readme: add initial version of model card (#1)
Browse files- readme: add initial version of model card (a18b412e2ce9230ce2e71e79bc8cc30d4be63784)
README.md
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: de
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- flair
|
| 6 |
+
- token-classification
|
| 7 |
+
- sequence-tagger-model
|
| 8 |
+
base_model: dbmdz/bert-tiny-historic-multilingual-cased
|
| 9 |
+
widget:
|
| 10 |
+
- text: Es war am 25sten , als Lord Corn wollis Dublin mit seinem Gefolge und mehrern
|
| 11 |
+
Truppen verließ , um in einer Central - Lage bey Sligo die Operationen der Armee
|
| 12 |
+
persönlich zu dirigiren . Der Feind dürfte bald in die Enge kommen , da Gen .
|
| 13 |
+
Lacke mit 6000 Mann ihm entgegen marschirt .
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# Fine-tuned Flair Model on German HIPE-2020 Dataset (HIPE-2022)
|
| 17 |
+
|
| 18 |
+
This Flair model was fine-tuned on the
|
| 19 |
+
[German HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md)
|
| 20 |
+
NER Dataset using hmBERT Tiny as backbone LM.
|
| 21 |
+
|
| 22 |
+
The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found
|
| 23 |
+
[here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21).
|
| 24 |
+
|
| 25 |
+
The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`.
|
| 26 |
+
|
| 27 |
+
# Results
|
| 28 |
+
|
| 29 |
+
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
|
| 30 |
+
|
| 31 |
+
* Batch Sizes: `[4, 8]`
|
| 32 |
+
* Learning Rates: `[5e-05, 3e-05]`
|
| 33 |
+
|
| 34 |
+
And report micro F1-score on development set:
|
| 35 |
+
|
| 36 |
+
| Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average |
|
| 37 |
+
|-------------------|--------------|----------------|--------------|--------------|--------------|-----------------|
|
| 38 |
+
| `bs4-e10-lr5e-05` | [0.3947][1] | [**0.398**][2] | [0.3655][3] | [0.3703][4] | [0.3858][5] | 0.3829 ± 0.0145 |
|
| 39 |
+
| `bs8-e10-lr5e-05` | [0.3744][6] | [0.3819][7] | [0.3486][8] | [0.3506][9] | [0.3645][10] | 0.364 ± 0.0145 |
|
| 40 |
+
| `bs4-e10-lr3e-05` | [0.3415][11] | [0.3579][12] | [0.3291][13] | [0.3351][14] | [0.3549][15] | 0.3437 ± 0.0124 |
|
| 41 |
+
| `bs8-e10-lr3e-05` | [0.3282][16] | [0.336][17] | [0.3138][18] | [0.3172][19] | [0.3422][20] | 0.3275 ± 0.0121 |
|
| 42 |
+
|
| 43 |
+
[1]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
|
| 44 |
+
[2]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
|
| 45 |
+
[3]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
|
| 46 |
+
[4]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
|
| 47 |
+
[5]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
|
| 48 |
+
[6]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
|
| 49 |
+
[7]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
|
| 50 |
+
[8]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
|
| 51 |
+
[9]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
|
| 52 |
+
[10]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
|
| 53 |
+
[11]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
|
| 54 |
+
[12]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
|
| 55 |
+
[13]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
|
| 56 |
+
[14]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
|
| 57 |
+
[15]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
|
| 58 |
+
[16]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
|
| 59 |
+
[17]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
|
| 60 |
+
[18]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
|
| 61 |
+
[19]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
|
| 62 |
+
[20]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
|
| 63 |
+
|
| 64 |
+
The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub.
|
| 65 |
+
|
| 66 |
+
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
|
| 67 |
+
|
| 68 |
+
# Acknowledgements
|
| 69 |
+
|
| 70 |
+
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
|
| 71 |
+
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
|
| 72 |
+
|
| 73 |
+
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
|
| 74 |
+
Many Thanks for providing access to the TPUs ❤️
|