
941
+ "<SPECIAL_938>",
942
+ "<SPECIAL_939>",
943
+ "<SPECIAL_940>",
944
+ "<SPECIAL_941>",
945
+ "<SPECIAL_942>",
946
+ "<SPECIAL_943>",
947
+ "<SPECIAL_944>",
948
+ "<SPECIAL_945>",
949
+ "<SPECIAL_946>",
950
+ "<SPECIAL_947>",
951
+ "<SPECIAL_948>",
952
+ "<SPECIAL_949>",
953
+ "<SPECIAL_950>",
954
+ "<SPECIAL_951>",
955
+ "<SPECIAL_952>",
956
+ "<SPECIAL_953>",
957
+ "<SPECIAL_954>",
958
+ "<SPECIAL_955>",
959
+ "<SPECIAL_956>",
960
+ "<SPECIAL_957>",
961
+ "<SPECIAL_958>",
962
+ "<SPECIAL_959>",
963
+ "<SPECIAL_960>",
964
+ "<SPECIAL_961>",
965
+ "<SPECIAL_962>",
966
+ "<SPECIAL_963>",
967
+ "<SPECIAL_964>",
968
+ "<SPECIAL_965>",
969
+ "<SPECIAL_966>",
970
+ "<SPECIAL_967>",
971
+ "<SPECIAL_968>",
972
+ "<SPECIAL_969>",
973
+ "<SPECIAL_970>",
974
+ "<SPECIAL_971>",
975
+ "<SPECIAL_972>",
976
+ "<SPECIAL_973>",
977
+ "<SPECIAL_974>",
978
+ "<SPECIAL_975>",
979
+ "<SPECIAL_976>",
980
+ "<SPECIAL_977>",
981
+ "<SPECIAL_978>",
982
+ "<SPECIAL_979>",
983
+ "<SPECIAL_980>",
984
+ "<SPECIAL_981>",
985
+ "<SPECIAL_982>",
986
+ "<SPECIAL_983>",
987
+ "<SPECIAL_984>",
988
+ "<SPECIAL_985>",
989
+ "<SPECIAL_986>",
990
+ "<SPECIAL_987>",
991
+ "<SPECIAL_988>",
992
+ "<SPECIAL_989>",
993
+ "<SPECIAL_990>",
994
+ "<SPECIAL_991>",
995
+ "<SPECIAL_992>",
996
+ "<SPECIAL_993>",
997
+ "<SPECIAL_994>",
998
+ "<SPECIAL_995>",
999
+ "<SPECIAL_996>",
1000
+ "<SPECIAL_997>",
1001
+ "<SPECIAL_998>",
1002
+ "<SPECIAL_999>"
1003
+ ],
1004
+ "bos_token": {
1005
+ "content": "<s>",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false
1010
+ },
1011
+ "eos_token": {
1012
+ "content": "</s>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false
1017
+ },
1018
+ "pad_token": {
1019
+ "content": "<pad>",
1020
+ "lstrip": false,
1021
+ "normalized": false,
1022
+ "rstrip": false,
1023
+ "single_word": false
1024
+ },
1025
+ "unk_token": {
1026
+ "content": "<unk>",
1027
+ "lstrip": false,
1028
+ "normalized": false,
1029
+ "rstrip": false,
1030
+ "single_word": false
1031
+ }
1032
+ }
checkpoint-34/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76085f9923309d873994d444989f7eb6ec074b06f25b58f1e8d7b7741070949
3
+ size 17078037
checkpoint-34/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-34/trainer_state.json ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.25103830179972314,
6
+ "eval_steps": 500,
7
+ "global_step": 34,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.007383479464697739,
14
+ "grad_norm": 1.9591929912567139,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.6228,
17
+ "memory/device_mem_reserved(gib)": 21.61,
18
+ "memory/max_mem_active(gib)": 21.2,
19
+ "memory/max_mem_allocated(gib)": 21.2,
20
+ "step": 1
21
+ },
22
+ {
23
+ "epoch": 0.014766958929395477,
24
+ "grad_norm": 1.4523507356643677,
25
+ "learning_rate": 1.5384615384615387e-05,
26
+ "loss": 1.5769,
27
+ "memory/device_mem_reserved(gib)": 21.8,
28
+ "memory/max_mem_active(gib)": 21.55,
29
+ "memory/max_mem_allocated(gib)": 21.55,
30
+ "step": 2
31
+ },
32
+ {
33
+ "epoch": 0.022150438394093218,
34
+ "grad_norm": 1.1918187141418457,
35
+ "learning_rate": 3.0769230769230774e-05,
36
+ "loss": 1.5435,
37
+ "memory/device_mem_reserved(gib)": 21.8,
38
+ "memory/max_mem_active(gib)": 21.55,
39
+ "memory/max_mem_allocated(gib)": 21.55,
40
+ "step": 3
41
+ },
42
+ {
43
+ "epoch": 0.029533917858790955,
44
+ "grad_norm": 0.8260876536369324,
45
+ "learning_rate": 4.615384615384616e-05,
46
+ "loss": 1.6523,
47
+ "memory/device_mem_reserved(gib)": 21.8,
48
+ "memory/max_mem_active(gib)": 21.55,
49
+ "memory/max_mem_allocated(gib)": 21.55,
50
+ "step": 4
51
+ },
52
+ {
53
+ "epoch": 0.03691739732348869,
54
+ "grad_norm": 0.8584926128387451,
55
+ "learning_rate": 6.153846153846155e-05,
56
+ "loss": 1.5745,
57
+ "memory/device_mem_reserved(gib)": 21.8,
58
+ "memory/max_mem_active(gib)": 21.55,
59
+ "memory/max_mem_allocated(gib)": 21.55,
60
+ "step": 5
61
+ },
62
+ {
63
+ "epoch": 0.044300876788186436,
64
+ "grad_norm": 0.6466429829597473,
65
+ "learning_rate": 7.692307692307693e-05,
66
+ "loss": 1.4759,
67
+ "memory/device_mem_reserved(gib)": 21.8,
68
+ "memory/max_mem_active(gib)": 21.55,
69
+ "memory/max_mem_allocated(gib)": 21.55,
70
+ "step": 6
71
+ },
72
+ {
73
+ "epoch": 0.05168435625288417,
74
+ "grad_norm": 0.5014482140541077,
75
+ "learning_rate": 9.230769230769232e-05,
76
+ "loss": 1.602,
77
+ "memory/device_mem_reserved(gib)": 21.8,
78
+ "memory/max_mem_active(gib)": 21.55,
79
+ "memory/max_mem_allocated(gib)": 21.55,
80
+ "step": 7
81
+ },
82
+ {
83
+ "epoch": 0.05906783571758191,
84
+ "grad_norm": 0.6017433404922485,
85
+ "learning_rate": 0.0001076923076923077,
86
+ "loss": 1.4176,
87
+ "memory/device_mem_reserved(gib)": 21.8,
88
+ "memory/max_mem_active(gib)": 21.55,
89
+ "memory/max_mem_allocated(gib)": 21.55,
90
+ "step": 8
91
+ },
92
+ {
93
+ "epoch": 0.06645131518227965,
94
+ "grad_norm": 0.4612258970737457,
95
+ "learning_rate": 0.0001230769230769231,
96
+ "loss": 1.5819,
97
+ "memory/device_mem_reserved(gib)": 21.8,
98
+ "memory/max_mem_active(gib)": 21.55,
99
+ "memory/max_mem_allocated(gib)": 21.55,
100
+ "step": 9
101
+ },
102
+ {
103
+ "epoch": 0.07383479464697738,
104
+ "grad_norm": 0.4430214464664459,
105
+ "learning_rate": 0.00013846153846153847,
106
+ "loss": 1.561,
107
+ "memory/device_mem_reserved(gib)": 21.8,
108
+ "memory/max_mem_active(gib)": 21.55,
109
+ "memory/max_mem_allocated(gib)": 21.55,
110
+ "step": 10
111
+ },
112
+ {
113
+ "epoch": 0.08121827411167512,
114
+ "grad_norm": 0.3746771216392517,
115
+ "learning_rate": 0.00015384615384615385,
116
+ "loss": 1.6744,
117
+ "memory/device_mem_reserved(gib)": 21.8,
118
