Updated table style
Browse files
README.md
CHANGED
|
@@ -21,7 +21,7 @@ It outperforms other open-source models in the same space on standard benchmarks
|
|
| 21 |
- **Cookbook:** [Granite Guardian Recipes](https://github.com/ibm-granite/granite-guardian/tree/main/cookbooks/granite-guardian-3.3)
|
| 22 |
- **Website**: [Granite Guardian Docs](https://www.ibm.com/granite/docs/models/guardian/)
|
| 23 |
- **Paper:** [Granite Guardian](https://arxiv.org/abs/2412.07724)
|
| 24 |
-
- **Release Date**:
|
| 25 |
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
| 26 |
|
| 27 |
## Usage
|
|
@@ -141,7 +141,7 @@ score, _ = parse_response(response)
|
|
| 141 |
print(f"# score: {score}\n") # score: yes
|
| 142 |
```
|
| 143 |
|
| 144 |
-
#### Example 3: Detect lack of
|
| 145 |
|
| 146 |
Here you see how how to use the Granite Guardian in thinking mode by passing ```think=True``` in the ```apply_chat_template``` method.
|
| 147 |
|
|
@@ -242,44 +242,272 @@ The model is also equipped to detect hallucinations in agentic workflows, such a
|
|
| 242 |
Following the general harm definition, Granite-Guardian-3.3-8B is evaluated across the standard benchmarks of [Aeigis AI Content Safety Dataset](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-1.0), [ToxicChat](https://huggingface.co/datasets/lmsys/toxic-chat), [HarmBench](https://github.com/centerforaisafety/HarmBench/tree/main), [SimpleSafetyTests](https://huggingface.co/datasets/Bertievidgen/SimpleSafetyTests), [BeaverTails](https://huggingface.co/datasets/PKU-Alignment/BeaverTails), [OpenAI Moderation data](https://github.com/openai/moderation-api-release/tree/main), [SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) and [xstest-response](https://huggingface.co/datasets/allenai/xstest-response).
|
| 243 |
The following table presents the F1 scores for various harm benchmarks, along with the aggregate F1 score.
|
| 244 |
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
|
| 253 |
### RAG Hallucination Benchmarks
|
| 254 |
For detecting hallucinations in RAG settings, the model is evaluated on [LM-AggreFact](https://llm-aggrefact.github.io/) benchmarks. We report balanced accuracy scores on LM AggreFact below:
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
|
| 264 |
We also report performance on TRUE benchmark (balanced accuracy) that measures faithfulness of LLM responses to the context.
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
|
| 274 |
### Function Calling Hallucination Benchmarks
|
| 275 |
The model performance is evaluated on the [FC Reward Bench evaluation](https://huggingface.co/datasets/ibm-research/fc-reward-bench) dataset. We use balanced accuracy as the metric to compare the various models.
|
| 276 |
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
|
| 285 |
## Training Data
|
|
|
|
| 21 |
- **Cookbook:** [Granite Guardian Recipes](https://github.com/ibm-granite/granite-guardian/tree/main/cookbooks/granite-guardian-3.3)
|
| 22 |
- **Website**: [Granite Guardian Docs](https://www.ibm.com/granite/docs/models/guardian/)
|
| 23 |
- **Paper:** [Granite Guardian](https://arxiv.org/abs/2412.07724)
|
| 24 |
+
- **Release Date**: August 1, 2025
|
| 25 |
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
| 26 |
|
| 27 |
## Usage
|
|
|
|
| 141 |
print(f"# score: {score}\n") # score: yes
|
| 142 |
```
|
| 143 |
|
| 144 |
+
#### Example 3: Detect lack of groundedness of model's response in RAG settings
|
| 145 |
|
| 146 |
Here you see how how to use the Granite Guardian in thinking mode by passing ```think=True``` in the ```apply_chat_template``` method.
|
| 147 |
|
|
|
|
| 242 |
Following the general harm definition, Granite-Guardian-3.3-8B is evaluated across the standard benchmarks of [Aeigis AI Content Safety Dataset](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-1.0), [ToxicChat](https://huggingface.co/datasets/lmsys/toxic-chat), [HarmBench](https://github.com/centerforaisafety/HarmBench/tree/main), [SimpleSafetyTests](https://huggingface.co/datasets/Bertievidgen/SimpleSafetyTests), [BeaverTails](https://huggingface.co/datasets/PKU-Alignment/BeaverTails), [OpenAI Moderation data](https://github.com/openai/moderation-api-release/tree/main), [SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) and [xstest-response](https://huggingface.co/datasets/allenai/xstest-response).
