Upload 2 files
Browse files- app.py +380 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
AI Python Code Model Trainer
|
| 3 |
+
Hugging Face Space for continuous training with auto-resume
|
| 4 |
+
Username: himu1780 | Model: ai-python-model
|
| 5 |
+
|
| 6 |
+
FINAL VERSION - All optimizations applied
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
import gc
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import threading
|
| 13 |
+
import time
|
| 14 |
+
from datetime import datetime
|
| 15 |
+
from huggingface_hub import HfApi, login
|
| 16 |
+
from transformers import (
|
| 17 |
+
AutoModelForCausalLM,
|
| 18 |
+
AutoTokenizer,
|
| 19 |
+
TrainingArguments,
|
| 20 |
+
Trainer,
|
| 21 |
+
DataCollatorForLanguageModeling,
|
| 22 |
+
)
|
| 23 |
+
from datasets import load_dataset, Dataset
|
| 24 |
+
|
| 25 |
+
# Try to import torch for memory cleanup
|
| 26 |
+
try:
|
| 27 |
+
import torch
|
| 28 |
+
TORCH_AVAILABLE = True
|
| 29 |
+
except ImportError:
|
| 30 |
+
TORCH_AVAILABLE = False
|
| 31 |
+
|
| 32 |
+
# ============ CONFIGURATION ============
|
| 33 |
+
HF_USERNAME = "himu1780"
|
| 34 |
+
MODEL_REPO = f"{HF_USERNAME}/ai-python-model"
|
| 35 |
+
DATASET_NAME = "jtatman/python-code-dataset-500k"
|
| 36 |
+
BASE_MODEL = "gpt2"
|
| 37 |
+
|
| 38 |
+
# Training hyperparameters (Memory optimized)
|
| 39 |
+
BATCH_SIZE = 1
|
| 40 |
+
GRADIENT_ACCUMULATION = 8
|
| 41 |
+
SAVE_STEPS = 500
|
| 42 |
+
LOGGING_STEPS = 50
|
| 43 |
+
MAX_LENGTH = 256
|
| 44 |
+
LEARNING_RATE = 5e-5
|
| 45 |
+
MAX_STEPS_PER_SESSION = 10000
|
| 46 |
+
EXAMPLES_PER_SESSION = 50000
|
| 47 |
+
|
| 48 |
+
# Continuous training settings
|
| 49 |
+
CONTINUOUS_TRAINING = True # Set False to stop after one session
|
| 50 |
+
WAIT_BETWEEN_SESSIONS = 60 # Seconds to wait before next session
|
| 51 |
+
|
| 52 |
+
# ============ GLOBAL STATE ============
|
| 53 |
+
training_status = {
|
| 54 |
+
"is_training": False,
|
| 55 |
+
"current_step": 0,
|
| 56 |
+
"total_loss": 0,
|
| 57 |
+
"last_save": "Never",
|
| 58 |
+
"start_time": None,
|
| 59 |
+
"message": "Initializing...",
|
| 60 |
+
"session_count": 0,
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
stop_requested = False
|
| 64 |
+
|
| 65 |
+
# ============ MEMORY CLEANUP ============
|
| 66 |
+
def cleanup_memory():
|
| 67 |
+
"""Free up memory after training"""
|
| 68 |
+
gc.collect()
|
| 69 |
+
if TORCH_AVAILABLE and torch.cuda.is_available():
|
| 70 |
+
torch.cuda.empty_cache()
|
| 71 |
+
print("[INFO] Memory cleaned up")
|
| 72 |
+
|
| 73 |
+
# ============ AUTHENTICATION ============
|
| 74 |
+
def authenticate():
|
| 75 |
+
"""Login to Hugging Face Hub"""
|
| 76 |
+
token = os.environ.get("HF_TOKEN")
|
| 77 |
+
if token:
|
| 78 |
+
login(token=token)
|
| 79 |
+
training_status["message"] = "✅ Authenticated with Hugging Face"
|
| 80 |
+
return True
|
| 81 |
+
else:
|
| 82 |
+
training_status["message"] = "❌ HF_TOKEN not found in secrets!"