+ "memory/max_mem_active(gib)": 21.55,
119
+ "memory/max_mem_allocated(gib)": 21.55,
120
+ "step": 11
121
+ },
122
+ {
123
+ "epoch": 0.08860175357637287,
124
+ "grad_norm": 0.38248857855796814,
125
+ "learning_rate": 0.00016923076923076923,
126
+ "loss": 1.5629,
127
+ "memory/device_mem_reserved(gib)": 21.8,
128
+ "memory/max_mem_active(gib)": 21.55,
129
+ "memory/max_mem_allocated(gib)": 21.55,
130
+ "step": 12
131
+ },
132
+ {
133
+ "epoch": 0.09598523304107061,
134
+ "grad_norm": 0.515844464302063,
135
+ "learning_rate": 0.00018461538461538463,
136
+ "loss": 1.5264,
137
+ "memory/device_mem_reserved(gib)": 21.8,
138
+ "memory/max_mem_active(gib)": 21.55,
139
+ "memory/max_mem_allocated(gib)": 21.55,
140
+ "step": 13
141
+ },
142
+ {
143
+ "epoch": 0.10336871250576835,
144
+ "grad_norm": 0.3964424431324005,
145
+ "learning_rate": 0.0002,
146
+ "loss": 1.5398,
147
+ "memory/device_mem_reserved(gib)": 21.8,
148
+ "memory/max_mem_active(gib)": 21.55,
149
+ "memory/max_mem_allocated(gib)": 21.55,
150
+ "step": 14
151
+ },
152
+ {
153
+ "epoch": 0.11075219197046608,
154
+ "grad_norm": 0.4010593891143799,
155
+ "learning_rate": 0.0001999668467514313,
156
+ "loss": 1.4618,
157
+ "memory/device_mem_reserved(gib)": 21.8,
158
+ "memory/max_mem_active(gib)": 21.55,
159
+ "memory/max_mem_allocated(gib)": 21.55,
160
+ "step": 15
161
+ },
162
+ {
163
+ "epoch": 0.11813567143516382,
164
+ "grad_norm": 0.3192802965641022,
165
+ "learning_rate": 0.00019986740898848306,
166
+ "loss": 1.6994,
167
+ "memory/device_mem_reserved(gib)": 21.8,
168
+ "memory/max_mem_active(gib)": 21.55,
169
+ "memory/max_mem_allocated(gib)": 21.55,
170
+ "step": 16
171
+ },
172
+ {
173
+ "epoch": 0.12551915089986157,
174
+ "grad_norm": 0.410099059343338,
175
+ "learning_rate": 0.00019970175264485266,
176
+ "loss": 1.5913,
177
+ "memory/device_mem_reserved(gib)": 21.8,
178
+ "memory/max_mem_active(gib)": 21.55,
179
+ "memory/max_mem_allocated(gib)": 21.55,
180
+ "step": 17
181
+ },
182
+ {
183
+ "epoch": 0.1329026303645593,
184
+ "grad_norm": 0.312429815530777,
185
+ "learning_rate": 0.0001994699875614589,
186
+ "loss": 1.5701,
187
+ "memory/device_mem_reserved(gib)": 21.8,
188
+ "memory/max_mem_active(gib)": 21.55,
189
+ "memory/max_mem_allocated(gib)": 21.55,
190
+ "step": 18
191
+ },
192
+ {
193
+ "epoch": 0.14028610982925704,
194
+ "grad_norm": 0.2831230163574219,
195
+ "learning_rate": 0.00019917226741361015,
196
+ "loss": 1.5744,
197
+ "memory/device_mem_reserved(gib)": 21.8,
198
+ "memory/max_mem_active(gib)": 21.55,
199
+ "memory/max_mem_allocated(gib)": 21.55,
200
+ "step": 19
201
+ },
202
+ {
203
+ "epoch": 0.14766958929395477,
204
+ "grad_norm": 0.3618868291378021,
205
+ "learning_rate": 0.00019880878960910772,
206
+ "loss": 1.5185,
207
+ "memory/device_mem_reserved(gib)": 21.8,
208
+ "memory/max_mem_active(gib)": 21.55,
209
+ "memory/max_mem_allocated(gib)": 21.55,
210
+ "step": 20
211
+ },
212
+ {
213
+ "epoch": 0.15505306875865252,
214
+ "grad_norm": 0.3151628077030182,
215
+ "learning_rate": 0.00019837979515735166,
216
+ "loss": 1.5086,
217
+ "memory/device_mem_reserved(gib)": 21.8,
218
+ "memory/max_mem_active(gib)": 21.55,
219
+ "memory/max_mem_allocated(gib)": 21.55,
220
+ "step": 21
221
+ },
222
+ {
223
+ "epoch": 0.16243654822335024,
224
+ "grad_norm": 0.31955838203430176,
225
+ "learning_rate": 0.0001978855685095358,
226
+ "loss": 1.6329,
227
+ "memory/device_mem_reserved(gib)": 21.8,
228
+ "memory/max_mem_active(gib)": 21.55,
229
+ "memory/max_mem_allocated(gib)": 21.55,
230
+ "step": 22
231
+ },
232
+ {
233
+ "epoch": 0.169820027688048,
234
+ "grad_norm": 0.3030437231063843,
235
+ "learning_rate": 0.00019732643737003827,
236
+ "loss": 1.6697,
237
+ "memory/device_mem_reserved(gib)": 21.8,
238
+ "memory/max_mem_active(gib)": 21.55,
239
+ "memory/max_mem_allocated(gib)": 21.55,
240
+ "step": 23
241
+ },
242
+ {
243
+ "epoch": 0.17720350715274574,
244
+ "grad_norm": 0.41288134455680847,
245
+ "learning_rate": 0.00019670277247913205,
246
+ "loss": 1.7094,
247
+ "memory/device_mem_reserved(gib)": 21.8,
248
+ "memory/max_mem_active(gib)": 21.55,
249
+ "memory/max_mem_allocated(gib)": 21.55,
250
+ "step": 24
251
+ },
252
+ {
253
+ "epoch": 0.18458698661744347,
254
+ "grad_norm": 0.2887294888496399,
255
+ "learning_rate": 0.00019601498736716017,
256
+ "loss": 1.5554,
257
+ "memory/device_mem_reserved(gib)": 21.8,
258
+ "memory/max_mem_active(gib)": 21.55,
259
+ "memory/max_mem_allocated(gib)": 21.55,
260
+ "step": 25
261
+ },
262
+ {
263
+ "epoch": 0.19197046608214122,
264
+ "grad_norm": 0.3173791170120239,
265
+ "learning_rate": 0.00019526353808033825,
266
+ "loss": 1.4404,
267
+ "memory/device_mem_reserved(gib)": 21.8,
268
+ "memory/max_mem_active(gib)": 21.55,
269
+ "memory/max_mem_allocated(gib)": 21.55,
270
+ "step": 26
271
+ },
272
+ {
273
+ "epoch": 0.19935394554683894,
274
+ "grad_norm": 0.2877439558506012,
275
+ "learning_rate": 0.00019444892287836613,
276
+ "loss": 1.4766,
277
+ "memory/device_mem_reserved(gib)": 21.8,
278
+ "memory/max_mem_active(gib)": 21.55,
279
+ "memory/max_mem_allocated(gib)": 21.55,
280
+ "step": 27
281
+ },
282
+ {
283
+ "epoch": 0.2067374250115367,
284
+ "grad_norm": 0.29286038875579834,
285
+ "learning_rate": 0.00019357168190404936,
286
+ "loss": 1.5156,
287
+ "memory/device_mem_reserved(gib)": 21.8,
288
+ "memory/max_mem_active(gib)": 21.55,
289
+ "memory/max_mem_allocated(gib)": 21.55,
290
+ "step": 28
291
+ },
292
+ {
293
+ "epoch": 0.2141209044762344,
294
+ "grad_norm": 0.27713659405708313,
295
+ "learning_rate": 0.00019263239682514952,
296
+ "loss": 1.5153,
297
+ "memory/device_mem_reserved(gib)": 21.8,
298
+ "memory/max_mem_active(gib)": 21.55,
