heegyu commited on
Commit
d7e174a
·
verified ·
1 Parent(s): 0105530

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +4 -0
  2. adapter_config.json +37 -0
  3. adapter_model.safetensors +3 -0
  4. added_tokens.json +24 -0
  5. checkpoint-1000/README.md +202 -0
  6. checkpoint-1000/adapter_config.json +37 -0
  7. checkpoint-1000/adapter_model.safetensors +3 -0
  8. checkpoint-1000/added_tokens.json +24 -0
  9. checkpoint-1000/latest +1 -0
  10. checkpoint-1000/merges.txt +0 -0
  11. checkpoint-1000/rng_state_0.pth +3 -0
  12. checkpoint-1000/rng_state_1.pth +3 -0
  13. checkpoint-1000/special_tokens_map.json +31 -0
  14. checkpoint-1000/tokenizer.json +3 -0
  15. checkpoint-1000/tokenizer_config.json +208 -0
  16. checkpoint-1000/trainer_state.json +0 -0
  17. checkpoint-1000/training_args.bin +3 -0
  18. checkpoint-1000/vocab.json +0 -0
  19. checkpoint-1000/zero_to_fp32.py +674 -0
  20. checkpoint-1500/README.md +202 -0
  21. checkpoint-1500/adapter_config.json +37 -0
  22. checkpoint-1500/adapter_model.safetensors +3 -0
  23. checkpoint-1500/added_tokens.json +24 -0
  24. checkpoint-1500/latest +1 -0
  25. checkpoint-1500/merges.txt +0 -0
  26. checkpoint-1500/rng_state_0.pth +3 -0
  27. checkpoint-1500/rng_state_1.pth +3 -0
  28. checkpoint-1500/special_tokens_map.json +31 -0
  29. checkpoint-1500/tokenizer.json +3 -0
  30. checkpoint-1500/tokenizer_config.json +208 -0
  31. checkpoint-1500/trainer_state.json +0 -0
  32. checkpoint-1500/training_args.bin +3 -0
  33. checkpoint-1500/vocab.json +0 -0
  34. checkpoint-1500/zero_to_fp32.py +674 -0
  35. checkpoint-500/README.md +202 -0
  36. checkpoint-500/adapter_config.json +37 -0
  37. checkpoint-500/adapter_model.safetensors +3 -0
  38. checkpoint-500/added_tokens.json +24 -0
  39. checkpoint-500/latest +1 -0
  40. checkpoint-500/merges.txt +0 -0
  41. checkpoint-500/rng_state_0.pth +3 -0
  42. checkpoint-500/rng_state_1.pth +3 -0
  43. checkpoint-500/special_tokens_map.json +31 -0
  44. checkpoint-500/tokenizer.json +3 -0
  45. checkpoint-500/tokenizer_config.json +208 -0
  46. checkpoint-500/trainer_state.json +3533 -0
  47. checkpoint-500/training_args.bin +3 -0
  48. checkpoint-500/vocab.json +0 -0
  49. checkpoint-500/zero_to_fp32.py +674 -0
  50. merges.txt +0 -0
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-1000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-1500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-7B",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "v_proj",
28
+ "q_proj",
29
+ "up_proj",
30
+ "gate_proj",
31
+ "down_proj",
32
+ "o_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1f1ce8c9922c384cf7af3046be04f4ed75efbc3066b8e3ee012e28782155f77
3
+ size 80792880
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-7B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-7B",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "v_proj",
28
+ "q_proj",
29
+ "up_proj",
30
+ "gate_proj",
31
+ "down_proj",
32
+ "o_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad117196d0adf2eb276e01fe5eda339cfca3825629b58df7e861daf6357260da
3
+ size 80792880
checkpoint-1000/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1000/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1001
checkpoint-1000/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6
3
+ size 14512
checkpoint-1000/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63
3
+ size 14512
checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-1000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-1000/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-1000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:754e4ae9d879853457ade197edaf9a4e09b3e2d2a23d8bffcf3f56a687083eb3
3
+ size 6904
checkpoint-1000/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoint-1500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-7B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1500/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-7B",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "v_proj",
28
+ "q_proj",
29
+ "up_proj",
30
+ "gate_proj",
31
+ "down_proj",
32
+ "o_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-1500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1f1ce8c9922c384cf7af3046be04f4ed75efbc3066b8e3ee012e28782155f77
3
+ size 80792880
checkpoint-1500/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1500/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1501
checkpoint-1500/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1500/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34bcae41c589c7e4cab7b2ef263b878c90c2741404a6af11994dc31537b2319b
3
+ size 14512
checkpoint-1500/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d05dc84075e8f7dd1191c36f3be9dda12073208e12f7d2cef433c38d6336774a
3
+ size 14512
checkpoint-1500/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-1500/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-1500/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-1500/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:754e4ae9d879853457ade197edaf9a4e09b3e2d2a23d8bffcf3f56a687083eb3
3
+ size 6904
checkpoint-1500/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1500/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoint-500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-7B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-500/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-7B",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "v_proj",
28
+ "q_proj",
29
+ "up_proj",
30
+ "gate_proj",
31
+ "down_proj",
32
+ "o_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:888aea7ce26863acfdec85b6f9309e6828f7053858e3f88f6021c493e1e745c7
3
+ size 80792880
checkpoint-500/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-500/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step500
checkpoint-500/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-500/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4
3
+ size 14512
checkpoint-500/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6
3
+ size 14512
checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-500/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,3533 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.998377636340946,
5
+ "eval_steps": 500,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.001996755272681892,
13
+ "grad_norm": 0.7412710189819336,
14
+ "learning_rate": 2.5000000000000004e-07,
15
+ "loss": 1.5868,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.003993510545363784,
20
+ "grad_norm": 0.706846296787262,
21
+ "learning_rate": 5.000000000000001e-07,
22
+ "loss": 1.5439,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.005990265818045676,
27
+ "grad_norm": 0.7040128707885742,
28
+ "learning_rate": 7.5e-07,
29
+ "loss": 1.5332,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.007987021090727568,
34
+ "grad_norm": 0.7102969884872437,
35
+ "learning_rate": 1.0000000000000002e-06,
36
+ "loss": 1.5666,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.00998377636340946,
41
+ "grad_norm": 0.7481162548065186,
42
+ "learning_rate": 1.25e-06,
43
+ "loss": 1.5532,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.011980531636091352,
48
+ "grad_norm": 0.7318422198295593,
49
+ "learning_rate": 1.5e-06,
50
+ "loss": 1.5908,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.013977286908773243,
55
+ "grad_norm": 0.6923463344573975,
56
+ "learning_rate": 1.75e-06,
57
+ "loss": 1.5761,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.015974042181455136,
62
+ "grad_norm": 0.6836492419242859,
63
+ "learning_rate": 2.0000000000000003e-06,
64
+ "loss": 1.5314,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.017970797454137027,
69
+ "grad_norm": 0.742129921913147,
70
+ "learning_rate": 2.25e-06,
71
+ "loss": 1.5662,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.01996755272681892,
76
+ "grad_norm": 0.7376399636268616,
77
+ "learning_rate": 2.5e-06,
78
+ "loss": 1.5888,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.02196430799950081,
83
+ "grad_norm": 0.7043939828872681,
84
+ "learning_rate": 2.7500000000000004e-06,
85
+ "loss": 1.5691,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.023961063272182705,
90
+ "grad_norm": 0.8563888072967529,
91
+ "learning_rate": 3e-06,
92
+ "loss": 1.5439,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.025957818544864595,
97
+ "grad_norm": 0.7369752526283264,
98
+ "learning_rate": 3.2500000000000002e-06,
99
+ "loss": 1.5735,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.027954573817546485,
104
+ "grad_norm": 0.7235389351844788,
105
+ "learning_rate": 3.5e-06,
106
+ "loss": 1.5216,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.02995132909022838,
111
+ "grad_norm": 0.7691176533699036,
112
+ "learning_rate": 3.7500000000000005e-06,
113
+ "loss": 1.5382,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.03194808436291027,
118
+ "grad_norm": 1.0237406492233276,
119
+ "learning_rate": 4.000000000000001e-06,
120
+ "loss": 1.5465,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.03394483963559216,
125
+ "grad_norm": 0.7893355488777161,
126
+ "learning_rate": 4.25e-06,
127
+ "loss": 1.5353,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.035941594908274054,
132
+ "grad_norm": 1.089913010597229,
133
+ "learning_rate": 4.5e-06,
134
+ "loss": 1.5779,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.03793835018095595,
139
+ "grad_norm": 0.7530987858772278,
140
+ "learning_rate": 4.75e-06,
141
+ "loss": 1.5248,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.03993510545363784,
146
+ "grad_norm": 0.8638855814933777,
147
+ "learning_rate": 5e-06,
148
+ "loss": 1.5888,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.04193186072631973,
153
+ "grad_norm": 0.9727922081947327,
154
+ "learning_rate": 5.2500000000000006e-06,
155
+ "loss": 1.5495,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.04392861599900162,
160
+ "grad_norm": 0.9645998477935791,
161
+ "learning_rate": 5.500000000000001e-06,
162
+ "loss": 1.5365,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.045925371271683516,
167
+ "grad_norm": 1.1736634969711304,
168
+ "learning_rate": 5.75e-06,
169
+ "loss": 1.5407,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.04792212654436541,
174
+ "grad_norm": 1.091434121131897,
175
+ "learning_rate": 6e-06,
176
+ "loss": 1.5231,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.049918881817047296,
181
+ "grad_norm": 1.1759644746780396,
182
+ "learning_rate": 6.25e-06,
183
+ "loss": 1.4901,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.05191563708972919,
188
+ "grad_norm": 1.1277236938476562,
189
+ "learning_rate": 6.5000000000000004e-06,
190
+ "loss": 1.5326,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.053912392362411084,
195
+ "grad_norm": 0.863665759563446,
196
+ "learning_rate": 6.750000000000001e-06,
197
+ "loss": 1.5185,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.05590914763509297,
202
+ "grad_norm": 0.5838161706924438,
203
+ "learning_rate": 7e-06,
204
+ "loss": 1.5053,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.057905902907774864,
209
+ "grad_norm": 0.541231095790863,
210
+ "learning_rate": 7.25e-06,
211
+ "loss": 1.4914,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.05990265818045676,
216
+ "grad_norm": 0.5768315196037292,
217
+ "learning_rate": 7.500000000000001e-06,
218
+ "loss": 1.5208,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.06189941345313865,
223
+ "grad_norm": 0.5609717965126038,
224
+ "learning_rate": 7.75e-06,
225
+ "loss": 1.4928,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.06389616872582055,
230
+ "grad_norm": 0.5491043329238892,
231
+ "learning_rate": 8.000000000000001e-06,
232
+ "loss": 1.5208,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.06589292399850244,
237
+ "grad_norm": 0.4885888695716858,
238
+ "learning_rate": 8.25e-06,
239
+ "loss": 1.4811,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.06788967927118432,
244
+ "grad_norm": 0.5466718077659607,
245
+ "learning_rate": 8.5e-06,
246
+ "loss": 1.4608,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.06988643454386621,
251
+ "grad_norm": 0.8744406700134277,
252
+ "learning_rate": 8.750000000000001e-06,