|
| 83 |
+
return False
|
| 84 |
+
|
| 85 |
+
# ============ MODEL LOADING ============
|
| 86 |
+
def load_model_and_tokenizer():
|
| 87 |
+
"""Load model from Hub (resume) or start fresh from base model"""
|
| 88 |
+
global training_status
|
| 89 |
+
|
| 90 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 91 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 92 |
+
|
| 93 |
+
try:
|
| 94 |
+
training_status["message"] = f"🔄 Attempting to resume from {MODEL_REPO}..."
|
| 95 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_REPO)
|
| 96 |
+
training_status["message"] = f"✅ Resumed from {MODEL_REPO}"
|
| 97 |
+
print(f"[INFO] Resumed training from {MODEL_REPO}")
|
| 98 |
+
except Exception as e:
|
| 99 |
+
training_status["message"] = f"🆕 Starting fresh from {BASE_MODEL}"
|
| 100 |
+
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL)
|
| 101 |
+
print(f"[INFO] Starting fresh from {BASE_MODEL}: {e}")
|
| 102 |
+
|
| 103 |
+
return model, tokenizer
|
| 104 |
+
|
| 105 |
+
# ============ DATASET PROCESSING ============
|
| 106 |
+
def prepare_dataset(tokenizer):
|
| 107 |
+
"""Load and prepare dataset"""
|
| 108 |
+
global training_status
|
| 109 |
+
training_status["message"] = "📥 Loading dataset (streaming mode)..."
|
| 110 |
+
|
| 111 |
+
try:
|
| 112 |
+
dataset = load_dataset(DATASET_NAME, split="train", streaming=True)
|
| 113 |
+
dataset = dataset.take(EXAMPLES_PER_SESSION)
|
| 114 |
+
|
| 115 |
+
def tokenize_function(examples):
|
| 116 |
+
texts = []
|
| 117 |
+
instructions = examples.get("instruction", [])
|
| 118 |
+
outputs = examples.get("output", [])
|
| 119 |
+
|
| 120 |
+
for instruction, output in zip(instructions, outputs):
|
| 121 |
+
if instruction and output:
|
| 122 |
+
text = f"### Instruction:\n{instruction}\n\n### Response:\n{output}"
|
| 123 |
+
texts.append(text)
|
| 124 |
+
|
| 125 |
+
if not texts:
|
| 126 |
+
texts = [""]
|
| 127 |
+
|
| 128 |
+
result = tokenizer(
|
| 129 |
+
texts,
|
| 130 |
+
truncation=True,
|
| 131 |
+
max_length=MAX_LENGTH,
|
| 132 |
+
padding="max_length",
|
| 133 |
+
return_tensors=None,
|
| 134 |
+
)
|
| 135 |
+
result["labels"] = result["input_ids"].copy()
|
| 136 |
+
return result
|
| 137 |
+
|
| 138 |
+
tokenized_dataset = dataset.map(
|
| 139 |
+
tokenize_function,
|
| 140 |
+
batched=True,
|
| 141 |
+
batch_size=100,
|
| 142 |
+
remove_columns=["instruction", "output"],
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
training_status["message"] = "🔄 Converting dataset for Trainer..."
|
| 146 |
+
|
| 147 |
+
all_examples = []
|
| 148 |
+
for i, example in enumerate(tokenized_dataset):
|
| 149 |
+
all_examples.append(example)
|
| 150 |
+
# Progress every 5000 (IMPROVED)
|
| 151 |
+
if i % 5000 == 0:
|
| 152 |
+
training_status["message"] = f"📥 Loaded {i:,}/{EXAMPLES_PER_SESSION:,} examples..."