299
+ "memory/max_mem_allocated(gib)": 21.55,
300
+ "step": 29
301
+ },
302
+ {
303
+ "epoch": 0.22150438394093216,
304
+ "grad_norm": 0.29187655448913574,
305
+ "learning_rate": 0.0001916316904487005,
306
+ "loss": 1.6036,
307
+ "memory/device_mem_reserved(gib)": 21.8,
308
+ "memory/max_mem_active(gib)": 21.55,
309
+ "memory/max_mem_allocated(gib)": 21.55,
310
+ "step": 30
311
+ },
312
+ {
313
+ "epoch": 0.22888786340562992,
314
+ "grad_norm": 0.2671583890914917,
315
+ "learning_rate": 0.00019057022630804716,
316
+ "loss": 1.4675,
317
+ "memory/device_mem_reserved(gib)": 21.8,
318
+ "memory/max_mem_active(gib)": 21.55,
319
+ "memory/max_mem_allocated(gib)": 21.55,
320
+ "step": 31
321
+ },
322
+ {
323
+ "epoch": 0.23627134287032764,
324
+ "grad_norm": 0.2679831087589264,
325
+ "learning_rate": 0.00018944870822287956,
326
+ "loss": 1.581,
327
+ "memory/device_mem_reserved(gib)": 21.8,
328
+ "memory/max_mem_active(gib)": 21.55,
329
+ "memory/max_mem_allocated(gib)": 21.55,
330
+ "step": 32
331
+ },
332
+ {
333
+ "epoch": 0.2436548223350254,
334
+ "grad_norm": 0.26359617710113525,
335
+ "learning_rate": 0.00018826787983255473,
336
+ "loss": 1.4674,
337
+ "memory/device_mem_reserved(gib)": 21.8,
338
+ "memory/max_mem_active(gib)": 21.55,
339
+ "memory/max_mem_allocated(gib)": 21.55,
340
+ "step": 33
341
+ },
342
+ {
343
+ "epoch": 0.25103830179972314,
344
+ "grad_norm": 0.30446046590805054,
345
+ "learning_rate": 0.00018702852410301554,
346
+ "loss": 1.5038,
347
+ "memory/device_mem_reserved(gib)": 21.8,
348
+ "memory/max_mem_active(gib)": 21.55,
349
+ "memory/max_mem_allocated(gib)": 21.55,
350
+ "step": 34
351
+ }
352
+ ],
353
+ "logging_steps": 1,
354
+ "max_steps": 135,
355
+ "num_input_tokens_seen": 0,
356
+ "num_train_epochs": 1,
357
+ "save_steps": 34,
358
+ "stateful_callbacks": {
359
+ "TrainerControl": {
360
+ "args": {
361
+ "should_epoch_stop": false,
362
+ "should_evaluate": false,
363
+ "should_log": false,
364
+ "should_save": true,
365
+ "should_training_stop": false
366
+ },
367
+ "attributes": {}
368
+ }
369
+ },
370
+ "total_flos": 6.17292722381783e+17,
371
+ "train_batch_size": 1,
372
+ "trial_name": null,
373
+ "trial_params": null
374
+ }
checkpoint-34/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2fcfaa0586b6a2ecea53c5d5918e29b57140459bd84f8ccd10b223317f2666e
3
+ size 10001
checkpoint-68/README.md ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: model
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - axolotl
7
+ - base_model:adapter:model
8
+ - lora
9
+ - transformers
10
+ ---
11
+
12
+ # Model Card for Model ID
13
+
14
+ <!-- Provide a quick summary of what the model is/does. -->
15
+
16
+
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ <!-- Provide a longer summary of what this model is. -->
23
+
24
+
25
+
26
+ - **Developed by:** [More Information Needed]
27
+ - **Funded by [optional]:** [More Information Needed]
28
+ - **Shared by [optional]:** [More Information Needed]
29
+ - **Model type:** [More Information Needed]
30
+ - **Language(s) (NLP):** [More Information Needed]
31
+ - **License:** [More Information Needed]
32
+ - **Finetuned from model [optional]:** [More Information Needed]
33
+
34
+ ### Model Sources [optional]
35
+
36
+ <!-- Provide the basic links for the model. -->
37
+
38
+ - **Repository:** [More Information Needed]
39
+ - **Paper [optional]:** [More Information Needed]
40
+ - **Demo [optional]:** [More Information Needed]
41
+
42
+ ## Uses
43
+
44
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
+
46
+ ### Direct Use
47
+
48
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Downstream Use [optional]
53
+
54
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
+
56
+ [More Information Needed]
57
+
58
+ ### Out-of-Scope Use
59
+
60
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ## Bias, Risks, and Limitations
65
+
66
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
+
68
+ [More Information Needed]
69
+
70
+ ### Recommendations
71
+
72
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
+
74
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
+
76
+ ## How to Get Started with the Model
77
+
78
+ Use the code below to get started with the model.
79
+
80
+ [More Information Needed]
81
+
82
+ ## Training Details
83
+
84
+ ### Training Data
85
+
86
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
+
88
+ [More Information Needed]
89
+
90
+ ### Training Procedure
91
+
92
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
+
94
+ #### Preprocessing [optional]
95
+
96
+ [More Information Needed]
97
+
98
+
99
+ #### Training Hyperparameters
100
+
101
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
+
103
+ #### Speeds, Sizes, Times [optional]
104
+
105
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
+
107
+ [More Information Needed]
108
+
109
+ ## Evaluation
110
+
111
+ <!-- This section describes the evaluation protocols and provides the results. -->
112
+
113
+ ### Testing Data, Factors & Metrics
114
+
115
+ #### Testing Data
116
+
117
+ <!-- This should link to a Dataset Card if possible. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Factors
122
+
123
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
+
125
+ [More Information Needed]
126
+
127
+ #### Metrics
128
+
129
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
+
131
+ [More Information Needed]
132
+
133
+ ### Results
134
+
135
+ [More Information Needed]
136
+
137
+ #### Summary
138
+
139
+
140
+
141
+ ## Model Examination [optional]
142
+
143
+ <!-- Relevant interpretability work for the model goes here -->
144
+
145
+ [More Information Needed]