253
+ "loss": 1.465,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.07188318981654811,
258
+ "grad_norm": 0.7382685542106628,
259
+ "learning_rate": 9e-06,
260
+ "loss": 1.454,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.07387994508923,
265
+ "grad_norm": 0.6689203977584839,
266
+ "learning_rate": 9.250000000000001e-06,
267
+ "loss": 1.4707,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.0758767003619119,
272
+ "grad_norm": 0.4725808799266815,
273
+ "learning_rate": 9.5e-06,
274
+ "loss": 1.4593,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.07787345563459379,
279
+ "grad_norm": 0.4035033881664276,
280
+ "learning_rate": 9.75e-06,
281
+ "loss": 1.3955,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.07987021090727568,
286
+ "grad_norm": 0.36325860023498535,
287
+ "learning_rate": 1e-05,
288
+ "loss": 1.4006,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.08186696617995756,
293
+ "grad_norm": 0.33312714099884033,
294
+ "learning_rate": 9.993150684931508e-06,
295
+ "loss": 1.4212,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.08386372145263946,
300
+ "grad_norm": 0.3342682719230652,
301
+ "learning_rate": 9.986301369863014e-06,
302
+ "loss": 1.4458,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.08586047672532135,
307
+ "grad_norm": 0.4984380900859833,
308
+ "learning_rate": 9.979452054794521e-06,
309
+ "loss": 1.3925,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.08785723199800324,
314
+ "grad_norm": 0.36669808626174927,
315
+ "learning_rate": 9.972602739726028e-06,
316
+ "loss": 1.3997,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.08985398727068514,
321
+ "grad_norm": 0.3464302122592926,
322
+ "learning_rate": 9.965753424657536e-06,
323
+ "loss": 1.4019,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.09185074254336703,
328
+ "grad_norm": 0.36931392550468445,
329
+ "learning_rate": 9.958904109589041e-06,
330
+ "loss": 1.3793,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.09384749781604892,
335
+ "grad_norm": 0.35277390480041504,
336
+ "learning_rate": 9.952054794520548e-06,
337
+ "loss": 1.3854,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.09584425308873082,
342
+ "grad_norm": 0.3395546078681946,
343
+ "learning_rate": 9.945205479452056e-06,
344
+ "loss": 1.3622,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.0978410083614127,
349
+ "grad_norm": 0.37092125415802,
350
+ "learning_rate": 9.938356164383563e-06,
351
+ "loss": 1.347,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.09983776363409459,
356
+ "grad_norm": 0.3518228232860565,
357
+ "learning_rate": 9.931506849315069e-06,
358
+ "loss": 1.3419,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.10183451890677649,
363
+ "grad_norm": 0.3498891294002533,
364
+ "learning_rate": 9.924657534246576e-06,
365
+ "loss": 1.3374,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.10383127417945838,
370
+ "grad_norm": 0.35601961612701416,
371
+ "learning_rate": 9.917808219178083e-06,
372
+ "loss": 1.3229,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.10582802945214027,
377
+ "grad_norm": 0.3646593391895294,
378
+ "learning_rate": 9.91095890410959e-06,
379
+ "loss": 1.3361,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.10782478472482217,
384
+ "grad_norm": 0.37503260374069214,
385
+ "learning_rate": 9.904109589041096e-06,
386
+ "loss": 1.3202,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.10982153999750406,
391
+ "grad_norm": 0.36810755729675293,
392
+ "learning_rate": 9.897260273972603e-06,
393
+ "loss": 1.3012,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.11181829527018594,
398
+ "grad_norm": 0.38846829533576965,
399
+ "learning_rate": 9.89041095890411e-06,
400
+ "loss": 1.2971,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.11381505054286783,
405
+ "grad_norm": 0.3800796866416931,
406
+ "learning_rate": 9.883561643835618e-06,
407
+ "loss": 1.2568,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.11581180581554973,
412
+ "grad_norm": 0.44192200899124146,
413
+ "learning_rate": 9.876712328767123e-06,
414
+ "loss": 1.2972,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.11780856108823162,
419
+ "grad_norm": 0.4018876254558563,
420
+ "learning_rate": 9.86986301369863e-06,
421
+ "loss": 1.2712,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.11980531636091352,
426
+ "grad_norm": 0.40182632207870483,
427
+ "learning_rate": 9.863013698630138e-06,
428
+ "loss": 1.2547,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.12180207163359541,
433
+ "grad_norm": 0.40880608558654785,
434
+ "learning_rate": 9.856164383561645e-06,
435
+ "loss": 1.2776,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.1237988269062773,
440
+ "grad_norm": 0.404816597700119,
441
+ "learning_rate": 9.849315068493151e-06,
442
+ "loss": 1.2258,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.1257955821789592,
447
+ "grad_norm": 0.4100593030452728,
448
+ "learning_rate": 9.842465753424658e-06,
449
+ "loss": 1.228,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.1277923374516411,
454
+ "grad_norm": 0.4166107773780823,
455
+ "learning_rate": 9.835616438356166e-06,
456
+ "loss": 1.1834,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.12978909272432299,
461
+ "grad_norm": 0.44978272914886475,
462
+ "learning_rate": 9.828767123287673e-06,
463
+ "loss": 1.1874,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.13178584799700488,
468
+ "grad_norm": 0.4174051582813263,
469
+ "learning_rate": 9.821917808219178e-06,
470
+ "loss": 1.1884,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.13378260326968677,
475
+ "grad_norm": 0.453905314207077,
476
+ "learning_rate": 9.815068493150686e-06,
477
+ "loss": 1.1646,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.13577935854236864,
482
+ "grad_norm": 0.5017035007476807,
483
+ "learning_rate": 9.808219178082193e-06,
484
+ "loss": 1.1491,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.13777611381505053,
489
+ "grad_norm": 0.44494616985321045,
490
+ "learning_rate": 9.8013698630137e-06,
491
+ "loss": 1.1516,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.13977286908773243,
496
+ "grad_norm": 0.43786314129829407,
497
+ "learning_rate": 9.794520547945206e-06,
498
+ "loss": 1.1131,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.14176962436041432,
503
+ "grad_norm": 0.4679386615753174,
504
+ "learning_rate": 9.787671232876713e-06,
505
+ "loss": 1.1154,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.14376637963309621,
510
+ "grad_norm": 0.4783805310726166,
511
+ "learning_rate": 9.78082191780822e-06,
512
+ "loss": 1.1102,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.1457631349057781,
517
+ "grad_norm": 0.4883531332015991,
518
+ "learning_rate": 9.773972602739726e-06,
519
+ "loss": 1.0969,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.14775989017846,
524
+ "grad_norm": 0.497222363948822,
525
+ "learning_rate": 9.767123287671233e-06,
526
+ "loss": 1.0894,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.1497566454511419,
531
+ "grad_norm": 0.5368260741233826,
532
+ "learning_rate": 9.76027397260274e-06,
533
+ "loss": 1.0872,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.1517534007238238,
538
+ "grad_norm": 0.5358818173408508,
539
+ "learning_rate": 9.753424657534248e-06,
540
+ "loss": 1.0771,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.15375015599650568,
545
+ "grad_norm": 0.5469568371772766,
546
+ "learning_rate": 9.746575342465753e-06,
547
+ "loss": 1.0142,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.15574691126918758,
552
+ "grad_norm": 0.5410879254341125,
553
+ "learning_rate": 9.73972602739726e-06,
554
+ "loss": 1.0019,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.15774366654186947,
559
+ "grad_norm": 0.5405011177062988,
560
+ "learning_rate": 9.732876712328768e-06,
561
+ "loss": 0.9998,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.15974042181455136,
566
+ "grad_norm": 0.532302737236023,
567
+ "learning_rate": 9.726027397260275e-06,
568
+ "loss": 0.9659,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.16173717708723326,
573
+ "grad_norm": 0.5053435564041138,
574
+ "learning_rate": 9.719178082191781e-06,
575
+ "loss": 0.9679,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.16373393235991512,
580
+ "grad_norm": 0.49565696716308594,
581
+ "learning_rate": 9.712328767123288e-06,
582
+ "loss": 0.9246,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.16573068763259702,
587
+ "grad_norm": 0.5060250759124756,
588
+ "learning_rate": 9.705479452054795e-06,
589
+ "loss": 0.938,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.1677274429052789,
594
+ "grad_norm": 0.4905273914337158,
595
+ "learning_rate": 9.698630136986303e-06,
596
+ "loss": 0.9137,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.1697241981779608,
601
+ "grad_norm": 0.6356221437454224,
602
+ "learning_rate": 9.691780821917808e-06,
603
+ "loss": 0.8919,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.1717209534506427,
608
+ "grad_norm": 0.5084801316261292,
609
+ "learning_rate": 9.684931506849316e-06,
610
+ "loss": 0.9097,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.1737177087233246,
615
+ "grad_norm": 0.44582366943359375,
616
+ "learning_rate": 9.678082191780823e-06,
617
+ "loss": 0.849,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.1757144639960065,
622
+ "grad_norm": 0.45911890268325806,
623
+ "learning_rate": 9.67123287671233e-06,
624
+ "loss": 0.8481,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.17771121926868838,
629
+ "grad_norm": 0.44006654620170593,
630
+ "learning_rate": 9.664383561643836e-06,
631
+ "loss": 0.8248,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.17970797454137027,
636
+ "grad_norm": 0.4369649589061737,
637
+ "learning_rate": 9.657534246575343e-06,
638
+ "loss": 0.8159,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.18170472981405217,
643
+ "grad_norm": 0.407516747713089,
644
+ "learning_rate": 9.65068493150685e-06,
645
+ "loss": 0.8087,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.18370148508673406,
650
+ "grad_norm": 0.403859943151474,
651
+ "learning_rate": 9.643835616438358e-06,
652
+ "loss": 0.8072,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.18569824035941596,
657
+ "grad_norm": 0.39687636494636536,
658
+ "learning_rate": 9.636986301369863e-06,
659
+ "loss": 0.7441,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.18769499563209785,
664
+ "grad_norm": 0.3767126202583313,
665
+ "learning_rate": 9.63013698630137e-06,
666
+ "loss": 0.7648,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.18969175090477974,
671
+ "grad_norm": 0.361546128988266,
672
+ "learning_rate": 9.623287671232878e-06,
673
+ "loss": 0.7611,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.19168850617746164,
678
+ "grad_norm": 0.34515851736068726,
679
+ "learning_rate": 9.616438356164385e-06,
680
+ "loss": 0.7625,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.1936852614501435,
685
+ "grad_norm": 0.3361088037490845,
686
+ "learning_rate": 9.60958904109589e-06,
687
+ "loss": 0.7827,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.1956820167228254,
692
+ "grad_norm": 0.3142891228199005,
693
+ "learning_rate": 9.602739726027398e-06,
694
+ "loss": 0.7339,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.1976787719955073,
699
+ "grad_norm": 0.3227478265762329,
700
+ "learning_rate": 9.595890410958905e-06,
701
+ "loss": 0.7389,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.19967552726818918,
706
+ "grad_norm": 0.3079572319984436,
707
+ "learning_rate": 9.589041095890411e-06,
708
+ "loss": 0.7268,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.20167228254087108,
713
+ "grad_norm": 0.3069862127304077,
714
+ "learning_rate": 9.582191780821918e-06,
715
+ "loss": 0.7198,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.20366903781355297,
720
+ "grad_norm": 0.29050567746162415,
721
+ "learning_rate": 9.575342465753425e-06,
722
+ "loss": 0.7549,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.20566579308623487,
727
+ "grad_norm": 0.29106447100639343,
728
+ "learning_rate": 9.568493150684933e-06,
729
+ "loss": 0.7167,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.20766254835891676,
734
+ "grad_norm": 0.2757619619369507,