|
| 153 |
+
if i >= EXAMPLES_PER_SESSION - 1:
|
| 154 |
+
break
|
| 155 |
+
|
| 156 |
+
train_dataset = Dataset.from_list(all_examples)
|
| 157 |
+
|
| 158 |
+
training_status["message"] = f"✅ Dataset ready: {len(train_dataset):,} examples"
|
| 159 |
+
return train_dataset
|
| 160 |
+
|
| 161 |
+
except Exception as e:
|
| 162 |
+
training_status["message"] = f"❌ Dataset error: {str(e)}"
|
| 163 |
+
print(f"[ERROR] Dataset preparation failed: {e}")
|
| 164 |
+
raise e
|
| 165 |
+
|
| 166 |
+
# ============ CUSTOM TRAINER ============
|
| 167 |
+
class StatusTrainer(Trainer):
|
| 168 |
+
"""Custom trainer with status updates and stop support"""
|
| 169 |
+
|
| 170 |
+
def training_step(self, model, inputs):
|
| 171 |
+
global stop_requested
|
| 172 |
+
if stop_requested:
|
| 173 |
+
raise KeyboardInterrupt("Stop requested by user")
|
| 174 |
+
return super().training_step(model, inputs)
|
| 175 |
+
|
| 176 |
+
def log(self, logs):
|
| 177 |
+
super().log(logs)
|
| 178 |
+
if "loss" in logs:
|
| 179 |
+
training_status["total_loss"] = logs["loss"]
|
| 180 |
+
training_status["current_step"] = self.state.global_step
|
| 181 |
+
|
| 182 |
+
def save_model(self, output_dir=None, _internal_call=False):
|
| 183 |
+
super().save_model(output_dir, _internal_call)
|
| 184 |
+
training_status["last_save"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 185 |
+
|
| 186 |
+
# ============ SINGLE TRAINING SESSION ============
|
| 187 |
+
def run_training_session():
|
| 188 |
+
"""Run a single training session"""
|
| 189 |
+
global training_status, stop_requested
|
| 190 |
+
|
| 191 |
+
model = None
|
| 192 |
+
trainer = None
|
| 193 |
+
|
| 194 |
+
try:
|
| 195 |
+
if not authenticate():
|
| 196 |
+
return False
|
| 197 |
+
|
| 198 |
+
model, tokenizer = load_model_and_tokenizer()
|
| 199 |
+
train_dataset = prepare_dataset(tokenizer)
|
| 200 |
+
|
| 201 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 202 |
+
tokenizer=tokenizer,
|
| 203 |
+
mlm=False,
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
training_args = TrainingArguments(
|
| 207 |
+
output_dir="./temp_checkpoints",
|
| 208 |
+
overwrite_output_dir=True,
|
| 209 |
+
per_device_train_batch_size=BATCH_SIZE,
|
| 210 |
+
gradient_accumulation_steps=GRADIENT_ACCUMULATION,
|
| 211 |
+
learning_rate=LEARNING_RATE,
|
| 212 |
+
warmup_steps=100,
|
| 213 |
+
weight_decay=0.01,
|
| 214 |
+
logging_steps=LOGGING_STEPS,
|
| 215 |
+
save_steps=SAVE_STEPS,
|
| 216 |
+
save_total_limit=1,
|
| 217 |
+
push_to_hub=True,
|
| 218 |
+
hub_model_id=MODEL_REPO,
|
| 219 |
+
hub_strategy="every_save",
|
| 220 |
+
report_to="none",
|
| 221 |
+
max_steps=MAX_STEPS_PER_SESSION,
|
| 222 |
+
fp16=False,
|
| 223 |
+
dataloader_num_workers=0,
|
| 224 |
+
remove_unused_columns=False,
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
trainer = StatusTrainer(
|
| 228 |
+
model=model,
|
| 229 |
+
args=training_args,
|
| 230 |
+
train_dataset=train_dataset,
|
| 231 |
+
data_collator=data_collator,
|
| 232 |
+
tokenizer=tokenizer,
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
training_status["message"] = "🏃 Training in progress..."
|
| 236 |
+
trainer.train()
|
| 237 |
+
trainer.push_to_hub()
|
| 238 |
+
|
| 239 |
+
training_status["session_count"] += 1
|
| 240 |
+
training_status["message"] = f"✅ Session {training_status['session_count']} completed!"