146
+
147
+ ## Environmental Impact
148
+
149
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
+
151
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
152
+
153
+ - **Hardware Type:** [More Information Needed]
154
+ - **Hours used:** [More Information Needed]
155
+ - **Cloud Provider:** [More Information Needed]
156
+ - **Compute Region:** [More Information Needed]
157
+ - **Carbon Emitted:** [More Information Needed]
158
+
159
+ ## Technical Specifications [optional]
160
+
161
+ ### Model Architecture and Objective
162
+
163
+ [More Information Needed]
164
+
165
+ ### Compute Infrastructure
166
+
167
+ [More Information Needed]
168
+
169
+ #### Hardware
170
+
171
+ [More Information Needed]
172
+
173
+ #### Software
174
+
175
+ [More Information Needed]
176
+
177
+ ## Citation [optional]
178
+
179
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
+
181
+ **BibTeX:**
182
+
183
+ [More Information Needed]
184
+
185
+ **APA:**
186
+
187
+ [More Information Needed]
188
+
189
+ ## Glossary [optional]
190
+
191
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
+
193
+ [More Information Needed]
194
+
195
+ ## More Information [optional]
196
+
197
+ [More Information Needed]
198
+
199
+ ## Model Card Authors [optional]
200
+
201
+ [More Information Needed]
202
+
203
+ ## Model Card Contact
204
+
205
+ [More Information Needed]
206
+ ### Framework versions
207
+
208
+ - PEFT 0.17.0
checkpoint-68/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "model",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": null,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 64,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 32,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "mlp.up_proj",
29
+ "self_attn.q_proj",
30
+ "self_attn.o_proj",
31
+ "self_attn.k_proj",
32
+ "mlp.down_proj",
33
+ "mlp.gate_proj",
34
+ "self_attn.v_proj"
35
+ ],
36
+ "target_parameters": [],
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-68/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f3d28ada5e88bf260383847f0470516b3c29de0858f6a287bf978506b4b97af
3
+ size 739321784
checkpoint-68/chat_template.jinja ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- set today = strftime_now("%Y-%m-%d") %}
2
+ {%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \"What are some good restaurants around me?\" => \"Where are you?\" or \"When is the next flight to Tokyo\" => \"Where do you travel from?\")" %}
3
+
4
+ {{- bos_token }}
5
+
6
+ {%- if messages[0]['role'] == 'system' %}
7
+ {%- if messages[0]['content'] is string %}
8
+ {%- set system_message = messages[0]['content'] %}
9
+ {%- else %}
10
+ {%- set system_message = messages[0]['content'][0]['text'] %}
11
+ {%- endif %}
12
+ {%- set loop_messages = messages[1:] %}
13
+ {%- else %}
14
+ {%- set system_message = default_system_message %}
15
+ {%- set loop_messages = messages %}
16
+ {%- endif %}
17
+ {{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}
18
+
19
+ {%- for message in loop_messages %}
20
+ {%- if message['role'] == 'user' %}
21
+ {%- if message['content'] is string %}
22
+ {{- '[INST]' + message['content'] + '[/INST]' }}
23
+ {%- else %}
24
+ {{- '[INST]' }}
25
+ {%- for block in message['content'] %}
26
+ {%- if block['type'] == 'text' %}
27
+ {{- block['text'] }}
28
+ {%- elif block['type'] in ['image', 'image_url'] %}
29
+ {{- '[IMG]' }}
30
+ {%- else %}
31
+ {{- raise_exception('Only text and image blocks are supported in message content!') }}
32
+ {%- endif %}
33
+ {%- endfor %}
34
+ {{- '[/INST]' }}
35
+ {%- endif %}
36
+ {%- elif message['role'] == 'system' %}
37
+ {%- if message['content'] is string %}
38
+ {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}
39
+ {%- else %}
40
+ {{- '[SYSTEM_PROMPT]' + message['content'][0]['text'] + '[/SYSTEM_PROMPT]' }}
41
+ {%- endif %}
42
+ {%- elif message['role'] == 'assistant' %}
43
+ {%- if message['content'] is string %}
44
+ {{- message['content'] + eos_token }}
45
+ {%- else %}
46
+ {{- message['content'][0]['text'] + eos_token }}
47
+ {%- endif %}
48
+ {%- else %}
49
+ {{- raise_exception('Only user, system and assistant roles are supported!') }}
50
+ {%- endif %}
51
+ {%- endfor %}
checkpoint-68/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f7931ac59243ce57fdc2393008183ff7a94585c0aa5f9a4411a97897c370ba2
3
+ size 376056741
checkpoint-68/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acba53108c4834096d4035e6ec0a0913daf054a2acb1b2dab537d280405ab115
3
+ size 14645
checkpoint-68/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76ece125e44f1c915f254d1320eb53b6559c9da64dcbe75c15e14fad1c85f4df
3
+ size 1465
checkpoint-68/special_tokens_map.json ADDED
@@ -0,0 +1,1032 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>",
6
+ "[INST]",
7
+ "[/INST]",
8
+ "[AVAILABLE_TOOLS]",
9
+ "[/AVAILABLE_TOOLS]",
10
+ "[TOOL_RESULTS]",
11
+ "[/TOOL_RESULTS]",
12
+ "[TOOL_CALLS]",
13
+ "[IMG]",
14
+ "<pad>",
15
+ "[IMG_BREAK]",
16
+ "[IMG_END]",
17
+ "[PREFIX]",
18
+ "[MIDDLE]",
19
+ "[SUFFIX]",
20
+ "[SYSTEM_PROMPT]",
21
+ "[/SYSTEM_PROMPT]",
22
+ "[TOOL_CONTENT]",
23
+ "<SPECIAL_20>",
24
+ "<SPECIAL_21>",
25
+ "<SPECIAL_22>",
26
+ "<SPECIAL_23>",
27
+ "<SPECIAL_24>",
28
+ "<SPECIAL_25>",
29
+ "<SPECIAL_26>",
30
+ "<SPECIAL_27>",
31
+ "<SPECIAL_28>",
32
+ "<SPECIAL_29>",
33
+ "<SPECIAL_30>",
34
+ "<SPECIAL_31>",
35
+ "<SPECIAL_32>",
36
+ "<SPECIAL_33>",
37
+ "<SPECIAL_34>",
38
+ "<SPECIAL_35>",
39
+ "<SPECIAL_36>",
40
+ "<SPECIAL_37>",
41
+ "<SPECIAL_38>",
42
+ "<SPECIAL_39>",
43
+ "<SPECIAL_40>",
44
+ "<SPECIAL_41>",
45
+ "<SPECIAL_42>",
46
+ "<SPECIAL_43>",
47
+ "<SPECIAL_44>",
48
+ "<SPECIAL_45>",
49
