Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,123 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model Card for Model ID
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- si
|
| 5 |
library_name: transformers
|
| 6 |
+
tags:
|
| 7 |
+
- llama-3
|
| 8 |
+
- sinhala
|
| 9 |
+
- generative-qa
|
| 10 |
+
- iciit-2025
|
| 11 |
+
- lora
|
| 12 |
+
datasets:
|
| 13 |
+
- RedQueenProtocol/all-articles-from-sinhala-wikipedia-2025-parquet
|
| 14 |
+
- RedQueenProtocol/sinhala-qna-530-rows
|
| 15 |
+
- ihalage/sinhala-finetune-qa-eli5
|
| 16 |
+
- janani-rane/SiQuAD
|
| 17 |
+
base_model:
|
| 18 |
+
- meta-llama/Llama-3.2-3B-Instruct
|
| 19 |
---
|
| 20 |
|
|
|
|
| 21 |
|
| 22 |
+
# RedQueen Llama 3.2 3B - Sinhala Generative QA
|
| 23 |
+
|
| 24 |
+
**Technical Report:** [Click here for pdf](https://drive.google.com/file/d/1XFPwiwTx5j8yxcBCxmyDZgK5ldpulFw-/view?usp=sharing)
|
| 25 |
+
<br>
|
| 26 |
+
**GitHub Repo for Scripts and Notebooks:** [Click here](https://github.com/scythe410/Below-8B-Sinhala-LLM-Training---RedQueen-Protocol)
|
| 27 |
+
|
| 28 |
+
- **Developed by:** [Red Queen Protocol](https://huggingface.co/RedQueenProtocol)
|
| 29 |
+
- **Team:** [Ramiru De Silva](https://www.linkedin.com/in/ramirudesilva/), [Senadhi Thimanya](https://www.linkedin.com/in/senadhi-chandrasekara/)
|
| 30 |
+
- **Language(s) (NLP):** Sinhala
|
| 31 |
+
- **Finetuned from model:** [Llama 3.2 3B IT](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
This model and LoRA was developed by Ramiru De Silva and Senadhi Thimanya (Team: [RedQueen Protocol](https://huggingface.co/RedQueenProtocol)) for the iCIIT Conclave 2025 Shared Task on Building Compact Sinhala & Tamil LLMs.
|
| 36 |
+
This is a 3-billion parameter, instruction-tuned model that has undergone a novel two-stage fine-tuning process to achieve proficiency in both the Sinhala language and the specific task of generative QA. The entire fine-tuning process was performed efficiently using Low-Rank Adaptation (LoRA) technique.
|
| 37 |
+
<br>
|
| 38 |
+
The model's creation follows a hierarchical training strategy designed to first build a strong linguistic foundation and then specialize it for a specific task.
|
| 39 |
+
|
| 40 |
+
### Stage 1: Domain Adaptation (Language Foundation)
|
| 41 |
+
The initial model, `RedQueenProtocol/llama-3.2-3b-it-sinhala-rq` (Meta's Llama-3.2-3B-IT copies into a private repo for ease of use), was fine-tuned on the entirety of the Sinhala Wikipedia to create a foundational model with a comprehensive grasp of the language.
|
| 42 |
+
- **Dataset:** `RedQueenProtocol/all-articles-from-sinhala-wikipedia-2025-parquet`.
|
| 43 |
+
- **Method:** Long articles were tokenized and split into overlapping chunks of 512 tokens to ensure full context was seen during training.
|
| 44 |
+
- **Output Model:** The resulting adapter was merged to create the Sinhala domain-expert base model for the next stage: `RedQueenProtocol/sinhala-wiki-2025-LoRA-merged`.
|
| 45 |
+
|
| 46 |
+
### Stage 2: Task Adaptation (Sequential QA Fine-tuning)
|
| 47 |
+
Using the Wikipedia-tuned model as the new base, a single LoRA adapter was sequentially fine-tuned on three distinct QA datasets to progressively accumulate question-answering skills.