|
| 241 |
+
return True
|
| 242 |
+
|
| 243 |
+
except KeyboardInterrupt:
|
| 244 |
+
training_status["message"] = "⏹️ Training stopped by user"
|
| 245 |
+
return False
|
| 246 |
+
except Exception as e:
|
| 247 |
+
training_status["message"] = f"❌ Error: {str(e)}"
|
| 248 |
+
print(f"[ERROR] Training failed: {e}")
|
| 249 |
+
import traceback
|
| 250 |
+
traceback.print_exc()
|
| 251 |
+
return False
|
| 252 |
+
finally:
|
| 253 |
+
# MEMORY CLEANUP (IMPROVED)
|
| 254 |
+
del model, trainer
|
| 255 |
+
cleanup_memory()
|
| 256 |
+
|
| 257 |
+
# ============ MAIN TRAINING LOOP ============
|
| 258 |
+
def start_training():
|
| 259 |
+
"""Main training function with continuous loop"""
|
| 260 |
+
global training_status, stop_requested
|
| 261 |
+
|
| 262 |
+
if training_status["is_training"]:
|
| 263 |
+
return "Training already in progress!"
|
| 264 |
+
|
| 265 |
+
training_status["is_training"] = True
|
| 266 |
+
training_status["start_time"] = datetime.now()
|
| 267 |
+
stop_requested = False
|
| 268 |
+
|
| 269 |
+
# CONTINUOUS TRAINING LOOP (IMPROVED)
|
| 270 |
+
while not stop_requested:
|
| 271 |
+
training_status["message"] = f"🚀 Starting session {training_status['session_count'] + 1}..."
|
| 272 |
+
|
| 273 |
+
success = run_training_session()
|
| 274 |
+
|
| 275 |
+
if stop_requested:
|
| 276 |
+
break
|
| 277 |
+
|
| 278 |
+
if not CONTINUOUS_TRAINING:
|
| 279 |
+
break
|
| 280 |
+
|
| 281 |
+
if success:
|
| 282 |
+
training_status["message"] = f"⏳ Waiting {WAIT_BETWEEN_SESSIONS}s before next session..."
|
| 283 |
+
time.sleep(WAIT_BETWEEN_SESSIONS)
|
| 284 |
+
else:
|
| 285 |
+
training_status["message"] = "⚠️ Session failed, retrying in 60s..."
|
| 286 |
+
time.sleep(60)
|
| 287 |
+
|
| 288 |
+
training_status["is_training"] = False
|
| 289 |
+
stop_requested = False
|
| 290 |
+
training_status["message"] = f"✅ Training finished! Total sessions: {training_status['session_count']}"
|
| 291 |
+
return training_status["message"]
|
| 292 |
+
|
| 293 |
+
# ============ GRADIO INTERFACE ============
|
| 294 |
+
def get_status():
|
| 295 |
+
"""Get current training status"""
|
| 296 |
+
elapsed = ""
|
| 297 |
+
if training_status["start_time"]:
|
| 298 |
+
delta = datetime.now() - training_status["start_time"]
|
| 299 |
+
hours, remainder = divmod(int(delta.total_seconds()), 3600)
|
| 300 |
+
minutes, seconds = divmod(remainder, 60)
|
| 301 |
+
elapsed = f"{hours}h {minutes}m {seconds}s"
|
| 302 |
+
|
| 303 |
+
return f"""
|
| 304 |
+
## 🤖 AI Python Model Trainer
|
| 305 |
+
|
| 306 |
+
### Status
|
| 307 |
+
| Item | Value |
|
| 308 |
+
|------|-------|
|
| 309 |
+
| **State** | {"🟢 Training" if training_status["is_training"] else "🔴 Stopped"} |
|
| 310 |
+
| **Message** | {training_status["message"]} |
|
| 311 |
+
| **Sessions Completed** | {training_status["session_count"]} |
|
| 312 |
+
|
| 313 |
+
### Progress
|
| 314 |
+
| Metric | Value |
|
| 315 |
+
|--------|-------|
|
| 316 |
+
| **Current Step** | {training_status["current_step"]:,} / {MAX_STEPS_PER_SESSION:,} |
|
| 317 |
+
| **Current Loss** | {training_status["total_loss"]:.4f if training_status["total_loss"] else "N/A"} |
|
| 318 |
+
| **Last Checkpoint** | {training_status["last_save"]} |
|
| 319 |
+
| **Elapsed Time** | {elapsed if elapsed else "N/A"} |
|
| 320 |
+
|
| 321 |
+
### Configuration
|
| 322 |
+
| Setting | Value |
|
| 323 |
+
|---------|-------|
|
| 324 |
+
| **Model Repo** | [{MODEL_REPO}](https://huggingface.co/{MODEL_REPO}) |
|
| 325 |
+
| **Continuous Mode** | {"✅ Enabled" if CONTINUOUS_TRAINING else "❌ Disabled"} |
|
| 326 |
+
| **Batch Size** | {BATCH_SIZE} (effective: {BATCH_SIZE * GRADIENT_ACCUMULATION}) |
|
| 327 |
+
| **Max Steps/Session** | {MAX_STEPS_PER_SESSION:,} |
|
| 328 |
+
"""
|
| 329 |
+
|
| 330 |
+
def start_training_async():
|
| 331 |
+
"""Start training in background"""
|
| 332 |
+
if training_status["is_training"]:
|
| 333 |
+
return "⚠️ Training already in progress!"