+ "<SPECIAL_46>",
50
+ "<SPECIAL_47>",
51
+ "<SPECIAL_48>",
52
+ "<SPECIAL_49>",
53
+ "<SPECIAL_50>",
54
+ "<SPECIAL_51>",
55
+ "<SPECIAL_52>",
56
+ "<SPECIAL_53>",
57
+ "<SPECIAL_54>",
58
+ "<SPECIAL_55>",
59
+ "<SPECIAL_56>",
60
+ "<SPECIAL_57>",
61
+ "<SPECIAL_58>",
62
+ "<SPECIAL_59>",
63
+ "<SPECIAL_60>",
64
+ "<SPECIAL_61>",
65
+ "<SPECIAL_62>",
66
+ "<SPECIAL_63>",
67
+ "<SPECIAL_64>",
68
+ "<SPECIAL_65>",
69
+ "<SPECIAL_66>",
70
+ "<SPECIAL_67>",
71
+ "<SPECIAL_68>",
72
+ "<SPECIAL_69>",
73
+ "<SPECIAL_70>",
74
+ "<SPECIAL_71>",
75
+ "<SPECIAL_72>",
76
+ "<SPECIAL_73>",
77
+ "<SPECIAL_74>",
78
+ "<SPECIAL_75>",
79
+ "<SPECIAL_76>",
80
+ "<SPECIAL_77>",
81
+ "<SPECIAL_78>",
82
+ "<SPECIAL_79>",
83
+ "<SPECIAL_80>",
84
+ "<SPECIAL_81>",
85
+ "<SPECIAL_82>",
86
+ "<SPECIAL_83>",
87
+ "<SPECIAL_84>",
88
+ "<SPECIAL_85>",
89
+ "<SPECIAL_86>",
90
+ "<SPECIAL_87>",
91
+ "<SPECIAL_88>",
92
+ "<SPECIAL_89>",
93
+ "<SPECIAL_90>",
94
+ "<SPECIAL_91>",
95
+ "<SPECIAL_92>",
96
+ "<SPECIAL_93>",
97
+ "<SPECIAL_94>",
98
+ "<SPECIAL_95>",
99
+ "<SPECIAL_96>",
100
+ "<SPECIAL_97>",
101
+ "<SPECIAL_98>",
102
+ "<SPECIAL_99>",
103
+ "<SPECIAL_100>",
104
+ "<SPECIAL_101>",
105
+ "<SPECIAL_102>",
106
+ "<SPECIAL_103>",
107
+ "<SPECIAL_104>",
108
+ "<SPECIAL_105>",
109
+ "<SPECIAL_106>",
110
+ "<SPECIAL_107>",
111
+ "<SPECIAL_108>",
112
+ "<SPECIAL_109>",
113
+ "<SPECIAL_110>",
114
+ "<SPECIAL_111>",
115
+ "<SPECIAL_112>",
116
+ "<SPECIAL_113>",
117
+ "<SPECIAL_114>",
118
+ "<SPECIAL_115>",
119
+ "<SPECIAL_116>",
120
+ "<SPECIAL_117>",
121
+ "<SPECIAL_118>",
122
+ "<SPECIAL_119>",
123
+ "<SPECIAL_120>",
124
+ "<SPECIAL_121>",
125
+ "<SPECIAL_122>",
126
+ "<SPECIAL_123>",
127
+ "<SPECIAL_124>",
128
+ "<SPECIAL_125>",
129
+ "<SPECIAL_126>",
130
+ "<SPECIAL_127>",
131
+ "<SPECIAL_128>",
132
+ "<SPECIAL_129>",
133
+ "<SPECIAL_130>",
134
+ "<SPECIAL_131>",
135
+ "<SPECIAL_132>",
136
+ "<SPECIAL_133>",
137
+ "<SPECIAL_134>",
138
+ "<SPECIAL_135>",
139
+ "<SPECIAL_136>",
140
+ "<SPECIAL_137>",
141
+ "<SPECIAL_138>",
142
+ "<SPECIAL_139>",
143
+ "<SPECIAL_140>",
144
+ "<SPECIAL_141>",
145
+ "<SPECIAL_142>",
146
+ "<SPECIAL_143>",
147
+ "<SPECIAL_144>",
148
+ "<SPECIAL_145>",
149
+ "<SPECIAL_146>",
150
+ "<SPECIAL_147>",
151
+ "<SPECIAL_148>",
152
+ "<SPECIAL_149>",
153
+ "<SPECIAL_150>",
154
+ "<SPECIAL_151>",
155
+ "<SPECIAL_152>",
156
+ "<SPECIAL_153>",
157
+ "<SPECIAL_154>",
158
+ "<SPECIAL_155>",
159
+ "<SPECIAL_156>",
160
+ "<SPECIAL_157>",
161
+ "<SPECIAL_158>",
162
+ "<SPECIAL_159>",
163
+ "<SPECIAL_160>",
164
+ "<SPECIAL_161>",
165
+ "<SPECIAL_162>",
166
+ "<SPECIAL_163>",
167
+ "<SPECIAL_164>",
168
+ "<SPECIAL_165>",
169
+ "<SPECIAL_166>",
170
+ "<SPECIAL_167>",
171
+ "<SPECIAL_168>",
172
+ "<SPECIAL_169>",
173
+ "<SPECIAL_170>",
174
+ "<SPECIAL_171>",
175
+ "<SPECIAL_172>",
176
+ "<SPECIAL_173>",
177
+ "<SPECIAL_174>",
178
+ "<SPECIAL_175>",
179
+ "<SPECIAL_176>",
180
+ "<SPECIAL_177>",
181
+ "<SPECIAL_178>",
182
+ "<SPECIAL_179>",
183
+ "<SPECIAL_180>",
184
+ "<SPECIAL_181>",
185
+ "<SPECIAL_182>",
186
+ "<SPECIAL_183>",
187
+ "<SPECIAL_184>",
188
+ "<SPECIAL_185>",
189
+ "<SPECIAL_186>",
190
+ "<SPECIAL_187>",
191
+ "<SPECIAL_188>",
192
+ "<SPECIAL_189>",
193
+ "<SPECIAL_190>",
194
+ "<SPECIAL_191>",
195
+ "<SPECIAL_192>",
196
+ "<SPECIAL_193>",
197
+ "<SPECIAL_194>",
198
+ "<SPECIAL_195>",
199
+ "<SPECIAL_196>",
200
+ "<SPECIAL_197>",
201
+ "<SPECIAL_198>",
202
+ "<SPECIAL_199>",
203
+ "<SPECIAL_200>",
204
+ "<SPECIAL_201>",
205
+ "<SPECIAL_202>",
206
+ "<SPECIAL_203>",
207
+ "<SPECIAL_204>",
208
+ "<SPECIAL_205>",
209
+ "<SPECIAL_206>",
210
+ "<SPECIAL_207>",
211
+ "<SPECIAL_208>",
212
+ "<SPECIAL_209>",
213
+ "<SPECIAL_210>",
214
+ "<SPECIAL_211>",
215
+ "<SPECIAL_212>",
216
+ "<SPECIAL_213>",
217
+ "<SPECIAL_214>",
218
+ "<SPECIAL_215>",
219
+ "<SPECIAL_216>",
220
+ "<SPECIAL_217>",
221
+ "<SPECIAL_218>",
222
+ "<SPECIAL_219>",
223
+ "<SPECIAL_220>",
224
+ "<SPECIAL_221>",
225
+ "<SPECIAL_222>",
226
+ "<SPECIAL_223>",
227
+ "<SPECIAL_224>",
228
+ "<SPECIAL_225>",
229
+ "<SPECIAL_226>",
230
+ "<SPECIAL_227>",
231
+ "<SPECIAL_228>",
232
+ "<SPECIAL_229>",
233
+ "<SPECIAL_230>",
234
+ "<SPECIAL_231>",
235
+ "<SPECIAL_232>",
236
+ "<SPECIAL_233>",
237
+ "<SPECIAL_234>",
238
+ "<SPECIAL_235>",
239
+ "<SPECIAL_236>",
240
+ "<SPECIAL_237>",
241
+ "<SPECIAL_238>",
242
+ "<SPECIAL_239>",
243
+ "<SPECIAL_240>",
244
+ "<SPECIAL_241>",
245
+ "<SPECIAL_242>",
246
+ "<SPECIAL_243>",
247
+ "<SPECIAL_244>",
248
+ "<SPECIAL_245>",
249
+ "<SPECIAL_246>",
250
+ "<SPECIAL_247>",
251
+ "<SPECIAL_248>",
252
+ "<SPECIAL_249>",
253
+ "<SPECIAL_250>",
254
+ "<SPECIAL_251>",
255
+ "<SPECIAL_252>",
256
+ "<SPECIAL_253>",
257
+ "<SPECIAL_254>",
258
+ "<SPECIAL_255>",
259
+ "<SPECIAL_256>",
260
+ "<SPECIAL_257>",
261
+ "<SPECIAL_258>",
262
+ "<SPECIAL_259>",
263
+ "<SPECIAL_260>",
264
+ "<SPECIAL_261>",
265
+ "<SPECIAL_262>",
266
+ "<SPECIAL_263>",
267
+ "<SPECIAL_264>",
268
+ "<SPECIAL_265>",
269
+ "<SPECIAL_266>",
270
+ "<SPECIAL_267>",
271
+ "<SPECIAL_268>",
272
+ "<SPECIAL_269>",
273
+ "<SPECIAL_270>",
274
+ "<SPECIAL_271>",
275
+ "<SPECIAL_272>",
276
+ "<SPECIAL_273>",
277
+ "<SPECIAL_274>",
278
+ "<SPECIAL_275>",
279
+ "<SPECIAL_276>",
280
+ "<SPECIAL_277>",
281
+ "<SPECIAL_278>",
282
+ "<SPECIAL_279>",
283
+ "<SPECIAL_280>",
284
+ "<SPECIAL_281>",
285
+ "<SPECIAL_282>",
286
+ "<SPECIAL_283>",
287
+ "<SPECIAL_284>",
288
+ "<SPECIAL_285>",
289
+ "<SPECIAL_286>",
290
+ "<SPECIAL_287>",
291
+ "<SPECIAL_288>",
292
+ "<SPECIAL_289>",
293
+ "<SPECIAL_290>",
294
+ "<SPECIAL_291>",
295
+ "<SPECIAL_292>",
296
+ "<SPECIAL_293>",
297
+ "<SPECIAL_294>",
298
+ "<SPECIAL_295>",
299