735
+ "learning_rate": 9.561643835616438e-06,
736
+ "loss": 0.7239,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.20965930363159865,
741
+ "grad_norm": 0.2644850015640259,
742
+ "learning_rate": 9.554794520547946e-06,
743
+ "loss": 0.7028,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.21165605890428055,
748
+ "grad_norm": 0.2568458318710327,
749
+ "learning_rate": 9.547945205479453e-06,
750
+ "loss": 0.7312,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.21365281417696244,
755
+ "grad_norm": 0.24979732930660248,
756
+ "learning_rate": 9.54109589041096e-06,
757
+ "loss": 0.6933,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.21564956944964433,
762
+ "grad_norm": 0.2434425950050354,
763
+ "learning_rate": 9.534246575342466e-06,
764
+ "loss": 0.6824,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.21764632472232623,
769
+ "grad_norm": 0.27341383695602417,
770
+ "learning_rate": 9.527397260273975e-06,
771
+ "loss": 0.6832,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.21964307999500812,
776
+ "grad_norm": 0.22272831201553345,
777
+ "learning_rate": 9.52054794520548e-06,
778
+ "loss": 0.6889,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.22163983526769002,
783
+ "grad_norm": 0.2114173024892807,
784
+ "learning_rate": 9.513698630136988e-06,
785
+ "loss": 0.7047,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.22363659054037188,
790
+ "grad_norm": 0.20138710737228394,
791
+ "learning_rate": 9.506849315068493e-06,
792
+ "loss": 0.6926,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.22563334581305378,
797
+ "grad_norm": 0.18181370198726654,
798
+ "learning_rate": 9.5e-06,
799
+ "loss": 0.7121,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.22763010108573567,
804
+ "grad_norm": 0.16511252522468567,
805
+ "learning_rate": 9.493150684931508e-06,
806
+ "loss": 0.6879,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.22962685635841756,
811
+ "grad_norm": 0.15935856103897095,
812
+ "learning_rate": 9.486301369863015e-06,
813
+ "loss": 0.692,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.23162361163109946,
818
+ "grad_norm": 0.15437360107898712,
819
+ "learning_rate": 9.47945205479452e-06,
820
+ "loss": 0.6365,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.23362036690378135,
825
+ "grad_norm": 0.15790362656116486,
826
+ "learning_rate": 9.472602739726028e-06,
827
+ "loss": 0.6734,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.23561712217646325,
832
+ "grad_norm": 0.1540212631225586,
833
+ "learning_rate": 9.465753424657535e-06,
834
+ "loss": 0.6785,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.23761387744914514,
839
+ "grad_norm": 0.14174145460128784,
840
+ "learning_rate": 9.458904109589043e-06,
841
+ "loss": 0.662,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.23961063272182703,
846
+ "grad_norm": 0.13557200133800507,
847
+ "learning_rate": 9.452054794520548e-06,
848
+ "loss": 0.6576,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.24160738799450893,
853
+ "grad_norm": 0.13709504902362823,
854
+ "learning_rate": 9.445205479452055e-06,
855
+ "loss": 0.6776,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.24360414326719082,
860
+ "grad_norm": 0.13799452781677246,
861
+ "learning_rate": 9.438356164383563e-06,
862
+ "loss": 0.6678,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.24560089853987271,
867
+ "grad_norm": 0.13457225263118744,
868
+ "learning_rate": 9.43150684931507e-06,
869
+ "loss": 0.678,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.2475976538125546,
874
+ "grad_norm": 0.12947948276996613,
875
+ "learning_rate": 9.424657534246576e-06,
876
+ "loss": 0.6735,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.2495944090852365,
881
+ "grad_norm": 0.12308862805366516,
882
+ "learning_rate": 9.417808219178083e-06,
883
+ "loss": 0.6912,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.2515911643579184,
888
+ "grad_norm": 0.14674226939678192,
889
+ "learning_rate": 9.41095890410959e-06,
890
+ "loss": 0.6533,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.2535879196306003,
895
+ "grad_norm": 0.12698639929294586,
896
+ "learning_rate": 9.404109589041097e-06,
897
+ "loss": 0.6876,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.2555846749032822,
902
+ "grad_norm": 0.11984587460756302,
903
+ "learning_rate": 9.397260273972603e-06,
904
+ "loss": 0.6555,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.2575814301759641,
909
+ "grad_norm": 0.11617796868085861,
910
+ "learning_rate": 9.39041095890411e-06,
911
+ "loss": 0.6641,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.25957818544864597,
916
+ "grad_norm": 0.11317376047372818,
917
+ "learning_rate": 9.383561643835618e-06,
918
+ "loss": 0.6563,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.26157494072132786,
923
+ "grad_norm": 0.12450871616601944,
924
+ "learning_rate": 9.376712328767123e-06,
925
+ "loss": 0.6778,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.26357169599400976,
930
+ "grad_norm": 0.11382495611906052,
931
+ "learning_rate": 9.36986301369863e-06,
932
+ "loss": 0.6472,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.26556845126669165,
937
+ "grad_norm": 0.11967656016349792,
938
+ "learning_rate": 9.363013698630138e-06,
939
+ "loss": 0.6584,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.26756520653937355,
944
+ "grad_norm": 0.10746151208877563,
945
+ "learning_rate": 9.356164383561645e-06,
946
+ "loss": 0.6605,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.2695619618120554,
951
+ "grad_norm": 0.11343806982040405,
952
+ "learning_rate": 9.34931506849315e-06,
953
+ "loss": 0.6699,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.2715587170847373,
958
+ "grad_norm": 0.10874643176794052,
959
+ "learning_rate": 9.342465753424658e-06,
960
+ "loss": 0.6396,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.27355547235741917,
965
+ "grad_norm": 0.11221782863140106,
966
+ "learning_rate": 9.335616438356165e-06,
967
+ "loss": 0.6517,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.27555222763010107,
972
+ "grad_norm": 0.12015150487422943,
973
+ "learning_rate": 9.328767123287673e-06,
974
+ "loss": 0.6561,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.27754898290278296,
979
+ "grad_norm": 0.10812759399414062,
980
+ "learning_rate": 9.321917808219178e-06,
981
+ "loss": 0.6505,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.27954573817546485,
986
+ "grad_norm": 0.10647746920585632,
987
+ "learning_rate": 9.315068493150685e-06,
988
+ "loss": 0.6433,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.28154249344814675,
993
+ "grad_norm": 0.10739017277956009,
994
+ "learning_rate": 9.308219178082193e-06,
995
+ "loss": 0.6504,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.28353924872082864,
1000
+ "grad_norm": 0.09796225279569626,
1001
+ "learning_rate": 9.3013698630137e-06,
1002
+ "loss": 0.6766,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.28553600399351053,
1007
+ "grad_norm": 0.10549402981996536,
1008
+ "learning_rate": 9.294520547945206e-06,
1009
+ "loss": 0.6401,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.28753275926619243,
1014
+ "grad_norm": 0.10363396257162094,
1015
+ "learning_rate": 9.287671232876713e-06,
1016
+ "loss": 0.6711,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.2895295145388743,
1021
+ "grad_norm": 0.10072599351406097,
1022
+ "learning_rate": 9.28082191780822e-06,
1023
+ "loss": 0.6294,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.2915262698115562,
1028
+ "grad_norm": 0.09450184553861618,
1029
+ "learning_rate": 9.273972602739727e-06,
1030
+ "loss": 0.6511,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.2935230250842381,
1035
+ "grad_norm": 0.09612888097763062,
1036
+ "learning_rate": 9.267123287671233e-06,
1037
+ "loss": 0.6441,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.29551978035692,
1042
+ "grad_norm": 0.09231892973184586,
1043
+ "learning_rate": 9.26027397260274e-06,
1044
+ "loss": 0.6474,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.2975165356296019,
1049
+ "grad_norm": 0.0949755609035492,
1050
+ "learning_rate": 9.253424657534248e-06,
1051
+ "loss": 0.633,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.2995132909022838,
1056
+ "grad_norm": 0.09723283350467682,
1057
+ "learning_rate": 9.246575342465755e-06,
1058
+ "loss": 0.641,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.3015100461749657,
1063
+ "grad_norm": 0.09414070099592209,
1064
+ "learning_rate": 9.23972602739726e-06,
1065
+ "loss": 0.6646,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.3035068014476476,
1070
+ "grad_norm": 0.0909348651766777,
1071
+ "learning_rate": 9.232876712328768e-06,
1072
+ "loss": 0.6629,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.30550355672032947,
1077
+ "grad_norm": 0.09564705193042755,
1078
+ "learning_rate": 9.226027397260275e-06,
1079
+ "loss": 0.6727,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.30750031199301137,
1084
+ "grad_norm": 0.09434914588928223,
1085
+ "learning_rate": 9.219178082191782e-06,
1086
+ "loss": 0.6885,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.30949706726569326,
1091
+ "grad_norm": 0.1040414348244667,
1092
+ "learning_rate": 9.212328767123288e-06,
1093
+ "loss": 0.6516,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.31149382253837515,
1098
+ "grad_norm": 0.08882972598075867,
1099
+ "learning_rate": 9.205479452054795e-06,
1100
+ "loss": 0.6564,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.31349057781105705,
1105
+ "grad_norm": 0.09209997206926346,
1106
+ "learning_rate": 9.198630136986302e-06,
1107
+ "loss": 0.6756,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.31548733308373894,
1112
+ "grad_norm": 0.0916871652007103,
1113
+ "learning_rate": 9.19178082191781e-06,
1114
+ "loss": 0.6568,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.31748408835642083,
1119
+ "grad_norm": 0.08956406265497208,
1120
+ "learning_rate": 9.184931506849315e-06,
1121
+ "loss": 0.6464,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.31948084362910273,
1126
+ "grad_norm": 0.08891318738460541,
1127
+ "learning_rate": 9.178082191780823e-06,
1128
+ "loss": 0.6665,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.3214775989017846,
1133
+ "grad_norm": 0.08891268819570541,
1134
+ "learning_rate": 9.17123287671233e-06,
1135
+ "loss": 0.6491,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.3234743541744665,
1140
+ "grad_norm": 0.08686690032482147,
1141
+ "learning_rate": 9.164383561643836e-06,
1142
+ "loss": 0.6221,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.3254711094471484,
1147
+ "grad_norm": 0.0884203389286995,
1148
+ "learning_rate": 9.157534246575343e-06,
1149
+ "loss": 0.6676,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.32746786471983025,
1154
+ "grad_norm": 0.09307505935430527,
1155
+ "learning_rate": 9.15068493150685e-06,
1156
+ "loss": 0.6568,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.32946461999251214,
1161
+ "grad_norm": 0.08617405593395233,
1162
+ "learning_rate": 9.143835616438357e-06,
1163
+ "loss": 0.6641,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.33146137526519404,
1168
+ "grad_norm": 0.09388285130262375,
1169
+ "learning_rate": 9.136986301369863e-06,
1170
+ "loss": 0.6617,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.33345813053787593,
1175
+ "grad_norm": 0.09413463622331619,
1176
+ "learning_rate": 9.130136986301372e-06,
1177
+ "loss": 0.6669,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.3354548858105578,
1182
+ "grad_norm": 0.09485959261655807,
1183
+ "learning_rate": 9.123287671232878e-06,
1184
+ "loss": 0.6408,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.3374516410832397,
1189
+ "grad_norm": 0.0874333456158638,
1190
+ "learning_rate": 9.116438356164385e-06,
1191
+ "loss": 0.656,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.3394483963559216,
1196
+ "grad_norm": 0.08628030866384506,
1197
+ "learning_rate": 9.10958904109589e-06,
1198
+ "loss": 0.6534,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.3414451516286035,
1203
+ "grad_norm": 0.0860527902841568,
1204
+ "learning_rate": 9.102739726027398e-06,
1205
+ "loss": 0.6417,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.3434419069012854,