|
| 334 |
+
thread = threading.Thread(target=start_training, daemon=True)
|
| 335 |
+
thread.start()
|
| 336 |
+
return "🚀 Training started in background!"
|
| 337 |
+
|
| 338 |
+
def stop_training():
|
| 339 |
+
"""Stop training"""
|
| 340 |
+
global stop_requested
|
| 341 |
+
if not training_status["is_training"]:
|
| 342 |
+
return "⚠️ No training in progress"
|
| 343 |
+
stop_requested = True
|
| 344 |
+
training_status["message"] = "⏹️ Stopping after current step..."
|
| 345 |
+
return "⏹️ Stop requested"
|
| 346 |
+
|
| 347 |
+
# ============ AUTO-START ============
|
| 348 |
+
def auto_start():
|
| 349 |
+
"""Auto-start continuous training on Space launch"""
|
| 350 |
+
time.sleep(10)
|
| 351 |
+
while True:
|
| 352 |
+
if not training_status["is_training"] and not stop_requested:
|
| 353 |
+
print("[INFO] Auto-starting training session...")
|
| 354 |
+
start_training()
|
| 355 |
+
time.sleep(WAIT_BETWEEN_SESSIONS)
|
| 356 |
+
|
| 357 |
+
auto_thread = threading.Thread(target=auto_start, daemon=True)
|
| 358 |
+
auto_thread.start()
|
| 359 |
+
|
| 360 |
+
# ============ GRADIO APP ============
|
| 361 |
+
with gr.Blocks(title="AI Python Trainer", theme=gr.themes.Soft()) as demo:
|
| 362 |
+
gr.Markdown("# 🐍 AI Python Code Model Trainer")
|
| 363 |
+
gr.Markdown(f"**Continuous training** on `{DATASET_NAME}` with auto-checkpoint")
|
| 364 |
+
|
| 365 |
+
status_display = gr.Markdown(get_status)
|
| 366 |
+
|
| 367 |
+
with gr.Row():
|
| 368 |
+
start_btn = gr.Button("▶️ Start Training", variant="primary")
|
| 369 |
+
stop_btn = gr.Button("⏹️ Stop Training", variant="stop")
|
| 370 |
+
refresh_btn = gr.Button("🔄 Refresh Status")
|
| 371 |
+
|
| 372 |
+
output = gr.Textbox(label="Output", interactive=False)
|
| 373 |
+
|
| 374 |
+
start_btn.click(start_training_async, outputs=output)
|
| 375 |
+
stop_btn.click(stop_training, outputs=output)
|
| 376 |
+
refresh_btn.click(get_status, outputs=status_display)
|
| 377 |
+
|
| 378 |
+
demo.load(get_status, outputs=status_display, every=30)
|
| 379 |
+
|
| 380 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers>=4.36.0
|
| 2 |
+
datasets>=2.16.0
|
| 3 |
+
accelerate>=0.25.0
|
| 4 |
+
gradio>=4.0.0
|
| 5 |
+
huggingface_hub>=0.20.0
|
| 6 |
+
torch>=2.0.0
|