+ "<SPECIAL_296>",
300
+ "<SPECIAL_297>",
301
+ "<SPECIAL_298>",
302
+ "<SPECIAL_299>",
303
+ "<SPECIAL_300>",
304
+ "<SPECIAL_301>",
305
+ "<SPECIAL_302>",
306
+ "<SPECIAL_303>",
307
+ "<SPECIAL_304>",
308
+ "<SPECIAL_305>",
309
+ "<SPECIAL_306>",
310
+ "<SPECIAL_307>",
311
+ "<SPECIAL_308>",
312
+ "<SPECIAL_309>",
313
+ "<SPECIAL_310>",
314
+ "<SPECIAL_311>",
315
+ "<SPECIAL_312>",
316
+ "<SPECIAL_313>",
317
+ "<SPECIAL_314>",
318
+ "<SPECIAL_315>",
319
+ "<SPECIAL_316>",
320
+ "<SPECIAL_317>",
321
+ "<SPECIAL_318>",
322
+ "<SPECIAL_319>",
323
+ "<SPECIAL_320>",
324
+ "<SPECIAL_321>",
325
+ "<SPECIAL_322>",
326
+ "<SPECIAL_323>",
327
+ "<SPECIAL_324>",
328
+ "<SPECIAL_325>",
329
+ "<SPECIAL_326>",
330
+ "<SPECIAL_327>",
331
+ "<SPECIAL_328>",
332
+ "<SPECIAL_329>",
333
+ "<SPECIAL_330>",
334
+ "<SPECIAL_331>",
335
+ "<SPECIAL_332>",
336
+ "<SPECIAL_333>",
337
+ "<SPECIAL_334>",
338
+ "<SPECIAL_335>",
339
+ "<SPECIAL_336>",
340
+ "<SPECIAL_337>",
341
+ "<SPECIAL_338>",
342
+ "<SPECIAL_339>",
343
+ "<SPECIAL_340>",
344
+ "<SPECIAL_341>",
345
+ "<SPECIAL_342>",
346
+ "<SPECIAL_343>",
347
+ "<SPECIAL_344>",
348
+ "<SPECIAL_345>",
349
+ "<SPECIAL_346>",
350
+ "<SPECIAL_347>",
351
+ "<SPECIAL_348>",
352
+ "<SPECIAL_349>",
353
+ "<SPECIAL_350>",
354
+ "<SPECIAL_351>",
355
+ "<SPECIAL_352>",
356
+ "<SPECIAL_353>",
357
+ "<SPECIAL_354>",
358
+ "<SPECIAL_355>",
359
+ "<SPECIAL_356>",
360
+ "<SPECIAL_357>",
361
+ "<SPECIAL_358>",
362
+ "<SPECIAL_359>",
363
+ "<SPECIAL_360>",
364
+ "<SPECIAL_361>",
365
+ "<SPECIAL_362>",
366
+ "<SPECIAL_363>",
367
+ "<SPECIAL_364>",
368
+ "<SPECIAL_365>",
369
+ "<SPECIAL_366>",
370
+ "<SPECIAL_367>",
371
+ "<SPECIAL_368>",
372
+ "<SPECIAL_369>",
373
+ "<SPECIAL_370>",
374
+ "<SPECIAL_371>",
375
+ "<SPECIAL_372>",
376
+ "<SPECIAL_373>",
377
+ "<SPECIAL_374>",
378
+ "<SPECIAL_375>",
379
+ "<SPECIAL_376>",
380
+ "<SPECIAL_377>",
381
+ "<SPECIAL_378>",
382
+ "<SPECIAL_379>",
383
+ "<SPECIAL_380>",
384
+ "<SPECIAL_381>",
385
+ "<SPECIAL_382>",
386
+ "<SPECIAL_383>",
387
+ "<SPECIAL_384>",
388
+ "<SPECIAL_385>",
389
+ "<SPECIAL_386>",
390
+ "<SPECIAL_387>",
391
+ "<SPECIAL_388>",
392
+ "<SPECIAL_389>",
393
+ "<SPECIAL_390>",
394
+ "<SPECIAL_391>",
395
+ "<SPECIAL_392>",
396
+ "<SPECIAL_393>",
397
+ "<SPECIAL_394>",
398
+ "<SPECIAL_395>",
399
+ "<SPECIAL_396>",
400
+ "<SPECIAL_397>",
401
+ "<SPECIAL_398>",
402
+ "<SPECIAL_399>",
403
+ "<SPECIAL_400>",
404
+ "<SPECIAL_401>",
405
+ "<SPECIAL_402>",
406
+ "<SPECIAL_403>",
407
+ "<SPECIAL_404>",
408
+ "<SPECIAL_405>",
409
+ "<SPECIAL_406>",
410
+ "<SPECIAL_407>",
411
+ "<SPECIAL_408>",
412
+ "<SPECIAL_409>",
413
+ "<SPECIAL_410>",
414
+ "<SPECIAL_411>",
415
+ "<SPECIAL_412>",
416
+ "<SPECIAL_413>",
417
+ "<SPECIAL_414>",
418
+ "<SPECIAL_415>",
419
+ "<SPECIAL_416>",
420
+ "<SPECIAL_417>",
421
+ "<SPECIAL_418>",
422
+ "<SPECIAL_419>",
423
+ "<SPECIAL_420>",
424
+ "<SPECIAL_421>",
425
+ "<SPECIAL_422>",
426
+ "<SPECIAL_423>",
427
+ "<SPECIAL_424>",
428
+ "<SPECIAL_425>",
429
+ "<SPECIAL_426>",
430
+ "<SPECIAL_427>",
431
+ "<SPECIAL_428>",
432
+ "<SPECIAL_429>",
433
+ "<SPECIAL_430>",
434
+ "<SPECIAL_431>",
435
+ "<SPECIAL_432>",
436
+ "<SPECIAL_433>",
437
+ "<SPECIAL_434>",
438
+ "<SPECIAL_435>",
439
+ "<SPECIAL_436>",
440
+ "<SPECIAL_437>",
441
+ "<SPECIAL_438>",
442
+ "<SPECIAL_439>",
443
+ "<SPECIAL_440>",
444
+ "<SPECIAL_441>",
445
+ "<SPECIAL_442>",
446
+ "<SPECIAL_443>",
447
+ "<SPECIAL_444>",
448
+ "<SPECIAL_445>",
449
+ "<SPECIAL_446>",
450
+ "<SPECIAL_447>",
451
+ "<SPECIAL_448>",
452
+ "<SPECIAL_449>",
453
+ "<SPECIAL_450>",
454
+ "<SPECIAL_451>",
455
+ "<SPECIAL_452>",
456
+ "<SPECIAL_453>",
457
+ "<SPECIAL_454>",
458
+ "<SPECIAL_455>",
459
+ "<SPECIAL_456>",
460
+ "<SPECIAL_457>",
461
+ "<SPECIAL_458>",
462
+ "<SPECIAL_459>",
463
+ "<SPECIAL_460>",
464
+ "<SPECIAL_461>",
465
+ "<SPECIAL_462>",
466
+ "<SPECIAL_463>",
467
+ "<SPECIAL_464>",
468
+ "<SPECIAL_465>",
469
+ "<SPECIAL_466>",
470
+ "<SPECIAL_467>",
471
+ "<SPECIAL_468>",
472
+ "<SPECIAL_469>",
473
+ "<SPECIAL_470>",
474
+ "<SPECIAL_471>",
475
+ "<SPECIAL_472>",
476
+ "<SPECIAL_473>",
477
+ "<SPECIAL_474>",
478
+ "<SPECIAL_475>",
479
+ "<SPECIAL_476>",
480
+ "<SPECIAL_477>",
481
+ "<SPECIAL_478>",
482
+ "<SPECIAL_479>",
483
+ "<SPECIAL_480>",
484
+ "<SPECIAL_481>",
485
+ "<SPECIAL_482>",
486
+ "<SPECIAL_483>",
487
+ "<SPECIAL_484>",
488
+ "<SPECIAL_485>",
489
+ "<SPECIAL_486>",
490
+ "<SPECIAL_487>",
491
+ "<SPECIAL_488>",
492
+ "<SPECIAL_489>",
493
+ "<SPECIAL_490>",
494
+ "<SPECIAL_491>",
495
+ "<SPECIAL_492>",
496
+ "<SPECIAL_493>",
497
+ "<SPECIAL_494>",
498
+ "<SPECIAL_495>",
499
+ "<SPECIAL_496>",
500
+ "<SPECIAL_497>",
501
+ "<SPECIAL_498>",
502
+ "<SPECIAL_499>",
503
+ "<SPECIAL_500>",
504
+ "<SPECIAL_501>",
505
+ "<SPECIAL_502>",
506
+ "<SPECIAL_503>",
507
+ "<SPECIAL_504>",
508
+ "<SPECIAL_505>",
509
+ "<SPECIAL_506>",
510
+ "<SPECIAL_507>",
511
+ "<SPECIAL_508>",
512
+ "<SPECIAL_509>",
513
+ "<SPECIAL_510>",
514
+ "<SPECIAL_511>",
515
+ "<SPECIAL_512>",
516
+ "<SPECIAL_513>",
517
+ "<SPECIAL_514>",
518
+ "<SPECIAL_515>",
519
+ "<SPECIAL_516>",
520
+ "<SPECIAL_517>",
521
+ "<SPECIAL_518>",
522
+ "<SPECIAL_519>",
523
+ "<SPECIAL_520>",
524
+ "<SPECIAL_521>",
525
+ "<SPECIAL_522>",
526
+ "<SPECIAL_523>",
527
+ "<SPECIAL_524>",
528
+ "<SPECIAL_525>",
529
+ "<SPECIAL_526>",
530
+ "<SPECIAL_527>",
531
+ "<SPECIAL_528>",
532
+ "<SPECIAL_529>",
533
+ "<SPECIAL_530>",
534
+ "<SPECIAL_531>",
535
+ "<SPECIAL_532>",
536
+ "<SPECIAL_533>",
537
+ "<SPECIAL_534>",
538
+ "<SPECIAL_535>",
539
+ "<SPECIAL_536>",
540
+ "<SPECIAL_537>",
541
+ "<SPECIAL_538>",
542
+ "<SPECIAL_539>",
543
+ "<SPECIAL_540>",
544