1210
+ "grad_norm": 0.08399222046136856,
1211
+ "learning_rate": 9.095890410958905e-06,
1212
+ "loss": 0.6233,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.3454386621739673,
1217
+ "grad_norm": 0.08794861286878586,
1218
+ "learning_rate": 9.089041095890412e-06,
1219
+ "loss": 0.6612,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.3474354174466492,
1224
+ "grad_norm": 0.08727024495601654,
1225
+ "learning_rate": 9.082191780821918e-06,
1226
+ "loss": 0.6725,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.3494321727193311,
1231
+ "grad_norm": 0.08527853339910507,
1232
+ "learning_rate": 9.075342465753425e-06,
1233
+ "loss": 0.6381,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.351428927992013,
1238
+ "grad_norm": 0.08497577905654907,
1239
+ "learning_rate": 9.068493150684932e-06,
1240
+ "loss": 0.6353,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.35342568326469487,
1245
+ "grad_norm": 0.08887533843517303,
1246
+ "learning_rate": 9.06164383561644e-06,
1247
+ "loss": 0.6392,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.35542243853737676,
1252
+ "grad_norm": 0.08368115872144699,
1253
+ "learning_rate": 9.054794520547945e-06,
1254
+ "loss": 0.6041,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.35741919381005866,
1259
+ "grad_norm": 0.08194791525602341,
1260
+ "learning_rate": 9.047945205479453e-06,
1261
+ "loss": 0.6507,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.35941594908274055,
1266
+ "grad_norm": 0.07991446554660797,
1267
+ "learning_rate": 9.04109589041096e-06,
1268
+ "loss": 0.6309,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.36141270435542244,
1273
+ "grad_norm": 0.08230883628129959,
1274
+ "learning_rate": 9.034246575342467e-06,
1275
+ "loss": 0.6348,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.36340945962810434,
1280
+ "grad_norm": 0.08559627085924149,
1281
+ "learning_rate": 9.027397260273973e-06,
1282
+ "loss": 0.6358,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.36540621490078623,
1287
+ "grad_norm": 0.08570659905672073,
1288
+ "learning_rate": 9.02054794520548e-06,
1289
+ "loss": 0.5993,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.3674029701734681,
1294
+ "grad_norm": 0.08620599657297134,
1295
+ "learning_rate": 9.013698630136987e-06,
1296
+ "loss": 0.6587,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.36939972544615,
1301
+ "grad_norm": 0.0859847143292427,
1302
+ "learning_rate": 9.006849315068495e-06,
1303
+ "loss": 0.6533,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.3713964807188319,
1308
+ "grad_norm": 0.08272071182727814,
1309
+ "learning_rate": 9e-06,
1310
+ "loss": 0.6121,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.3733932359915138,
1315
+ "grad_norm": 0.08778800070285797,
1316
+ "learning_rate": 8.993150684931508e-06,
1317
+ "loss": 0.6396,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.3753899912641957,
1322
+ "grad_norm": 0.08992988616228104,
1323
+ "learning_rate": 8.986301369863015e-06,
1324
+ "loss": 0.6381,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.3773867465368776,
1329
+ "grad_norm": 0.08496169745922089,
1330
+ "learning_rate": 8.97945205479452e-06,
1331
+ "loss": 0.6475,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.3793835018095595,
1336
+ "grad_norm": 0.08212533593177795,
1337
+ "learning_rate": 8.972602739726028e-06,
1338
+ "loss": 0.6709,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.3813802570822414,
1343
+ "grad_norm": 0.08200209587812424,
1344
+ "learning_rate": 8.965753424657535e-06,
1345
+ "loss": 0.6338,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.3833770123549233,
1350
+ "grad_norm": 0.09153922647237778,
1351
+ "learning_rate": 8.958904109589042e-06,
1352
+ "loss": 0.6158,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.38537376762760517,
1357
+ "grad_norm": 0.08760355412960052,
1358
+ "learning_rate": 8.952054794520548e-06,
1359
+ "loss": 0.6041,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.387370522900287,
1364
+ "grad_norm": 0.08381730318069458,
1365
+ "learning_rate": 8.945205479452055e-06,
1366
+ "loss": 0.6337,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.3893672781729689,
1371
+ "grad_norm": 0.08099182695150375,
1372
+ "learning_rate": 8.938356164383562e-06,
1373
+ "loss": 0.6073,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.3913640334456508,
1378
+ "grad_norm": 0.08702554553747177,
1379
+ "learning_rate": 8.93150684931507e-06,
1380
+ "loss": 0.6497,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.3933607887183327,
1385
+ "grad_norm": 0.08087313920259476,
1386
+ "learning_rate": 8.924657534246575e-06,
1387
+ "loss": 0.6036,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.3953575439910146,
1392
+ "grad_norm": 0.08589271456003189,
1393
+ "learning_rate": 8.917808219178083e-06,
1394
+ "loss": 0.6498,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.3973542992636965,
1399
+ "grad_norm": 0.0862244963645935,
1400
+ "learning_rate": 8.91095890410959e-06,
1401
+ "loss": 0.6331,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.39935105453637837,
1406
+ "grad_norm": 0.0803682953119278,
1407
+ "learning_rate": 8.904109589041097e-06,
1408
+ "loss": 0.6508,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.40134780980906026,
1413
+ "grad_norm": 0.07755322754383087,
1414
+ "learning_rate": 8.897260273972603e-06,
1415
+ "loss": 0.6409,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.40334456508174216,
1420
+ "grad_norm": 0.08488644659519196,
1421
+ "learning_rate": 8.89041095890411e-06,
1422
+ "loss": 0.6293,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.40534132035442405,
1427
+ "grad_norm": 0.08399825543165207,
1428
+ "learning_rate": 8.883561643835617e-06,
1429
+ "loss": 0.6517,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.40733807562710594,
1434
+ "grad_norm": 0.093985915184021,
1435
+ "learning_rate": 8.876712328767125e-06,
1436
+ "loss": 0.6482,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.40933483089978784,
1441
+ "grad_norm": 0.08805140852928162,
1442
+ "learning_rate": 8.86986301369863e-06,
1443
+ "loss": 0.6415,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.41133158617246973,
1448
+ "grad_norm": 0.08228921890258789,
1449
+ "learning_rate": 8.863013698630137e-06,
1450
+ "loss": 0.658,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.4133283414451516,
1455
+ "grad_norm": 0.08415067940950394,
1456
+ "learning_rate": 8.856164383561645e-06,
1457
+ "loss": 0.6492,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.4153250967178335,
1462
+ "grad_norm": 0.08831077814102173,
1463
+ "learning_rate": 8.849315068493152e-06,
1464
+ "loss": 0.6421,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.4173218519905154,
1469
+ "grad_norm": 0.07943451404571533,
1470
+ "learning_rate": 8.842465753424658e-06,
1471
+ "loss": 0.6445,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.4193186072631973,
1476
+ "grad_norm": 0.08044181019067764,
1477
+ "learning_rate": 8.835616438356165e-06,
1478
+ "loss": 0.6753,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.4213153625358792,
1483
+ "grad_norm": 0.08346639573574066,
1484
+ "learning_rate": 8.828767123287672e-06,
1485
+ "loss": 0.6702,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.4233121178085611,
1490
+ "grad_norm": 0.08326448500156403,
1491
+ "learning_rate": 8.82191780821918e-06,
1492
+ "loss": 0.6206,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.425308873081243,
1497
+ "grad_norm": 0.08394528925418854,
1498
+ "learning_rate": 8.815068493150685e-06,
1499
+ "loss": 0.6387,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.4273056283539249,
1504
+ "grad_norm": 0.07964486628770828,
1505
+ "learning_rate": 8.808219178082192e-06,
1506
+ "loss": 0.6416,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.4293023836266068,
1511
+ "grad_norm": 0.08593829721212387,
1512
+ "learning_rate": 8.8013698630137e-06,
1513
+ "loss": 0.6467,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.43129913889928867,
1518
+ "grad_norm": 0.08312725275754929,
1519
+ "learning_rate": 8.794520547945207e-06,
1520
+ "loss": 0.6337,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.43329589417197056,
1525
+ "grad_norm": 0.07907330989837646,
1526
+ "learning_rate": 8.787671232876713e-06,
1527
+ "loss": 0.6182,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.43529264944465246,
1532
+ "grad_norm": 0.0807236060500145,
1533
+ "learning_rate": 8.78082191780822e-06,
1534
+ "loss": 0.648,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.43728940471733435,
1539
+ "grad_norm": 0.08214370906352997,
1540
+ "learning_rate": 8.773972602739727e-06,
1541
+ "loss": 0.6159,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.43928615999001625,
1546
+ "grad_norm": 0.07902273535728455,
1547
+ "learning_rate": 8.767123287671233e-06,
1548
+ "loss": 0.6209,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.44128291526269814,
1553
+ "grad_norm": 0.08463626354932785,
1554
+ "learning_rate": 8.76027397260274e-06,
1555
+ "loss": 0.6388,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.44327967053538003,
1560
+ "grad_norm": 0.08723177760839462,
1561
+ "learning_rate": 8.753424657534247e-06,
1562
+ "loss": 0.6639,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.4452764258080619,
1567
+ "grad_norm": 0.08998522907495499,
1568
+ "learning_rate": 8.746575342465755e-06,
1569
+ "loss": 0.6491,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.44727318108074376,
1574
+ "grad_norm": 0.08876420557498932,
1575
+ "learning_rate": 8.73972602739726e-06,
1576
+ "loss": 0.6434,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.44926993635342566,
1581
+ "grad_norm": 0.08207367360591888,
1582
+ "learning_rate": 8.732876712328769e-06,
1583
+ "loss": 0.6159,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.45126669162610755,
1588
+ "grad_norm": 0.08738122880458832,
1589
+ "learning_rate": 8.726027397260275e-06,
1590
+ "loss": 0.6383,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.45326344689878945,
1595
+ "grad_norm": 0.08093910664319992,
1596
+ "learning_rate": 8.719178082191782e-06,
1597
+ "loss": 0.6863,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.45526020217147134,
1602
+ "grad_norm": 0.0844852477312088,
1603
+ "learning_rate": 8.712328767123288e-06,
1604
+ "loss": 0.6308,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.45725695744415323,
1609
+ "grad_norm": 0.0834694430232048,
1610
+ "learning_rate": 8.705479452054795e-06,
1611
+ "loss": 0.647,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.4592537127168351,
1616
+ "grad_norm": 0.08448044210672379,
1617
+ "learning_rate": 8.698630136986302e-06,
1618
+ "loss": 0.6408,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.461250467989517,
1623
+ "grad_norm": 0.0820637121796608,
1624
+ "learning_rate": 8.69178082191781e-06,
1625
+ "loss": 0.6268,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.4632472232621989,
1630
+ "grad_norm": 0.08034293353557587,
1631
+ "learning_rate": 8.684931506849315e-06,
1632
+ "loss": 0.6308,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.4652439785348808,
1637
+ "grad_norm": 0.08095631003379822,
1638
+ "learning_rate": 8.678082191780822e-06,
1639
+ "loss": 0.6236,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.4672407338075627,
1644
+ "grad_norm": 0.08462950587272644,
1645
+ "learning_rate": 8.67123287671233e-06,
1646
+ "loss": 0.6479,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.4692374890802446,
1651
+ "grad_norm": 0.07999172806739807,
1652
+ "learning_rate": 8.664383561643837e-06,
1653
+ "loss": 0.6523,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.4712342443529265,
1658
+ "grad_norm": 0.08923690766096115,
1659
+ "learning_rate": 8.657534246575343e-06,
1660
+ "loss": 0.634,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.4732309996256084,
1665
+ "grad_norm": 0.08821967989206314,
1666
+ "learning_rate": 8.65068493150685e-06,
1667
+ "loss": 0.6412,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.4752277548982903,
1672
+ "grad_norm": 0.08308009803295135,
1673
+ "learning_rate": 8.643835616438357e-06,
1674
+ "loss": 0.5984,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.47722451017097217,
1679
