readme: add initial version
Browse files
README.md
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
# hmByT5 - Preliminary Language Models
|
| 8 |
+
|
| 9 |
+
Preliminary Historic Multilingual and Monolingual ByT5 Models. Following languages are currently covered:
|
| 10 |
+
|
| 11 |
+
* English (British Library Corpus - Books)
|
| 12 |
+
|
| 13 |
+
More details can be found in [our GitHub repository](https://github.com/stefan-it/hmByT5).
|
| 14 |
+
|
| 15 |
+
# Pretraining
|
| 16 |
+
|
| 17 |
+
We use the official JAX/FLAX example in Hugging Face Transformers to pretrain a ByT5 model on a single v3-8 TPU.
|
| 18 |
+
Details about the training can be found [here](https://github.com/stefan-it/hmByT5/tree/main/hmbyt5-flax).
|
| 19 |
+
|
| 20 |
+
This model was trained with `mean_noise_span_length=20`.
|
| 21 |
+
|
| 22 |
+
# Evaluation on Downstream Tasks (NER)
|
| 23 |
+
|
| 24 |
+
We evaluated the hmByT5 Base model on English AjMC dataset:
|
| 25 |
+
|
| 26 |
+
| Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. |
|
| 27 |
+
|------------------------------------------|-------|-------|-------|-------|-------|--------------|
|
| 28 |
+
| `wsFalse-bs8-e10-lr0.00015-poolingfirst` | 86.51 | 87.2 | 86.22 | 85.78 | 86.46 | 86.43 ± 0.46 |
|
| 29 |
+
| `wsFalse-bs4-e10-lr0.00016-poolingfirst` | 86.12 | 87.04 | 87.01 | 85.25 | 86.74 | 86.43 ± 0.68 |
|
| 30 |
+
| `wsFalse-bs8-e10-lr0.00016-poolingfirst` | 86.49 | 85.27 | 86.12 | 86.29 | 85.61 | 85.96 ± 0.45 |
|
| 31 |
+
| `wsFalse-bs4-e10-lr0.00015-poolingfirst` | 86.33 | 86.05 | 84.48 | 85.68 | 86.16 | 85.74 ± 0.67 |
|
| 32 |
+
|
| 33 |
+
The ByT5 Small [model](https://huggingface.co/hmbyt5/byt5-small-english) achieves 85.65 ± 1.21 on this dataset.
|
| 34 |
+
|
| 35 |
+
# Acknowledgements
|
| 36 |
+
|
| 37 |
+
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
|
| 38 |
+
Many Thanks for providing access to the TPUs ❤️
|