+ "<SPECIAL_541>",
545
+ "<SPECIAL_542>",
546
+ "<SPECIAL_543>",
547
+ "<SPECIAL_544>",
548
+ "<SPECIAL_545>",
549
+ "<SPECIAL_546>",
550
+ "<SPECIAL_547>",
551
+ "<SPECIAL_548>",
552
+ "<SPECIAL_549>",
553
+ "<SPECIAL_550>",
554
+ "<SPECIAL_551>",
555
+ "<SPECIAL_552>",
556
+ "<SPECIAL_553>",
557
+ "<SPECIAL_554>",
558
+ "<SPECIAL_555>",
559
+ "<SPECIAL_556>",
560
+ "<SPECIAL_557>",
561
+ "<SPECIAL_558>",
562
+ "<SPECIAL_559>",
563
+ "<SPECIAL_560>",
564
+ "<SPECIAL_561>",
565
+ "<SPECIAL_562>",
566
+ "<SPECIAL_563>",
567
+ "<SPECIAL_564>",
568
+ "<SPECIAL_565>",
569
+ "<SPECIAL_566>",
570
+ "<SPECIAL_567>",
571
+ "<SPECIAL_568>",
572
+ "<SPECIAL_569>",
573
+ "<SPECIAL_570>",
574
+ "<SPECIAL_571>",
575
+ "<SPECIAL_572>",
576
+ "<SPECIAL_573>",
577
+ "<SPECIAL_574>",
578
+ "<SPECIAL_575>",
579
+ "<SPECIAL_576>",
580
+ "<SPECIAL_577>",
581
+ "<SPECIAL_578>",
582
+ "<SPECIAL_579>",
583
+ "<SPECIAL_580>",
584
+ "<SPECIAL_581>",
585
+ "<SPECIAL_582>",
586
+ "<SPECIAL_583>",
587
+ "<SPECIAL_584>",
588
+ "<SPECIAL_585>",
589
+ "<SPECIAL_586>",
590
+ "<SPECIAL_587>",
591
+ "<SPECIAL_588>",
592
+ "<SPECIAL_589>",
593
+ "<SPECIAL_590>",
594
+ "<SPECIAL_591>",
595
+ "<SPECIAL_592>",
596
+ "<SPECIAL_593>",
597
+ "<SPECIAL_594>",
598
+ "<SPECIAL_595>",
599
+ "<SPECIAL_596>",
600
+ "<SPECIAL_597>",
601
+ "<SPECIAL_598>",
602
+ "<SPECIAL_599>",
603
+ "<SPECIAL_600>",
604
+ "<SPECIAL_601>",
605
+ "<SPECIAL_602>",
606
+ "<SPECIAL_603>",
607
+ "<SPECIAL_604>",
608
+ "<SPECIAL_605>",
609
+ "<SPECIAL_606>",
610
+ "<SPECIAL_607>",
611
+ "<SPECIAL_608>",
612
+ "<SPECIAL_609>",
613
+ "<SPECIAL_610>",
614
+ "<SPECIAL_611>",
615
+ "<SPECIAL_612>",
616
+ "<SPECIAL_613>",
617
+ "<SPECIAL_614>",
618
+ "<SPECIAL_615>",
619
+ "<SPECIAL_616>",
620
+ "<SPECIAL_617>",
621
+ "<SPECIAL_618>",
622
+ "<SPECIAL_619>",
623
+ "<SPECIAL_620>",
624
+ "<SPECIAL_621>",
625
+ "<SPECIAL_622>",
626
+ "<SPECIAL_623>",
627
+ "<SPECIAL_624>",
628
+ "<SPECIAL_625>",
629
+ "<SPECIAL_626>",
630
+ "<SPECIAL_627>",
631
+ "<SPECIAL_628>",
632
+ "<SPECIAL_629>",
633
+ "<SPECIAL_630>",
634
+ "<SPECIAL_631>",
635
+ "<SPECIAL_632>",
636
+ "<SPECIAL_633>",
637
+ "<SPECIAL_634>",
638
+ "<SPECIAL_635>",
639
+ "<SPECIAL_636>",
640
+ "<SPECIAL_637>",
641
+ "<SPECIAL_638>",
642
+ "<SPECIAL_639>",
643
+ "<SPECIAL_640>",
644
+ "<SPECIAL_641>",
645
+ "<SPECIAL_642>",
646
+ "<SPECIAL_643>",
647
+ "<SPECIAL_644>",
648
+ "<SPECIAL_645>",
649
+ "<SPECIAL_646>",
650
+ "<SPECIAL_647>",
651
+ "<SPECIAL_648>",
652
+ "<SPECIAL_649>",
653
+ "<SPECIAL_650>",
654
+ "<SPECIAL_651>",
655
+ "<SPECIAL_652>",
656
+ "<SPECIAL_653>",
657
+ "<SPECIAL_654>",
658
+ "<SPECIAL_655>",
659
+ "<SPECIAL_656>",
660
+ "<SPECIAL_657>",
661
+ "<SPECIAL_658>",
662
+ "<SPECIAL_659>",
663
+ "<SPECIAL_660>",
664
+ "<SPECIAL_661>",
665
+ "<SPECIAL_662>",
666
+ "<SPECIAL_663>",
667
+ "<SPECIAL_664>",
668
+ "<SPECIAL_665>",
669
+ "<SPECIAL_666>",
670
+ "<SPECIAL_667>",
671
+ "<SPECIAL_668>",
672
+ "<SPECIAL_669>",
673
+ "<SPECIAL_670>",
674
+ "<SPECIAL_671>",
675
+ "<SPECIAL_672>",
676
+ "<SPECIAL_673>",
677
+ "<SPECIAL_674>",
678
+ "<SPECIAL_675>",
679
+ "<SPECIAL_676>",
680
+ "<SPECIAL_677>",
681
+ "<SPECIAL_678>",
682
+ "<SPECIAL_679>",
683
+ "<SPECIAL_680>",
684
+ "<SPECIAL_681>",
685
+ "<SPECIAL_682>",
686
+ "<SPECIAL_683>",
687
+ "<SPECIAL_684>",
688
+ "<SPECIAL_685>",
689
+ "<SPECIAL_686>",
690
+ "<SPECIAL_687>",
691
+ "<SPECIAL_688>",
692
+ "<SPECIAL_689>",
693
+ "<SPECIAL_690>",
694
+ "<SPECIAL_691>",
695
+ "<SPECIAL_692>",
696
+ "<SPECIAL_693>",
697
+ "<SPECIAL_694>",
698
+ "<SPECIAL_695>",
699
+ "<SPECIAL_696>",
700
+ "<SPECIAL_697>",
701
+ "<SPECIAL_698>",
702
+ "<SPECIAL_699>",
703
+ "<SPECIAL_700>",
704
+ "<SPECIAL_701>",
705
+ "<SPECIAL_702>",
706
+ "<SPECIAL_703>",
707
+ "<SPECIAL_704>",
708
+ "<SPECIAL_705>",
709
+ "<SPECIAL_706>",
710
+ "<SPECIAL_707>",
711
+ "<SPECIAL_708>",
712
+ "<SPECIAL_709>",
713
+ "<SPECIAL_710>",
714
+ "<SPECIAL_711>",
715
+ "<SPECIAL_712>",
716
+ "<SPECIAL_713>",
717
+ "<SPECIAL_714>",
718
+ "<SPECIAL_715>",
719
+ "<SPECIAL_716>",
720
+ "<SPECIAL_717>",
721
+ "<SPECIAL_718>",
722
+ "<SPECIAL_719>",
723
+ "<SPECIAL_720>",
724
+ "<SPECIAL_721>",
725
+ "<SPECIAL_722>",
726
+ "<SPECIAL_723>",
727
+ "<SPECIAL_724>",
728
+ "<SPECIAL_725>",
729
+ "<SPECIAL_726>",
730
+ "<SPECIAL_727>",
731
+ "<SPECIAL_728>",
732
+ "<SPECIAL_729>",
733
+ "<SPECIAL_730>",
734
+ "<SPECIAL_731>",
735
+ "<SPECIAL_732>",
736
+ "<SPECIAL_733>",
737
+ "<SPECIAL_734>",
738
+ "<SPECIAL_735>",
739
+ "<SPECIAL_736>",
740
+ "<SPECIAL_737>",
741
+ "<SPECIAL_738>",
742
+ "<SPECIAL_739>",
743
+ "<SPECIAL_740>",
744
+ "<SPECIAL_741>",
745
+ "<SPECIAL_742>",
746
+ "<SPECIAL_743>",
747
+ "<SPECIAL_744>",
748
+ "<SPECIAL_745>",
749
+ "<SPECIAL_746>",
750
+ "<SPECIAL_747>",
751
+ "<SPECIAL_748>",
752
+ "<SPECIAL_749>",
753
+ "<SPECIAL_750>",
754
+ "<SPECIAL_751>",
755
+ "<SPECIAL_752>",
756
+ "<SPECIAL_753>",
757
+ "<SPECIAL_754>",
758
+ "<SPECIAL_755>",
759
+ "<SPECIAL_756>",
760
+ "<SPECIAL_757>",
761
+ "<SPECIAL_758>",
762
+ "<SPECIAL_759>",
763
+ "<SPECIAL_760>",
764
+ "<SPECIAL_761>",
765
+ "<SPECIAL_762>",
766
+ "<SPECIAL_763>",
767
+ "<SPECIAL_764>",
768
+ "<SPECIAL_765>",
769
+ "<SPECIAL_766>",
770
+ "<SPECIAL_767>",
771
+ "<SPECIAL_768>",
772
+ "<SPECIAL_769>",
773
+ "<SPECIAL_770>",
774
+ "<SPECIAL_771>",
775
+ "<SPECIAL_772>",
776
+ "<SPECIAL_773>",
777
+ "<SPECIAL_774>",
778
+ "<SPECIAL_775>",
779
+ "<SPECIAL_776>",
780
+ "<SPECIAL_777>",
781
+ "<SPECIAL_778>",
782
+ "<SPECIAL_779>",
783
+ "<SPECIAL_780>",
784
+ "<SPECIAL_781>",
785
+ "<SPECIAL_782>",
786
+ "<SPECIAL_783>",
787
+ "<SPECIAL_784>",
788
+ "<SPECIAL_785>",
789