+ "grad_norm": 0.08100554347038269,
1680
+ "learning_rate": 8.636986301369864e-06,
1681
+ "loss": 0.6221,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.47922126544365407,
1686
+ "grad_norm": 0.08808869123458862,
1687
+ "learning_rate": 8.63013698630137e-06,
1688
+ "loss": 0.6387,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.48121802071633596,
1693
+ "grad_norm": 0.08174411207437515,
1694
+ "learning_rate": 8.623287671232877e-06,
1695
+ "loss": 0.6384,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.48321477598901785,
1700
+ "grad_norm": 0.08261357247829437,
1701
+ "learning_rate": 8.616438356164385e-06,
1702
+ "loss": 0.6512,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.48521153126169975,
1707
+ "grad_norm": 0.0868501365184784,
1708
+ "learning_rate": 8.609589041095892e-06,
1709
+ "loss": 0.6355,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.48720828653438164,
1714
+ "grad_norm": 0.07903306931257248,
1715
+ "learning_rate": 8.602739726027397e-06,
1716
+ "loss": 0.6758,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.48920504180706353,
1721
+ "grad_norm": 0.0908120647072792,
1722
+ "learning_rate": 8.595890410958905e-06,
1723
+ "loss": 0.6165,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.49120179707974543,
1728
+ "grad_norm": 0.08266864717006683,
1729
+ "learning_rate": 8.589041095890412e-06,
1730
+ "loss": 0.6642,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.4931985523524273,
1735
+ "grad_norm": 0.08055173605680466,
1736
+ "learning_rate": 8.58219178082192e-06,
1737
+ "loss": 0.617,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.4951953076251092,
1742
+ "grad_norm": 0.08168390393257141,
1743
+ "learning_rate": 8.575342465753425e-06,
1744
+ "loss": 0.6268,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.4971920628977911,
1749
+ "grad_norm": 0.0787629634141922,
1750
+ "learning_rate": 8.568493150684932e-06,
1751
+ "loss": 0.6398,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.499188818170473,
1756
+ "grad_norm": 0.09043371677398682,
1757
+ "learning_rate": 8.56164383561644e-06,
1758
+ "loss": 0.6239,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.5011855734431548,
1763
+ "grad_norm": 0.08357525616884232,
1764
+ "learning_rate": 8.554794520547945e-06,
1765
+ "loss": 0.659,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.5031823287158368,
1770
+ "grad_norm": 0.09504301100969315,
1771
+ "learning_rate": 8.547945205479454e-06,
1772
+ "loss": 0.6239,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.5051790839885186,
1777
+ "grad_norm": 0.08067186176776886,
1778
+ "learning_rate": 8.54109589041096e-06,
1779
+ "loss": 0.6158,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.5071758392612006,
1784
+ "grad_norm": 0.08868859708309174,
1785
+ "learning_rate": 8.534246575342467e-06,
1786
+ "loss": 0.6434,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.5091725945338824,
1791
+ "grad_norm": 0.08489713072776794,
1792
+ "learning_rate": 8.527397260273972e-06,
1793
+ "loss": 0.6417,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.5111693498065644,
1798
+ "grad_norm": 0.08246369659900665,
1799
+ "learning_rate": 8.520547945205481e-06,
1800
+ "loss": 0.6137,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.5131661050792462,
1805
+ "grad_norm": 0.08800794929265976,
1806
+ "learning_rate": 8.513698630136987e-06,
1807
+ "loss": 0.622,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.5151628603519282,
1812
+ "grad_norm": 0.0991496592760086,
1813
+ "learning_rate": 8.506849315068494e-06,
1814
+ "loss": 0.6392,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.51715961562461,
1819
+ "grad_norm": 0.09626424312591553,
1820
+ "learning_rate": 8.5e-06,
1821
+ "loss": 0.6226,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.5191563708972919,
1826
+ "grad_norm": 0.08874102681875229,
1827
+ "learning_rate": 8.493150684931507e-06,
1828
+ "loss": 0.6269,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.5211531261699738,
1833
+ "grad_norm": 0.0876912996172905,
1834
+ "learning_rate": 8.486301369863015e-06,
1835
+ "loss": 0.6441,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.5231498814426557,
1840
+ "grad_norm": 0.08492390066385269,
1841
+ "learning_rate": 8.479452054794522e-06,
1842
+ "loss": 0.6558,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.5251466367153376,
1847
+ "grad_norm": 0.08091188222169876,
1848
+ "learning_rate": 8.472602739726027e-06,
1849
+ "loss": 0.6603,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.5271433919880195,
1854
+ "grad_norm": 0.08319351822137833,
1855
+ "learning_rate": 8.465753424657535e-06,
1856
+ "loss": 0.6495,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.5291401472607014,
1861
+ "grad_norm": 0.08336567878723145,
1862
+ "learning_rate": 8.458904109589042e-06,
1863
+ "loss": 0.6361,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.5311369025333833,
1868
+ "grad_norm": 0.0845741406083107,
1869
+ "learning_rate": 8.45205479452055e-06,
1870
+ "loss": 0.6435,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.5331336578060651,
1875
+ "grad_norm": 0.08287670463323593,
1876
+ "learning_rate": 8.445205479452055e-06,
1877
+ "loss": 0.6368,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.5351304130787471,
1882
+ "grad_norm": 0.17075520753860474,
1883
+ "learning_rate": 8.438356164383562e-06,
1884
+ "loss": 0.6565,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.5371271683514289,
1889
+ "grad_norm": 0.08212152868509293,
1890
+ "learning_rate": 8.43150684931507e-06,
1891
+ "loss": 0.6207,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.5391239236241108,
1896
+ "grad_norm": 0.08784583956003189,
1897
+ "learning_rate": 8.424657534246577e-06,
1898
+ "loss": 0.633,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.5411206788967927,
1903
+ "grad_norm": 0.08179745078086853,
1904
+ "learning_rate": 8.417808219178082e-06,
1905
+ "loss": 0.6232,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.5431174341694746,
1910
+ "grad_norm": 0.08889183402061462,
1911
+ "learning_rate": 8.41095890410959e-06,
1912
+ "loss": 0.6284,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.5451141894421565,
1917
+ "grad_norm": 0.0841706246137619,
1918
+ "learning_rate": 8.404109589041097e-06,
1919
+ "loss": 0.621,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.5471109447148383,
1924
+ "grad_norm": 0.0807892307639122,
1925
+ "learning_rate": 8.397260273972604e-06,
1926
+ "loss": 0.629,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.5491076999875203,
1931
+ "grad_norm": 0.09147186577320099,
1932
+ "learning_rate": 8.39041095890411e-06,
1933
+ "loss": 0.6723,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.5511044552602021,
1938
+ "grad_norm": 0.10155276209115982,
1939
+ "learning_rate": 8.383561643835617e-06,
1940
+ "loss": 0.6366,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.5531012105328841,
1945
+ "grad_norm": 0.08878958970308304,
1946
+ "learning_rate": 8.376712328767124e-06,
1947
+ "loss": 0.6082,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.5550979658055659,
1952
+ "grad_norm": 0.08273486793041229,
1953
+ "learning_rate": 8.36986301369863e-06,
1954
+ "loss": 0.6477,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.5570947210782479,
1959
+ "grad_norm": 0.08911009132862091,
1960
+ "learning_rate": 8.363013698630137e-06,
1961
+ "loss": 0.641,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.5590914763509297,
1966
+ "grad_norm": 0.08673524856567383,
1967
+ "learning_rate": 8.356164383561644e-06,
1968
+ "loss": 0.6658,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.5610882316236117,
1973
+ "grad_norm": 0.0841827318072319,
1974
+ "learning_rate": 8.349315068493152e-06,
1975
+ "loss": 0.6732,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.5630849868962935,
1980
+ "grad_norm": 0.09424469619989395,
1981
+ "learning_rate": 8.342465753424657e-06,
1982
+ "loss": 0.6609,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.5650817421689754,
1987
+ "grad_norm": 0.08211454004049301,
1988
+ "learning_rate": 8.335616438356166e-06,
1989
+ "loss": 0.6376,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.5670784974416573,
1994
+ "grad_norm": 0.07968860119581223,
1995
+ "learning_rate": 8.328767123287672e-06,
1996
+ "loss": 0.6386,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.5690752527143392,
2001
+ "grad_norm": 0.08694186806678772,
2002
+ "learning_rate": 8.32191780821918e-06,
2003
+ "loss": 0.6348,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.5710720079870211,
2008
+ "grad_norm": 0.08228432387113571,
2009
+ "learning_rate": 8.315068493150685e-06,
2010
+ "loss": 0.6388,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.573068763259703,
2015
+ "grad_norm": 0.08904524892568588,
2016
+ "learning_rate": 8.308219178082192e-06,
2017
+ "loss": 0.6369,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.5750655185323849,
2022
+ "grad_norm": 0.07731188088655472,
2023
+ "learning_rate": 8.3013698630137e-06,
2024
+ "loss": 0.5778,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.5770622738050668,
2029
+ "grad_norm": 0.12828634679317474,
2030
+ "learning_rate": 8.294520547945207e-06,
2031
+ "loss": 0.6044,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.5790590290777486,
2036
+ "grad_norm": 0.09142670780420303,
2037
+ "learning_rate": 8.287671232876712e-06,
2038
+ "loss": 0.612,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.5810557843504306,
2043
+ "grad_norm": 0.08378866314888,
2044
+ "learning_rate": 8.28082191780822e-06,
2045
+ "loss": 0.5937,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.5830525396231124,
2050
+ "grad_norm": 0.08074430376291275,
2051
+ "learning_rate": 8.273972602739727e-06,
2052
+ "loss": 0.626,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.5850492948957944,
2057
+ "grad_norm": 0.1017611101269722,
2058
+ "learning_rate": 8.267123287671234e-06,
2059
+ "loss": 0.5893,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.5870460501684762,
2064
+ "grad_norm": 0.08989594131708145,
2065
+ "learning_rate": 8.26027397260274e-06,
2066
+ "loss": 0.6521,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.5890428054411582,
2071
+ "grad_norm": 0.08201949298381805,
2072
+ "learning_rate": 8.253424657534247e-06,
2073
+ "loss": 0.6315,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.59103956071384,
2078
+ "grad_norm": 0.08401259034872055,
2079
+ "learning_rate": 8.246575342465754e-06,
2080
+ "loss": 0.6177,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.593036315986522,
2085
+ "grad_norm": 0.10680308938026428,
2086
+ "learning_rate": 8.239726027397262e-06,
2087
+ "loss": 0.646,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.5950330712592038,
2092
+ "grad_norm": 0.09091546386480331,
2093
+ "learning_rate": 8.232876712328767e-06,
2094
+ "loss": 0.6334,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.5970298265318856,
2099
+ "grad_norm": 0.08410380780696869,
2100
+ "learning_rate": 8.226027397260274e-06,
2101
+ "loss": 0.6465,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.5990265818045676,
2106
+ "grad_norm": 0.08529913425445557,
2107
+ "learning_rate": 8.219178082191782e-06,
2108
+ "loss": 0.6545,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.6010233370772494,
2113
+ "grad_norm": 0.08057110011577606,
2114
+ "learning_rate": 8.212328767123289e-06,
2115
+ "loss": 0.6415,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.6030200923499314,
2120
+ "grad_norm": 0.08814297616481781,
2121
+ "learning_rate": 8.205479452054795e-06,
2122
+ "loss": 0.6522,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.6050168476226132,
2127
+ "grad_norm": 0.08834853768348694,
2128
+ "learning_rate": 8.198630136986302e-06,
2129
+ "loss": 0.6369,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.6070136028952952,
2134
+ "grad_norm": 0.08998329937458038,
2135
+ "learning_rate": 8.19178082191781e-06,
2136
+ "loss": 0.6136,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.609010358167977,
2141
+ "grad_norm": 0.08033844828605652,
2142
+ "learning_rate": 8.184931506849316e-06,
2143
+ "loss": 0.6479,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.6110071134406589,
2148
+ "grad_norm": 0.08053375780582428,
2149
+ "learning_rate": 8.178082191780822e-06,
2150
