#!/usr/bin/env python # coding: utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script creates a tiny random model # # It will be used then as "hf-internal-testing/tiny-albert" # ***To build from scratch*** # # 1. clone sentencepiece into a parent dir # git clone https://github.com/google/sentencepiece # # 2. create a new repo at https://huggingface.co/new # make sure to choose 'hf-internal-testing' as the Owner # # 3. clone # git clone https://huggingface.co/hf-internal-testing/tiny-albert # cd tiny-albert # 4. start with some pre-existing script from one of the https://huggingface.co/hf-internal-testing/ tiny model repos, e.g. # wget https://huggingface.co/hf-internal-testing/tiny-albert/raw/main/make-tiny-albert.py # chmod a+x ./make-tiny-albert.py # mv ./make-tiny-albert.py ./make-tiny-albert.py # # 5. automatically rename things from the old names to new ones # perl -pi -e 's|Deberta|Deberta|g' make-* # perl -pi -e 's|deberta|deberta|g' make-* # # 6. edit and re-run this script while fixing it up # ./make-tiny-deberta.py # # 7. add/commit/push # git add * # git commit -m "new tiny model" # git push # ***To update*** # # 1. clone the existing repo # git clone https://huggingface.co/hf-internal-testing/tiny-deberta # cd tiny-deberta # # 2. edit and re-run this script after doing whatever changes are needed # ./make-tiny-deberta.py # # 3. commit/push # git commit -m "new tiny model" # git push import sys import os # workaround for fast tokenizer protobuf issue, and it's much faster too! os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" from transformers import DebertaTokenizer, DebertaTokenizerFast, DebertaConfig, DebertaForMaskedLM mname_orig = "microsoft/deberta-base" mname_tiny = "tiny-deberta" ### Tokenizer import json from transformers import AutoTokenizer from tokenizers import Tokenizer vocab_keep_items = 5000 tokenizer = AutoTokenizer.from_pretrained(mname_orig, use_fast=True) assert tokenizer.is_fast, "This only works for fast tokenizers." tokenizer_json = json.loads(tokenizer._tokenizer.to_str()) vocab = tokenizer_json["model"]["vocab"] if tokenizer_json["model"]["type"] == "BPE": new_vocab = { token: i for token, i in vocab.items() if i < vocab_keep_items } merges = tokenizer_json["model"]["merges"] new_merges = [] for i in range(len(merges)): a, b = merges[i].split() new_token = "".join((a, b)) if a in new_vocab and b in new_vocab and new_token in new_vocab: new_merges.append(merges[i]) tokenizer_json["model"]["merges"] = new_merges elif tokenizer_json["model"]["type"] == "Unigram": new_vocab = vocab[:vocab_keep_items] elif tokenizer_json["model"]["type"] == "WordPiece" or tokenizer_json["model"]["type"] == "WordLevel": new_vocab = { token: i for token, i in vocab.items() if i < vocab_keep_items } else: raise ValueError(f"don't know how to handle {tokenizer_json['model']['type']}") tokenizer_json["model"]["vocab"] = new_vocab tokenizer._tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json)) tokenizer_fast_tiny = tokenizer ### Config config_tiny = DebertaConfig.from_pretrained(mname_orig) print(config_tiny) # remember to update this to the actual config as each model is different and then shrink the numbers config_tiny.update(dict( vocab_size=vocab_keep_items, embedding_size=32, pooler_size=32, hidden_size=32, intermediate_size=64, max_position_embeddings=128, num_attention_heads=2, num_hidden_layers=2, )) print("New config", config_tiny) ### Model model_tiny = DebertaForMaskedLM(config_tiny) print(f"{mname_tiny}: num of params {model_tiny.num_parameters()}") model_tiny.resize_token_embeddings(len(tokenizer_fast_tiny)) # Test inputs = tokenizer_fast_tiny("The capital of France is [MASK].", return_tensors="pt") #print(inputs) outputs = model_tiny(**inputs) print("Test with normal tokenizer:", len(outputs.logits[0])) # Save model_tiny.half() # makes it smaller model_tiny.save_pretrained(".") tokenizer_fast_tiny.save_pretrained(".") #print(model_tiny) readme = "README.md" if not os.path.exists(readme): with open(readme, "w") as f: f.write(f"This is a {mname_tiny} random model to be used for basic testing.\n") print(f"Generated {mname_tiny}")