+ "<SPECIAL_786>",
790
+ "<SPECIAL_787>",
791
+ "<SPECIAL_788>",
792
+ "<SPECIAL_789>",
793
+ "<SPECIAL_790>",
794
+ "<SPECIAL_791>",
795
+ "<SPECIAL_792>",
796
+ "<SPECIAL_793>",
797
+ "<SPECIAL_794>",
798
+ "<SPECIAL_795>",
799
+ "<SPECIAL_796>",
800
+ "<SPECIAL_797>",
801
+ "<SPECIAL_798>",
802
+ "<SPECIAL_799>",
803
+ "<SPECIAL_800>",
804
+ "<SPECIAL_801>",
805
+ "<SPECIAL_802>",
806
+ "<SPECIAL_803>",
807
+ "<SPECIAL_804>",
808
+ "<SPECIAL_805>",
809
+ "<SPECIAL_806>",
810
+ "<SPECIAL_807>",
811
+ "<SPECIAL_808>",
812
+ "<SPECIAL_809>",
813
+ "<SPECIAL_810>",
814
+ "<SPECIAL_811>",
815
+ "<SPECIAL_812>",
816
+ "<SPECIAL_813>",
817
+ "<SPECIAL_814>",
818
+ "<SPECIAL_815>",
819
+ "<SPECIAL_816>",
820
+ "<SPECIAL_817>",
821
+ "<SPECIAL_818>",
822
+ "<SPECIAL_819>",
823
+ "<SPECIAL_820>",
824
+ "<SPECIAL_821>",
825
+ "<SPECIAL_822>",
826
+ "<SPECIAL_823>",
827
+ "<SPECIAL_824>",
828
+ "<SPECIAL_825>",
829
+ "<SPECIAL_826>",
830
+ "<SPECIAL_827>",
831
+ "<SPECIAL_828>",
832
+ "<SPECIAL_829>",
833
+ "<SPECIAL_830>",
834
+ "<SPECIAL_831>",
835
+ "<SPECIAL_832>",
836
+ "<SPECIAL_833>",
837
+ "<SPECIAL_834>",
838
+ "<SPECIAL_835>",
839
+ "<SPECIAL_836>",
840
+ "<SPECIAL_837>",
841
+ "<SPECIAL_838>",
842
+ "<SPECIAL_839>",
843
+ "<SPECIAL_840>",
844
+ "<SPECIAL_841>",
845
+ "<SPECIAL_842>",
846
+ "<SPECIAL_843>",
847
+ "<SPECIAL_844>",
848
+ "<SPECIAL_845>",
849
+ "<SPECIAL_846>",
850
+ "<SPECIAL_847>",
851
+ "<SPECIAL_848>",
852
+ "<SPECIAL_849>",
853
+ "<SPECIAL_850>",
854
+ "<SPECIAL_851>",
855
+ "<SPECIAL_852>",
856
+ "<SPECIAL_853>",
857
+ "<SPECIAL_854>",
858
+ "<SPECIAL_855>",
859
+ "<SPECIAL_856>",
860
+ "<SPECIAL_857>",
861
+ "<SPECIAL_858>",
862
+ "<SPECIAL_859>",
863
+ "<SPECIAL_860>",
864
+ "<SPECIAL_861>",
865
+ "<SPECIAL_862>",
866
+ "<SPECIAL_863>",
867
+ "<SPECIAL_864>",
868
+ "<SPECIAL_865>",
869
+ "<SPECIAL_866>",
870
+ "<SPECIAL_867>",
871
+ "<SPECIAL_868>",
872
+ "<SPECIAL_869>",
873
+ "<SPECIAL_870>",
874
+ "<SPECIAL_871>",
875
+ "<SPECIAL_872>",
876
+ "<SPECIAL_873>",
877
+ "<SPECIAL_874>",
878
+ "<SPECIAL_875>",
879
+ "<SPECIAL_876>",
880
+ "<SPECIAL_877>",
881
+ "<SPECIAL_878>",
882
+ "<SPECIAL_879>",
883
+ "<SPECIAL_880>",
884
+ "<SPECIAL_881>",
885
+ "<SPECIAL_882>",
886
+ "<SPECIAL_883>",
887
+ "<SPECIAL_884>",
888
+ "<SPECIAL_885>",
889
+ "<SPECIAL_886>",
890
+ "<SPECIAL_887>",
891
+ "<SPECIAL_888>",
892
+ "<SPECIAL_889>",
893
+ "<SPECIAL_890>",
894
+ "<SPECIAL_891>",
895
+ "<SPECIAL_892>",
896
+ "<SPECIAL_893>",
897
+ "<SPECIAL_894>",
898
+ "<SPECIAL_895>",
899
+ "<SPECIAL_896>",
900
+ "<SPECIAL_897>",
901
+ "<SPECIAL_898>",
902
+ "<SPECIAL_899>",
903
+ "<SPECIAL_900>",
904
+ "<SPECIAL_901>",
905
+ "<SPECIAL_902>",
906
+ "<SPECIAL_903>",
907
+ "<SPECIAL_904>",
908
+ "<SPECIAL_905>",
909
+ "<SPECIAL_906>",
910
+ "<SPECIAL_907>",
911
+ "<SPECIAL_908>",
912
+ "<SPECIAL_909>",
913
+ "<SPECIAL_910>",
914
+ "<SPECIAL_911>",
915
+ "<SPECIAL_912>",
916
+ "<SPECIAL_913>",
917
+ "<SPECIAL_914>",
918
+ "<SPECIAL_915>",
919
+ "<SPECIAL_916>",
920
+ "<SPECIAL_917>",
921
+ "<SPECIAL_918>",
922
+ "<SPECIAL_919>",
923
+ "<SPECIAL_920>",
924
+ "<SPECIAL_921>",
925
+ "<SPECIAL_922>",
926
+ "<SPECIAL_923>",
927
+ "<SPECIAL_924>",
928
+ "<SPECIAL_925>",
929
+ "<SPECIAL_926>",
930
+ "<SPECIAL_927>",
931
+ "<SPECIAL_928>",
932
+ "<SPECIAL_929>",
933
+ "<SPECIAL_930>",
934
+ "<SPECIAL_931>",
935
+ "<SPECIAL_932>",
936
+ "<SPECIAL_933>",
937
+ "<SPECIAL_934>",
938
+ "<SPECIAL_935>",
939
+ "<SPECIAL_936>",
940
+ "<SPECIAL_937>",
941
+ "<SPECIAL_938>",
942
+ "<SPECIAL_939>",
943
+ "<SPECIAL_940>",
944
+ "<SPECIAL_941>",
945
+ "<SPECIAL_942>",
946
+ "<SPECIAL_943>",
947
+ "<SPECIAL_944>",
948
+ "<SPECIAL_945>",
949
+ "<SPECIAL_946>",
950
+ "<SPECIAL_947>",
951
+ "<SPECIAL_948>",
952
+ "<SPECIAL_949>",
953
+ "<SPECIAL_950>",
954
+ "<SPECIAL_951>",
955
+ "<SPECIAL_952>",
956
+ "<SPECIAL_953>",
957
+ "<SPECIAL_954>",
958
+ "<SPECIAL_955>",
959
+ "<SPECIAL_956>",
960
+ "<SPECIAL_957>",
961
+ "<SPECIAL_958>",
962
+ "<SPECIAL_959>",
963
+ "<SPECIAL_960>",
964
+ "<SPECIAL_961>",
965
+ "<SPECIAL_962>",
966
+ "<SPECIAL_963>",
967
+ "<SPECIAL_964>",
968
+ "<SPECIAL_965>",
969
+ "<SPECIAL_966>",
970
+ "<SPECIAL_967>",
971
+ "<SPECIAL_968>",
972
+ "<SPECIAL_969>",
973
+ "<SPECIAL_970>",
974
+ "<SPECIAL_971>",
975
+ "<SPECIAL_972>",
976
+ "<SPECIAL_973>",
977
+ "<SPECIAL_974>",
978
+ "<SPECIAL_975>",
979
+ "<SPECIAL_976>",
980
+ "<SPECIAL_977>",
981
+ "<SPECIAL_978>",
982
+ "<SPECIAL_979>",
983
+ "<SPECIAL_980>",
984
+ "<SPECIAL_981>",
985
+ "<SPECIAL_982>",
986
+ "<SPECIAL_983>",
987
+ "<SPECIAL_984>",
988
+ "<SPECIAL_985>",
989
+ "<SPECIAL_986>",
990
+ "<SPECIAL_987>",
991
+ "<SPECIAL_988>",
992
+ "<SPECIAL_989>",
993
+ "<SPECIAL_990>",
994
+ "<SPECIAL_991>",
995
+ "<SPECIAL_992>",
996
+ "<SPECIAL_993>",
997
+ "<SPECIAL_994>",
998
+ "<SPECIAL_995>",
999
+ "<SPECIAL_996>",
1000
+ "<SPECIAL_997>",
1001
+ "<SPECIAL_998>",
1002
+ "<SPECIAL_999>"
1003
+ ],
1004
+ "bos_token": {
1005
+ "content": "<s>",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false
1010
+ },
1011
+ "eos_token": {
1012
+ "content": "</s>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false
1017
+ },
1018
+ "pad_token": {
1019
+ "content": "<pad>",
1020
+ "lstrip": false,
1021
+ "normalized": false,
1022
+ "rstrip": false,
1023
+ "single_word": false
1024
+ },
1025
+ "unk_token": {
1026
+ "content": "<unk>",
1027
+ "lstrip": false,
1028
+ "normalized": false,
1029
+ "rstrip": false,
1030
+ "single_word": false
1031
+ }
1032
+ }
checkpoint-68/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76085f9923309d873994d444989f7eb6ec074b06f25b58f1e8d7b7741070949
3
+ size 17078037