+ "loss": 0.6177,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.6130038687133408,
2155
+ "grad_norm": 0.08807919919490814,
2156
+ "learning_rate": 8.17123287671233e-06,
2157
+ "loss": 0.6227,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.6150006239860227,
2162
+ "grad_norm": 0.09442495554685593,
2163
+ "learning_rate": 8.164383561643837e-06,
2164
+ "loss": 0.6372,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.6169973792587046,
2169
+ "grad_norm": 0.08191791921854019,
2170
+ "learning_rate": 8.157534246575342e-06,
2171
+ "loss": 0.6146,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.6189941345313865,
2176
+ "grad_norm": 0.08474911749362946,
2177
+ "learning_rate": 8.150684931506851e-06,
2178
+ "loss": 0.6334,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.6209908898040684,
2183
+ "grad_norm": 0.0809718444943428,
2184
+ "learning_rate": 8.143835616438357e-06,
2185
+ "loss": 0.6417,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.6229876450767503,
2190
+ "grad_norm": 0.09069975465536118,
2191
+ "learning_rate": 8.136986301369864e-06,
2192
+ "loss": 0.6224,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.6249844003494321,
2197
+ "grad_norm": 0.08229870349168777,
2198
+ "learning_rate": 8.13013698630137e-06,
2199
+ "loss": 0.6477,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.6269811556221141,
2204
+ "grad_norm": 0.0842418447136879,
2205
+ "learning_rate": 8.123287671232879e-06,
2206
+ "loss": 0.6155,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.6289779108947959,
2211
+ "grad_norm": 0.09184005856513977,
2212
+ "learning_rate": 8.116438356164384e-06,
2213
+ "loss": 0.6256,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.6309746661674779,
2218
+ "grad_norm": 0.08636561781167984,
2219
+ "learning_rate": 8.109589041095892e-06,
2220
+ "loss": 0.6178,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.6329714214401597,
2225
+ "grad_norm": 0.08534813672304153,
2226
+ "learning_rate": 8.102739726027397e-06,
2227
+ "loss": 0.6478,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.6349681767128417,
2232
+ "grad_norm": 0.07706432789564133,
2233
+ "learning_rate": 8.095890410958904e-06,
2234
+ "loss": 0.6434,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.6369649319855235,
2239
+ "grad_norm": 0.09776600450277328,
2240
+ "learning_rate": 8.089041095890412e-06,
2241
+ "loss": 0.6417,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.6389616872582055,
2246
+ "grad_norm": 0.08862747251987457,
2247
+ "learning_rate": 8.082191780821919e-06,
2248
+ "loss": 0.6475,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.6409584425308873,
2253
+ "grad_norm": 0.08816659450531006,
2254
+ "learning_rate": 8.075342465753425e-06,
2255
+ "loss": 0.6326,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.6429551978035692,
2260
+ "grad_norm": 0.1188221126794815,
2261
+ "learning_rate": 8.068493150684932e-06,
2262
+ "loss": 0.6336,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.6449519530762511,
2267
+ "grad_norm": 0.09697777777910233,
2268
+ "learning_rate": 8.061643835616439e-06,
2269
+ "loss": 0.5971,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.646948708348933,
2274
+ "grad_norm": 0.08567334711551666,
2275
+ "learning_rate": 8.054794520547946e-06,
2276
+ "loss": 0.6417,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.6489454636216149,
2281
+ "grad_norm": 0.0873376801609993,
2282
+ "learning_rate": 8.047945205479452e-06,
2283
+ "loss": 0.613,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.6509422188942968,
2288
+ "grad_norm": 0.08814659714698792,
2289
+ "learning_rate": 8.04109589041096e-06,
2290
+ "loss": 0.6378,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.6529389741669787,
2295
+ "grad_norm": 0.10195590555667877,
2296
+ "learning_rate": 8.034246575342467e-06,
2297
+ "loss": 0.616,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.6549357294396605,
2302
+ "grad_norm": 0.09628842771053314,
2303
+ "learning_rate": 8.027397260273974e-06,
2304
+ "loss": 0.6555,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.6569324847123424,
2309
+ "grad_norm": 0.09534582495689392,
2310
+ "learning_rate": 8.02054794520548e-06,
2311
+ "loss": 0.6322,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.6589292399850243,
2316
+ "grad_norm": 0.08554988354444504,
2317
+ "learning_rate": 8.013698630136987e-06,
2318
+ "loss": 0.6686,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 0.6609259952577062,
2323
+ "grad_norm": 0.08279106765985489,
2324
+ "learning_rate": 8.006849315068494e-06,
2325
+ "loss": 0.6272,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 0.6629227505303881,
2330
+ "grad_norm": 0.0819801315665245,
2331
+ "learning_rate": 8.000000000000001e-06,
2332
+ "loss": 0.6284,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 0.66491950580307,
2337
+ "grad_norm": 0.10195945203304291,
2338
+ "learning_rate": 7.993150684931507e-06,
2339
+ "loss": 0.6218,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 0.6669162610757519,
2344
+ "grad_norm": 0.08146601915359497,
2345
+ "learning_rate": 7.986301369863014e-06,
2346
+ "loss": 0.631,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 0.6689130163484338,
2351
+ "grad_norm": 0.08729390054941177,
2352
+ "learning_rate": 7.979452054794521e-06,
2353
+ "loss": 0.6534,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 0.6709097716211156,
2358
+ "grad_norm": 0.09326784312725067,
2359
+ "learning_rate": 7.972602739726027e-06,
2360
+ "loss": 0.6107,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 0.6729065268937976,
2365
+ "grad_norm": 0.08763978630304337,
2366
+ "learning_rate": 7.965753424657534e-06,
2367
+ "loss": 0.6302,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 0.6749032821664794,
2372
+ "grad_norm": 0.0776083841919899,
2373
+ "learning_rate": 7.958904109589042e-06,
2374
+ "loss": 0.6259,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 0.6769000374391614,
2379
+ "grad_norm": 0.08602346479892731,
2380
+ "learning_rate": 7.952054794520549e-06,
2381
+ "loss": 0.6129,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 0.6788967927118432,
2386
+ "grad_norm": 0.09022011607885361,
2387
+ "learning_rate": 7.945205479452055e-06,
2388
+ "loss": 0.6292,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 0.6808935479845252,
2393
+ "grad_norm": 0.08988498151302338,
2394
+ "learning_rate": 7.938356164383564e-06,
2395
+ "loss": 0.6245,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 0.682890303257207,
2400
+ "grad_norm": 0.10817273706197739,
2401
+ "learning_rate": 7.931506849315069e-06,
2402
+ "loss": 0.6399,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 0.684887058529889,
2407
+ "grad_norm": 0.0887124165892601,
2408
+ "learning_rate": 7.924657534246576e-06,
2409
+ "loss": 0.6235,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 0.6868838138025708,
2414
+ "grad_norm": 0.09099099785089493,
2415
+ "learning_rate": 7.917808219178082e-06,
2416
+ "loss": 0.6446,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 0.6888805690752527,
2421
+ "grad_norm": 0.08027100563049316,
2422
+ "learning_rate": 7.910958904109591e-06,
2423
+ "loss": 0.6331,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 0.6908773243479346,
2428
+ "grad_norm": 0.08706498146057129,
2429
+ "learning_rate": 7.904109589041097e-06,
2430
+ "loss": 0.6098,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 0.6928740796206165,
2435
+ "grad_norm": 0.08696519583463669,
2436
+ "learning_rate": 7.897260273972604e-06,
2437
+ "loss": 0.621,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 0.6948708348932984,
2442
+ "grad_norm": 0.09188802540302277,
2443
+ "learning_rate": 7.89041095890411e-06,
2444
+ "loss": 0.6342,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 0.6968675901659803,
2449
+ "grad_norm": 0.09153212606906891,
2450
+ "learning_rate": 7.883561643835617e-06,
2451
+ "loss": 0.6569,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 0.6988643454386622,
2456
+ "grad_norm": 0.10127896070480347,
2457
+ "learning_rate": 7.876712328767124e-06,
2458
+ "loss": 0.6281,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 0.7008611007113441,
2463
+ "grad_norm": 0.10001371800899506,
2464
+ "learning_rate": 7.869863013698631e-06,
2465
+ "loss": 0.6669,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 0.702857855984026,
2470
+ "grad_norm": 0.08944805711507797,
2471
+ "learning_rate": 7.863013698630137e-06,
2472
+ "loss": 0.6561,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 0.7048546112567079,
2477
+ "grad_norm": 0.1012006402015686,
2478
+ "learning_rate": 7.856164383561644e-06,
2479
+ "loss": 0.6303,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 0.7068513665293897,
2484
+ "grad_norm": 0.08384621888399124,
2485
+ "learning_rate": 7.849315068493151e-06,
2486
+ "loss": 0.6044,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 0.7088481218020717,
2491
+ "grad_norm": 0.10328217595815659,
2492
+ "learning_rate": 7.842465753424659e-06,
2493
+ "loss": 0.6311,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 0.7108448770747535,
2498
+ "grad_norm": 0.09059418737888336,
2499
+ "learning_rate": 7.835616438356164e-06,
2500
+ "loss": 0.6575,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 0.7128416323474355,
2505
+ "grad_norm": 0.09650541841983795,
2506
+ "learning_rate": 7.828767123287672e-06,
2507
+ "loss": 0.6305,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 0.7148383876201173,
2512
+ "grad_norm": 0.08358507603406906,
2513
+ "learning_rate": 7.821917808219179e-06,
2514
+ "loss": 0.6182,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 0.7168351428927991,
2519
+ "grad_norm": 0.10657758265733719,
2520
+ "learning_rate": 7.815068493150686e-06,
2521
+ "loss": 0.6341,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 0.7188318981654811,
2526
+ "grad_norm": 0.09342513978481293,
2527
+ "learning_rate": 7.808219178082192e-06,
2528
+ "loss": 0.6292,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 0.7208286534381629,
2533
+ "grad_norm": 0.08470805734395981,
2534
+ "learning_rate": 7.801369863013699e-06,
2535
+ "loss": 0.6188,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 0.7228254087108449,
2540
+ "grad_norm": 0.0813937783241272,
2541
+ "learning_rate": 7.794520547945206e-06,
2542
+ "loss": 0.6133,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 0.7248221639835267,
2547
+ "grad_norm": 0.08287567645311356,
2548
+ "learning_rate": 7.787671232876714e-06,
2549
+ "loss": 0.6281,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 0.7268189192562087,
2554
+ "grad_norm": 0.09619621187448502,
2555
+ "learning_rate": 7.78082191780822e-06,
2556
+ "loss": 0.6386,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 0.7288156745288905,
2561
+ "grad_norm": 0.10158401727676392,
2562
+ "learning_rate": 7.773972602739727e-06,
2563
+ "loss": 0.6355,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 0.7308124298015725,
2568
+ "grad_norm": 0.09512092918157578,
2569
+ "learning_rate": 7.767123287671234e-06,
2570
+ "loss": 0.6112,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 0.7328091850742543,
2575
+ "grad_norm": 0.08900922536849976,
2576
+ "learning_rate": 7.76027397260274e-06,
2577
+ "loss": 0.6219,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 0.7348059403469362,
2582
+ "grad_norm": 0.08434482663869858,
2583
+ "learning_rate": 7.753424657534248e-06,
2584
+ "loss": 0.6343,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 0.7368026956196181,
2589
+ "grad_norm": 0.08434830605983734,
2590
+ "learning_rate": 7.746575342465754e-06,
2591
+ "loss": 0.6218,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 0.7387994508923,
2596
+ "grad_norm": 0.08528321981430054,
2597
+ "learning_rate": 7.739726027397261e-06,
2598
+ "loss": 0.6285,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 0.7407962061649819,
2603
+ "grad_norm": 0.0943007618188858,
2604
+ "learning_rate": 7.732876712328767e-06,
2605
+ "loss": 0.611,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 0.7427929614376638,
2610
+ "grad_norm": 0.09442902356386185,
2611
+ "learning_rate": 7.726027397260276e-06,
2612
+ "loss": 0.6212,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 0.7447897167103457,
2617
+ "grad_norm": 0.09973379969596863,
2618