|
| 48 |
+
<br>
|
| 49 |
+
The training sequence was as follows:
|
| 50 |
+
1. **Custom Dataset:** Fine-tuned on a manually curated dataset of 528 Sinhala QA pairs (`RedQueenProtocol/sinhala-qna-530-rows`).
|
| 51 |
+
2. **Ihalage ELI5 Dataset:** Continued training the same adapter on 10,000 samples from the `ihalage/sinhala-finetune-qa-eli5` dataset.
|
| 52 |
+
3. **SiQuAD Dataset:** Performed a final round of training on 13,500 samples from the `janani-rane/SiQuAD` dataset, formatting the inputs as "Context: ... Question: ... Answer: ...".
|
| 53 |
+
|
| 54 |
+
The **final LoRA adapter**, containing the combined knowledge of all three datasets **and the Wikipedia-tuned base model** was then uploaded here in seperate repositories.
|
| 55 |
+
|
| 56 |
+
## How to Use
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
|
| 60 |
+
# For Kaggle:
|
| 61 |
+
#from kaggle_secrets import UserSecretsClient
|
| 62 |
+
#from huggingface_hub import login
|
| 63 |
+
#user_secrets = UserSecretsClient()
|
| 64 |
+
#hf_token = user_secrets.get_secret("HF_TOKEN")
|
| 65 |
+
#login(token=hf_token)
|
| 66 |
+
|
| 67 |
+
# For Colab:
|
| 68 |
+
#from huggingface_hub import notebook_login
|
| 69 |
+
#notebook_login()
|
| 70 |
+
|
| 71 |
+
# --- 1. Install Libraries ---
|
| 72 |
+
!pip install -q -U transformers accelerate bitsandbytes peft
|
| 73 |
+
|
| 74 |
+
# --- 2. Import Libraries ---
|
| 75 |
+
import torch
|
| 76 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 77 |
+
from peft import PeftModel
|
| 78 |
+
import warnings
|
| 79 |
+
|
| 80 |
+
# --- 3. Configuration ---
|
| 81 |
+
# Now both the base model and adapter are loaded from the iCIIT organization.
|
| 82 |
+
base_model_id = "iCIIT/sinhala-llama-rq-model"
|
| 83 |
+
adapter_id = "iCIIT/sinhala-llama-rq-LoRA"
|
| 84 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 85 |
+
|
| 86 |
+
# --- 4. Load Model and Adapter ---
|
| 87 |
+
print(f"Loading base model from: {base_model_id}")
|
| 88 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 89 |
+
base_model_id,
|
| 90 |
+
torch_dtype=torch.bfloat16,
|
| 91 |
+
device_map=device,
|
| 92 |
+
)
|
| 93 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
| 94 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 95 |
+
|
| 96 |
+
print(f"Applying LoRA adapter from: {adapter_id}")
|
| 97 |
+
model = PeftModel.from_pretrained(base_model, adapter_id)
|
| 98 |
+
print("\n Model and adapter loaded successfully from the iCIIT repositories.")
|
| 99 |
+
|
| 100 |
+
# --- 5. Run a Sample Prompt ---
|
| 101 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 102 |
+
question = "ශ්රී ලංකා ජාතික ධජය නිර්මාණය කළේ කවුද?"
|
| 103 |
+
|
| 104 |
+
prompt = f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\\n\\n{question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n"
|
| 105 |
+
|
| 106 |
+
print("\n" + "="*50)
|
| 107 |
+
print(f"USER: {question}")
|
| 108 |
+
print("\nASSISTANT: Generating...")
|
| 109 |
+
|
| 110 |
+
outputs = generator(
|
| 111 |
+
prompt,
|
| 112 |
+
max_new_tokens=256,
|
| 113 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 114 |
+
do_sample=True,
|
| 115 |
+
temperature=0.6,
|
| 116 |
+
top_p=0.9,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
full_response = outputs[0]['generated_text']
|
| 120 |
+
answer = full_response.split("<|start_header_id|>assistant<|end_header_id|>\\n\\n")[1].replace("<|eot_id|>", "")
|
| 121 |
+
|
| 122 |
+
print(answer.strip())
|
| 123 |
+
print("="*50)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|