+ "learning_rate": 7.719178082191781e-06,
2619
+ "loss": 0.6493,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 0.7467864719830276,
2624
+ "grad_norm": 0.09333740174770355,
2625
+ "learning_rate": 7.712328767123289e-06,
2626
+ "loss": 0.6189,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 0.7487832272557094,
2631
+ "grad_norm": 0.07975912094116211,
2632
+ "learning_rate": 7.705479452054794e-06,
2633
+ "loss": 0.5907,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 0.7507799825283914,
2638
+ "grad_norm": 0.09251334518194199,
2639
+ "learning_rate": 7.698630136986302e-06,
2640
+ "loss": 0.6249,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 0.7527767378010732,
2645
+ "grad_norm": 0.0966658890247345,
2646
+ "learning_rate": 7.691780821917809e-06,
2647
+ "loss": 0.6074,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 0.7547734930737552,
2652
+ "grad_norm": 0.09172848612070084,
2653
+ "learning_rate": 7.684931506849316e-06,
2654
+ "loss": 0.6623,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 0.756770248346437,
2659
+ "grad_norm": 0.0874529704451561,
2660
+ "learning_rate": 7.678082191780822e-06,
2661
+ "loss": 0.6219,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 0.758767003619119,
2666
+ "grad_norm": 0.08857685327529907,
2667
+ "learning_rate": 7.671232876712329e-06,
2668
+ "loss": 0.6153,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 0.7607637588918008,
2673
+ "grad_norm": 0.08565176278352737,
2674
+ "learning_rate": 7.664383561643836e-06,
2675
+ "loss": 0.6378,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 0.7627605141644828,
2680
+ "grad_norm": 0.09114093333482742,
2681
+ "learning_rate": 7.657534246575344e-06,
2682
+ "loss": 0.6344,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 0.7647572694371646,
2687
+ "grad_norm": 0.0963209792971611,
2688
+ "learning_rate": 7.65068493150685e-06,
2689
+ "loss": 0.6565,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 0.7667540247098465,
2694
+ "grad_norm": 0.08320071548223495,
2695
+ "learning_rate": 7.643835616438356e-06,
2696
+ "loss": 0.6533,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 0.7687507799825284,
2701
+ "grad_norm": 0.08294820040464401,
2702
+ "learning_rate": 7.636986301369864e-06,
2703
+ "loss": 0.6681,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 0.7707475352552103,
2708
+ "grad_norm": 0.08448363840579987,
2709
+ "learning_rate": 7.630136986301371e-06,
2710
+ "loss": 0.6294,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 0.7727442905278922,
2715
+ "grad_norm": 0.09567107260227203,
2716
+ "learning_rate": 7.6232876712328775e-06,
2717
+ "loss": 0.6301,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 0.774741045800574,
2722
+ "grad_norm": 0.08810196071863174,
2723
+ "learning_rate": 7.616438356164384e-06,
2724
+ "loss": 0.633,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 0.776737801073256,
2729
+ "grad_norm": 0.08176866173744202,
2730
+ "learning_rate": 7.60958904109589e-06,
2731
+ "loss": 0.6035,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 0.7787345563459378,
2736
+ "grad_norm": 0.09339761734008789,
2737
+ "learning_rate": 7.6027397260273985e-06,
2738
+ "loss": 0.6663,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 0.7807313116186197,
2743
+ "grad_norm": 0.08789702504873276,
2744
+ "learning_rate": 7.595890410958905e-06,
2745
+ "loss": 0.6,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 0.7827280668913016,
2750
+ "grad_norm": 0.08306291699409485,
2751
+ "learning_rate": 7.589041095890411e-06,
2752
+ "loss": 0.6306,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 0.7847248221639835,
2757
+ "grad_norm": 0.09348531812429428,
2758
+ "learning_rate": 7.582191780821918e-06,
2759
+ "loss": 0.6443,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 0.7867215774366654,
2764
+ "grad_norm": 0.08978314697742462,
2765
+ "learning_rate": 7.575342465753426e-06,
2766
+ "loss": 0.6573,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 0.7887183327093473,
2771
+ "grad_norm": 0.08130855113267899,
2772
+ "learning_rate": 7.568493150684932e-06,
2773
+ "loss": 0.5953,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 0.7907150879820292,
2778
+ "grad_norm": 0.0940231904387474,
2779
+ "learning_rate": 7.561643835616439e-06,
2780
+ "loss": 0.6101,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 0.7927118432547111,
2785
+ "grad_norm": 0.08444412052631378,
2786
+ "learning_rate": 7.554794520547945e-06,
2787
+ "loss": 0.6373,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 0.794708598527393,
2792
+ "grad_norm": 0.08339810371398926,
2793
+ "learning_rate": 7.5479452054794526e-06,
2794
+ "loss": 0.5962,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 0.7967053538000749,
2799
+ "grad_norm": 0.09607964754104614,
2800
+ "learning_rate": 7.54109589041096e-06,
2801
+ "loss": 0.6595,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 0.7987021090727567,
2806
+ "grad_norm": 0.0899866372346878,
2807
+ "learning_rate": 7.534246575342466e-06,
2808
+ "loss": 0.6422,
2809
+ "step": 400
2810
+ },
2811
+ {
2812
+ "epoch": 0.8006988643454387,
2813
+ "grad_norm": 0.09215114265680313,
2814
+ "learning_rate": 7.527397260273973e-06,
2815
+ "loss": 0.648,
2816
+ "step": 401
2817
+ },
2818
+ {
2819
+ "epoch": 0.8026956196181205,
2820
+ "grad_norm": 0.09480249136686325,
2821
+ "learning_rate": 7.52054794520548e-06,
2822
+ "loss": 0.6101,
2823
+ "step": 402
2824
+ },
2825
+ {
2826
+ "epoch": 0.8046923748908025,
2827
+ "grad_norm": 0.08409575372934341,
2828
+ "learning_rate": 7.513698630136987e-06,
2829
+ "loss": 0.6149,
2830
+ "step": 403
2831
+ },
2832
+ {
2833
+ "epoch": 0.8066891301634843,
2834
+ "grad_norm": 0.09122111648321152,
2835
+ "learning_rate": 7.506849315068494e-06,
2836
+ "loss": 0.6078,
2837
+ "step": 404
2838
+ },
2839
+ {
2840
+ "epoch": 0.8086858854361663,
2841
+ "grad_norm": 0.08759909123182297,
2842
+ "learning_rate": 7.500000000000001e-06,
2843
+ "loss": 0.664,
2844
+ "step": 405
2845
+ },
2846
+ {
2847
+ "epoch": 0.8106826407088481,
2848
+ "grad_norm": 0.08290824294090271,
2849
+ "learning_rate": 7.4931506849315075e-06,
2850
+ "loss": 0.6229,
2851
+ "step": 406
2852
+ },
2853
+ {
2854
+ "epoch": 0.81267939598153,
2855
+ "grad_norm": 0.10028953105211258,
2856
+ "learning_rate": 7.486301369863014e-06,
2857
+ "loss": 0.6266,
2858
+ "step": 407
2859
+ },
2860
+ {
2861
+ "epoch": 0.8146761512542119,
2862
+ "grad_norm": 0.10031448304653168,
2863
+ "learning_rate": 7.479452054794521e-06,
2864
+ "loss": 0.6356,
2865
+ "step": 408
2866
+ },
2867
+ {
2868
+ "epoch": 0.8166729065268938,
2869
+ "grad_norm": 0.08541914820671082,
2870
+ "learning_rate": 7.4726027397260285e-06,
2871
+ "loss": 0.6375,
2872
+ "step": 409
2873
+ },
2874
+ {
2875
+ "epoch": 0.8186696617995757,
2876
+ "grad_norm": 0.08713380247354507,
2877
+ "learning_rate": 7.465753424657535e-06,
2878
+ "loss": 0.6394,
2879
+ "step": 410
2880
+ },
2881
+ {
2882
+ "epoch": 0.8206664170722576,
2883
+ "grad_norm": 0.09178909659385681,
2884
+ "learning_rate": 7.458904109589041e-06,
2885
+ "loss": 0.5901,
2886
+ "step": 411
2887
+ },
2888
+ {
2889
+ "epoch": 0.8226631723449395,
2890
+ "grad_norm": 0.08403053879737854,
2891
+ "learning_rate": 7.452054794520549e-06,
2892
+ "loss": 0.6128,
2893
+ "step": 412
2894
+ },
2895
+ {
2896
+ "epoch": 0.8246599276176214,
2897
+ "grad_norm": 0.09222221374511719,
2898
+ "learning_rate": 7.445205479452056e-06,
2899
+ "loss": 0.6172,
2900
+ "step": 413
2901
+ },
2902
+ {
2903
+ "epoch": 0.8266566828903033,
2904
+ "grad_norm": 0.07988160848617554,
2905
+ "learning_rate": 7.438356164383562e-06,
2906
+ "loss": 0.6301,
2907
+ "step": 414
2908
+ },
2909
+ {
2910
+ "epoch": 0.8286534381629852,
2911
+ "grad_norm": 0.08793946355581284,
2912
+ "learning_rate": 7.431506849315069e-06,
2913
+ "loss": 0.6482,
2914
+ "step": 415
2915
+ },
2916
+ {
2917
+ "epoch": 0.830650193435667,
2918
+ "grad_norm": 0.08366432040929794,
2919
+ "learning_rate": 7.424657534246575e-06,
2920
+ "loss": 0.63,
2921
+ "step": 416
2922
+ },
2923
+ {
2924
+ "epoch": 0.832646948708349,
2925
+ "grad_norm": 0.08675362914800644,
2926
+ "learning_rate": 7.417808219178083e-06,
2927
+ "loss": 0.6145,
2928
+ "step": 417
2929
+ },
2930
+ {
2931
+ "epoch": 0.8346437039810308,
2932
+ "grad_norm": 0.08647222071886063,
2933
+ "learning_rate": 7.41095890410959e-06,
2934
+ "loss": 0.6525,
2935
+ "step": 418
2936
+ },
2937
+ {
2938
+ "epoch": 0.8366404592537127,
2939
+ "grad_norm": 0.08656927198171616,
2940
+ "learning_rate": 7.404109589041096e-06,
2941
+ "loss": 0.6316,
2942
+ "step": 419
2943
+ },
2944
+ {
2945
+ "epoch": 0.8386372145263946,
2946
+ "grad_norm": 0.10375358909368515,
2947
+ "learning_rate": 7.397260273972603e-06,
2948
+ "loss": 0.632,
2949
+ "step": 420
2950
+ },
2951
+ {
2952
+ "epoch": 0.8406339697990765,
2953
+ "grad_norm": 0.08459735661745071,
2954
+ "learning_rate": 7.390410958904111e-06,
2955
+ "loss": 0.6264,
2956
+ "step": 421
2957
+ },
2958
+ {
2959
+ "epoch": 0.8426307250717584,
2960
+ "grad_norm": 0.08126968145370483,
2961
+ "learning_rate": 7.383561643835617e-06,
2962
+ "loss": 0.6052,
2963
+ "step": 422
2964
+ },
2965
+ {
2966
+ "epoch": 0.8446274803444402,
2967
+ "grad_norm": 0.08688778430223465,
2968
+ "learning_rate": 7.376712328767124e-06,
2969
+ "loss": 0.6554,
2970
+ "step": 423
2971
+ },
2972
+ {
2973
+ "epoch": 0.8466242356171222,
2974
+ "grad_norm": 0.08540894836187363,
2975
+ "learning_rate": 7.36986301369863e-06,
2976
+ "loss": 0.6349,
2977
+ "step": 424
2978
+ },
2979
+ {
2980
+ "epoch": 0.848620990889804,
2981
+ "grad_norm": 0.0881495550274849,
2982
+ "learning_rate": 7.3630136986301374e-06,
2983
+ "loss": 0.6212,
2984
+ "step": 425
2985
+ },
2986
+ {
2987
+ "epoch": 0.850617746162486,
2988
+ "grad_norm": 0.09146378934383392,
2989
+ "learning_rate": 7.356164383561645e-06,
2990
+ "loss": 0.6251,
2991
+ "step": 426
2992
+ },
2993
+ {
2994
+ "epoch": 0.8526145014351678,
2995
+ "grad_norm": 0.08816662430763245,
2996
+ "learning_rate": 7.349315068493151e-06,
2997
+ "loss": 0.6403,
2998
+ "step": 427
2999
+ },
3000
+ {
3001
+ "epoch": 0.8546112567078498,
3002
+ "grad_norm": 0.08613763749599457,
3003
+ "learning_rate": 7.342465753424658e-06,
3004
+ "loss": 0.6314,
3005
+ "step": 428
3006
+ },
3007
+ {
3008
+ "epoch": 0.8566080119805316,
3009
+ "grad_norm": 0.08418456465005875,
3010
+ "learning_rate": 7.335616438356165e-06,
3011
+ "loss": 0.6524,
3012
+ "step": 429
3013
+ },
3014
+ {
3015
+ "epoch": 0.8586047672532136,
3016
+ "grad_norm": 0.08402597904205322,
3017
+ "learning_rate": 7.328767123287672e-06,
3018
+ "loss": 0.6229,
3019
+ "step": 430
3020
+ },
3021
+ {
3022
+ "epoch": 0.8606015225258954,
3023
+ "grad_norm": 0.08308534324169159,
3024
+ "learning_rate": 7.321917808219179e-06,
3025
+ "loss": 0.6203,
3026
+ "step": 431
3027
+ },
3028
+ {
3029
+ "epoch": 0.8625982777985773,
3030
+ "grad_norm": 0.10041052848100662,
3031
+ "learning_rate": 7.315068493150685e-06,
3032
+ "loss": 0.6021,
3033
+ "step": 432
3034
+ },
3035
+ {
3036
+ "epoch": 0.8645950330712592,
3037
+ "grad_norm": 0.10795553028583527,
3038
+ "learning_rate": 7.308219178082192e-06,
3039
+ "loss": 0.6234,
3040
+ "step": 433
3041
+ },
3042
+ {
3043
+ "epoch": 0.8665917883439411,
3044
+ "grad_norm": 0.08625102043151855,
3045
+ "learning_rate": 7.3013698630137e-06,
3046
+ "loss": 0.6344,
3047
+ "step": 434
3048
+ },
3049
+ {
3050
+ "epoch": 0.868588543616623,
3051
+ "grad_norm": 0.08903323858976364,
3052
+ "learning_rate": 7.294520547945206e-06,
3053
+ "loss": 0.6404,
3054
+ "step": 435
3055
+ },
3056
+ {
3057
+ "epoch": 0.8705852988893049,
3058
+ "grad_norm": 0.08824340999126434,
3059
+ "learning_rate": 7.287671232876713e-06,
3060
+ "loss": 0.6542,
3061
+ "step": 436
3062
+ },
3063
+ {
3064
+ "epoch": 0.8725820541619868,
3065
+ "grad_norm": 0.09185468405485153,
3066
+ "learning_rate": 7.28082191780822e-06,
3067
+ "loss": 0.6218,
3068
+ "step": 437
3069
+ },
3070
+ {
3071
+ "epoch": 0.8745788094346687,
3072
+ "grad_norm": 0.08986788243055344,
3073
+ "learning_rate": 7.273972602739726e-06,
3074
+ "loss": 0.6411,
3075
+ "step": 438
3076
+ },
3077
+ {
3078
+ "epoch": 0.8765755647073505,
3079
+ "grad_norm": 0.08936543017625809,
3080
+ "learning_rate": 7.2671232876712335e-06,
3081
+ "loss": 0.614,
3082
+ "step": 439
3083
+ },
3084
+ {
3085
+ "epoch": 0.8785723199800325,
3086
+ "grad_norm": 0.09536322206258774,
3087
+ "learning_rate": 7.260273972602741e-06,
3088
+ "loss": 0.6505,
3089
+ "step": 440
3090
+ },
3091
+ {
3092
+ "epoch": 0.8805690752527143,
3093
+ "grad_norm": 0.08595971018075943,
3094
+ "learning_rate": 7.253424657534247e-06,
3095
+ "loss": 0.6027,
3096
+ "step": 441
3097
+ },
3098
+ {
3099
+ "epoch": 0.8825658305253963,
3100
+ "grad_norm": 0.08551914989948273,
3101
+ "learning_rate": 7.246575342465754e-06,
3102
+ "loss": 0.5974,
3103
+ "step": 442
3104
+ },
3105
+ {
3106
+ "epoch": 0.8845625857980781,
3107
+ "grad_norm": 0.08609256148338318,
3108
+ "learning_rate": 7.239726027397261e-06,
3109
+ "loss": 0.6302,
3110
+ "step": 443
3111
+ },
3112
+ {
3113
+ "epoch": 0.8865593410707601,
3114
+ "grad_norm": 0.09731276333332062,
3115
+ "learning_rate": 7.232876712328768e-06,
3116
+ "loss": 0.6385,
3117
+ "step": 444
3118
+ },
3119
+ {
3120
+ "epoch": 0.8885560963434419,
3121
+ "grad_norm": 0.11011891067028046,
3122
+ "learning_rate": 7.226027397260275e-06,
3123
+ "loss": 0.6109,
3124
+ "step": 445
3125
+ },
3126
+ {
3127
+ "epoch": 0.8905528516161239,
3128
+ "grad_norm": 0.08579560369253159,
3129
+ "learning_rate": 7.219178082191781e-06,
3130
+ "loss": 0.6168,
3131
+ "step": 446
3132
+ },
3133
+ {
3134
+ "epoch": 0.8925496068888057,
3135
+ "grad_norm": 0.08741603791713715,
3136
+ "learning_rate": 7.2123287671232876e-06,
3137
+ "loss": 0.6375,
3138
+ "step": 447
3139
+ },
3140
+ {
3141
+ "epoch": 0.8945463621614875,
3142
+ "grad_norm": 0.08839676529169083,
3143
+ "learning_rate": 7.205479452054796e-06,
3144
+ "loss": 0.6221,
3145
+ "step": 448
3146
+ },
3147
+ {
3148
+ "epoch": 0.8965431174341695,
3149
+ "grad_norm": 0.09800486266613007,
3150
+ "learning_rate": 7.198630136986302e-06,
3151
+ "loss": 0.6525,
3152
+ "step": 449
3153
+ },
3154
+ {
3155
+ "epoch": 0.8985398727068513,
3156
+ "grad_norm": 0.08749247342348099,
3157
+ "learning_rate": 7.191780821917809e-06,
3158
+ "loss": 0.6122,
3159
+ "step": 450
3160
+ },
3161
+ {
3162
+ "epoch": 0.9005366279795333,
3163
+ "grad_norm": 0.08808398246765137,
3164
+ "learning_rate": 7.184931506849315e-06,
3165
+ "loss": 0.6203,
3166
+ "step": 451
3167
+ },
3168
+ {
3169
+ "epoch": 0.9025333832522151,
3170
+ "grad_norm": 0.0888322964310646,
3171
+ "learning_rate": 7.178082191780823e-06,
3172
+ "loss": 0.6496,
3173
+ "step": 452
3174
+ },
3175
+ {
3176
+ "epoch": 0.904530138524897,
3177
+ "grad_norm": 0.08242765069007874,
3178
+ "learning_rate": 7.17123287671233e-06,
3179
+ "loss": 0.6271,
3180
+ "step": 453
3181
+ },
3182
+ {
3183
+ "epoch": 0.9065268937975789,
3184
+ "grad_norm": 0.08684896677732468,
3185
+ "learning_rate": 7.164383561643836e-06,
3186
+ "loss": 0.6436,
3187
+ "step": 454
3188
+ },
3189
+ {
3190
+ "epoch": 0.9085236490702608,
3191
+ "grad_norm": 0.10484038293361664,
3192
+ "learning_rate": 7.1575342465753425e-06,
3193
+ "loss": 0.6502,
3194
+ "step": 455
3195
+ },
3196
+ {
3197
+ "epoch": 0.9105204043429427,
3198
+ "grad_norm": 0.08097124844789505,
3199
+ "learning_rate": 7.15068493150685e-06,
3200
+ "loss": 0.6401,
3201
+ "step": 456
3202
+ },
3203
+ {
3204
+ "epoch": 0.9125171596156246,
3205
+ "grad_norm": 0.08406626433134079,
3206
+ "learning_rate": 7.143835616438357e-06,
3207
+ "loss": 0.6399,
3208
+ "step": 457
3209
+ },
3210
+ {
3211
+ "epoch": 0.9145139148883065,
3212
+ "grad_norm": 0.08640296757221222,
3213
+ "learning_rate": 7.1369863013698635e-06,
3214
+ "loss": 0.6613,
3215
+ "step": 458
3216
+ },
3217
+ {
3218
+ "epoch": 0.9165106701609884,
3219
+ "grad_norm": 0.08418799191713333,
3220
+ "learning_rate": 7.13013698630137e-06,
3221
+ "loss": 0.6334,
3222
+ "step": 459
3223
+ },
3224
+ {
3225
+ "epoch": 0.9185074254336703,
3226
+ "grad_norm": 0.08541527390480042,
3227
+ "learning_rate": 7.123287671232877e-06,
3228
+ "loss": 0.6263,
3229
+ "step": 460
3230
+ },
3231
+ {
3232
+ "epoch": 0.9205041807063522,
3233
+ "grad_norm": 0.09964878857135773,
3234
+ "learning_rate": 7.1164383561643845e-06,
3235
+ "loss": 0.6313,
3236
+ "step": 461
3237
+ },
3238
+ {
3239
+ "epoch": 0.922500935979034,
3240
+ "grad_norm": 0.08737082034349442,
3241
+ "learning_rate": 7.109589041095891e-06,
3242
+ "loss": 0.6295,
3243
+ "step": 462
3244
+ },
3245
+ {
3246
+ "epoch": 0.924497691251716,
3247
+ "grad_norm": 0.08089511096477509,
3248
+ "learning_rate": 7.102739726027398e-06,
3249
+ "loss": 0.6327,
3250
+ "step": 463
3251
+ },
3252
+ {
3253
+ "epoch": 0.9264944465243978,
3254
+ "grad_norm": 0.08780577033758163,
3255
+ "learning_rate": 7.095890410958905e-06,
3256
+ "loss": 0.6457,
3257
+ "step": 464
3258
+ },
3259
+ {
3260
+ "epoch": 0.9284912017970798,
3261
+ "grad_norm": 0.08980534970760345,
3262
+ "learning_rate": 7.089041095890411e-06,
3263
+ "loss": 0.6208,
3264
+ "step": 465
3265
+ },
3266
+ {
3267
+ "epoch": 0.9304879570697616,
3268
+ "grad_norm": 0.08758597820997238,
3269
+ "learning_rate": 7.082191780821918e-06,
3270
+ "loss": 0.6306,
3271
+ "step": 466
3272
+ },
3273
+ {
3274
+ "epoch": 0.9324847123424436,
3275
+ "grad_norm": 0.09077585488557816,
3276
+ "learning_rate": 7.075342465753426e-06,
3277
+ "loss": 0.6196,
3278
+ "step": 467
3279
+ },
3280
+ {
3281
+ "epoch": 0.9344814676151254,
3282
+ "grad_norm": 0.08882813900709152,
3283
+ "learning_rate": 7.068493150684932e-06,
3284
+ "loss": 0.6564,
3285
+ "step": 468
3286
+ },
3287
+ {
3288
+ "epoch": 0.9364782228878074,
3289
+ "grad_norm": 0.08457037806510925,
3290
+ "learning_rate": 7.0616438356164386e-06,
3291
+ "loss": 0.6163,
3292
+ "step": 469
3293
+ },
3294
+ {
3295
+ "epoch": 0.9384749781604892,
3296
+ "grad_norm": 0.08448978513479233,
3297
+ "learning_rate": 7.054794520547946e-06,
3298
+ "loss": 0.6185,
3299
+ "step": 470
3300
+ },
3301
+ {
3302
+ "epoch": 0.9404717334331711,
3303
+ "grad_norm": 0.09043850004673004,
3304
+ "learning_rate": 7.047945205479453e-06,
3305
+ "loss": 0.6508,
3306
+ "step": 471
3307
+ },
3308
+ {
3309
+ "epoch": 0.942468488705853,
3310
+ "grad_norm": 0.0870198905467987,
3311
+ "learning_rate": 7.0410958904109596e-06,
3312
+ "loss": 0.6457,
3313
+ "step": 472
3314
+ },
3315
+ {
3316
+ "epoch": 0.9444652439785349,
3317
+ "grad_norm": 0.09303230792284012,
3318
+ "learning_rate": 7.034246575342466e-06,
3319
+ "loss": 0.6437,
3320
+ "step": 473
3321
+ },
3322
+ {
3323
+ "epoch": 0.9464619992512168,
3324
+ "grad_norm": 0.09160307794809341,
3325
+ "learning_rate": 7.027397260273974e-06,
3326
+ "loss": 0.6648,
3327
+ "step": 474
3328
+ },
3329
+ {
3330
+ "epoch": 0.9484587545238987,
3331
+ "grad_norm": 0.10001704841852188,
3332
+ "learning_rate": 7.020547945205481e-06,
3333
+ "loss": 0.622,
3334
+ "step": 475
3335
+ },
3336
+ {
3337
+ "epoch": 0.9504555097965806,
3338
+ "grad_norm": 0.08349056541919708,
3339
+ "learning_rate": 7.013698630136987e-06,
3340
+ "loss": 0.6618,
3341
+ "step": 476
3342
+ },
3343
+ {
3344
+ "epoch": 0.9524522650692624,
3345
+ "grad_norm": 0.08756298571825027,
3346
+ "learning_rate": 7.0068493150684935e-06,
3347
+ "loss": 0.6304,
3348
+ "step": 477
3349
+ },
3350
+ {
3351
+ "epoch": 0.9544490203419443,
3352
+ "grad_norm": 0.09010770916938782,
3353
+ "learning_rate": 7e-06,
3354
+ "loss": 0.6269,
3355
+ "step": 478
3356
+ },
3357
+ {
3358
+ "epoch": 0.9564457756146262,
3359
+ "grad_norm": 0.09259214997291565,
3360
+ "learning_rate": 6.993150684931508e-06,
3361
+ "loss": 0.6567,
3362
+ "step": 479
3363
+ },
3364
+ {
3365
+ "epoch": 0.9584425308873081,
3366
+ "grad_norm": 0.08488563448190689,
3367
+ "learning_rate": 6.9863013698630145e-06,
3368
+ "loss": 0.5926,
3369
+ "step": 480
3370
+ },
3371
+ {
3372
+ "epoch": 0.96043928615999,
3373
+ "grad_norm": 0.08800887316465378,
3374
+ "learning_rate": 6.979452054794521e-06,
3375
+ "loss": 0.6667,
3376
+ "step": 481
3377
+ },
3378
+ {
3379
+ "epoch": 0.9624360414326719,
3380
+ "grad_norm": 0.09012701362371445,
3381
+ "learning_rate": 6.972602739726027e-06,
3382
+ "loss": 0.6063,
3383
+ "step": 482
3384
+ },
3385
+ {
3386
+ "epoch": 0.9644327967053538,
3387
+ "grad_norm": 0.08592038601636887,
3388
+ "learning_rate": 6.9657534246575355e-06,
3389
+ "loss": 0.6396,
3390
+ "step": 483
3391
+ },
3392
+ {
3393
+ "epoch": 0.9664295519780357,
3394
+ "grad_norm": 0.09730264544487,
3395
+ "learning_rate": 6.958904109589042e-06,
3396
+ "loss": 0.6169,
3397
+ "step": 484
3398
+ },
3399
+ {
3400
+ "epoch": 0.9684263072507175,
3401
+ "grad_norm": 0.08748991042375565,
3402
+ "learning_rate": 6.952054794520548e-06,
3403
+ "loss": 0.6209,
3404
+ "step": 485
3405
+ },
3406
+ {
3407
+ "epoch": 0.9704230625233995,
3408
+ "grad_norm": 0.08917925506830215,
3409
+ "learning_rate": 6.945205479452055e-06,
3410
+ "loss": 0.6248,
3411
+ "step": 486
3412
+ },
3413
+ {
3414
+ "epoch": 0.9724198177960813,
3415
+ "grad_norm": 0.08646436780691147,
3416
+ "learning_rate": 6.938356164383562e-06,
3417
+ "loss": 0.595,
3418
+ "step": 487
3419
+ },
3420
+ {
3421
+ "epoch": 0.9744165730687633,
3422
+ "grad_norm": 0.08982618153095245,
3423
+ "learning_rate": 6.931506849315069e-06,
3424
+ "loss": 0.6173,
3425
+ "step": 488
3426
+ },
3427
+ {
3428
+ "epoch": 0.9764133283414451,
3429
+ "grad_norm": 0.091037318110466,
3430
+ "learning_rate": 6.924657534246576e-06,
3431
+ "loss": 0.6465,
3432
+ "step": 489
3433
+ },
3434
+ {
3435
+ "epoch": 0.9784100836141271,
3436
+ "grad_norm": 0.08660898357629776,
3437
+ "learning_rate": 6.917808219178082e-06,
3438
+ "loss": 0.5961,
3439
+ "step": 490
3440
+ },
3441
+ {
3442
+ "epoch": 0.9804068388868089,
3443
+ "grad_norm": 0.09286137670278549,
3444
+ "learning_rate": 6.9109589041095895e-06,
3445
+ "loss": 0.6001,
3446
+ "step": 491
3447
+ },
3448
+ {
3449
+ "epoch": 0.9824035941594909,
3450
+ "grad_norm": 0.09190206974744797,
3451
+ "learning_rate": 6.904109589041097e-06,
3452
+ "loss": 0.652,
3453
+ "step": 492
3454
+ },
3455
+ {
3456
+ "epoch": 0.9844003494321727,
3457
+ "grad_norm": 0.09255805611610413,
3458
+ "learning_rate": 6.897260273972603e-06,
3459
+ "loss": 0.6105,
3460
+ "step": 493
3461
+ },
3462
+ {
3463
+ "epoch": 0.9863971047048546,
3464
+ "grad_norm": 0.08385660499334335,
3465
+ "learning_rate": 6.8904109589041105e-06,
3466
+ "loss": 0.6054,
3467
+ "step": 494
3468
+ },
3469
+ {
3470
+ "epoch": 0.9883938599775365,
3471
+ "grad_norm": 0.08500760793685913,
3472
+ "learning_rate": 6.883561643835617e-06,
3473
+ "loss": 0.6044,
3474
+ "step": 495
3475
+ },
3476
+ {
3477
+ "epoch": 0.9903906152502184,
3478
+ "grad_norm": 0.08311589807271957,
3479
+ "learning_rate": 6.876712328767123e-06,
3480
+ "loss": 0.6161,
3481
+ "step": 496
3482
+ },
3483
+ {
3484
+ "epoch": 0.9923873705229003,
3485
+ "grad_norm": 0.08439301699399948,
3486
+ "learning_rate": 6.869863013698631e-06,
3487
+ "loss": 0.6253,
3488
+ "step": 497
3489
+ },
3490
+ {
3491
+ "epoch": 0.9943841257955822,
3492
+ "grad_norm": 0.08830545842647552,
3493
+ "learning_rate": 6.863013698630138e-06,
3494
+ "loss": 0.6301,
3495
+ "step": 498
3496
+ },
3497
+ {
3498
+ "epoch": 0.9963808810682641,
3499
+ "grad_norm": 0.08998648822307587,
3500
+ "learning_rate": 6.8561643835616444e-06,
3501
+ "loss": 0.6576,
3502
+ "step": 499
3503
+ },
3504
+ {
3505
+ "epoch": 0.998377636340946,
3506
+ "grad_norm": 0.08443831652402878,
3507
+ "learning_rate": 6.849315068493151e-06,
3508
+ "loss": 0.5919,
3509
+ "step": 500
3510
+ }
3511
+ ],
3512
+ "logging_steps": 1,
3513
+ "max_steps": 1500,
3514
+ "num_input_tokens_seen": 0,
3515
+ "num_train_epochs": 3,
3516
+ "save_steps": 500,
3517
+ "stateful_callbacks": {
3518
+ "TrainerControl": {
3519
+ "args": {
3520
+ "should_epoch_stop": false,
3521
+ "should_evaluate": false,
3522
+ "should_log": false,
3523
+ "should_save": true,
3524
+ "should_training_stop": false
3525
+ },
3526
+ "attributes": {}
3527
+ }
3528
+ },
3529
+ "total_flos": 1.1536860580434412e+18,
3530
+ "train_batch_size": 1,
3531
+ "trial_name": null,
3532
+ "trial_params": null
3533
+ }
checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:754e4ae9d879853457ade197edaf9a4e09b3e2d2a23d8bffcf3f56a687083eb3
3
+ size 6904
checkpoint-500/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-500/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
merges.txt ADDED
The diff for this file is too large to render. See raw diff