|
| 243 |
The following table presents the F1 scores for various harm benchmarks, along with the aggregate F1 score.
|
| 244 |
|
| 245 |
+
<table>
|
| 246 |
+
<caption style="text-align:center"><b>Harm</b></caption>
|
| 247 |
+
<thead>
|
| 248 |
+
<tr>
|
| 249 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Model</th>
|
| 250 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">AggregateF1</th>
|
| 251 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">AegisSafetyTest</th>
|
| 252 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">BeaverTails</th>
|
| 253 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">HarmBench_Prompt</th>
|
| 254 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">OAI_hf</th>
|
| 255 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">SafeRLHF_test</th>
|
| 256 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">simpleSafetyTest</th>
|
| 257 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">toxic_chat</th>
|
| 258 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">xstest_RH</th>
|
| 259 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">xstest_RR</th>
|
| 260 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">xstest_RR(h)</th>
|
| 261 |
+
</tr></thead>
|
| 262 |
+
<tbody>
|
| 263 |
+
<tr>
|
| 264 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.1-8b</td>
|
| 265 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.79 </td>
|
| 266 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.88 </td>
|
| 267 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.81 </td>
|
| 268 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.80 </td>
|
| 269 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.78 </td>
|
| 270 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.81 </td>
|
| 271 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.99 </td>
|
| 272 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.73 </td>
|
| 273 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.87 </td>
|
| 274 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.45 </td>
|
| 275 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.83 </td>
|
| 276 |
+
</tr>
|
| 277 |
+
<tr>
|
| 278 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.2-5b</td>
|
| 279 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.78 </td>
|
| 280 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.88 </td>
|
| 281 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.81 </td>
|
| 282 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.80 </td>
|
| 283 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.73 </td>
|
| 284 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.80 </td>
|
| 285 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.99 </td>
|
| 286 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.73 </td>
|
| 287 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.90 </td>
|
| 288 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.43 </td>
|
| 289 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.82 </td>
|
| 290 |
+
</tr>
|
| 291 |
+
<tr>
|
| 292 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.3-8b (no_think)</td>
|
| 293 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.81 </td>
|
| 294 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.87 </td>
|
| 295 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.84 </td>
|
| 296 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.80 </td>
|
| 297 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.77 </td>
|
| 298 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.80 </td>
|
| 299 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.99 </td>
|
| 300 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.76 </td>
|
| 301 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.90 </td>
|
| 302 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.49 </td>
|
| 303 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.87 </td>
|
| 304 |
+
</tr>
|
| 305 |
+
<tr>
|
| 306 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.3-8b (think)</td>
|
| 307 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.79 </td>
|
| 308 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.86 </td>
|
| 309 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.82 </td>
|
| 310 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.80 </td>
|
| 311 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.78 </td>
|
| 312 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.78 </td>
|
| 313 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.99 </td>
|
| 314 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.69 </td>
|
| 315 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.86 </td>
|
| 316 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.50 </td>
|
| 317 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.86 </td>
|
| 318 |
+
</tr>
|
| 319 |
+
</tbody></table>
|
| 320 |
+
|
| 321 |
|
| 322 |
|
| 323 |
### RAG Hallucination Benchmarks
|
| 324 |
For detecting hallucinations in RAG settings, the model is evaluated on [LM-AggreFact](https://llm-aggrefact.github.io/) benchmarks. We report balanced accuracy scores on LM AggreFact below:
|
| 325 |
|
| 326 |
+
<table>
|
| 327 |
+
<caption style="text-align:center"><b>LM-Aggrefact</b></caption>
|
| 328 |
+
<thead>
|
| 329 |
+
<tr>
|
| 330 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
|
| 331 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">AVG</th>
|
| 332 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">AggreFact-CNN</th>
|
| 333 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">AggreFact-XSum</th>
|
| 334 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">ClaimVerify</th>
|
| 335 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">ExpertQA</th>
|
| 336 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">FactCheck-GPT</th>
|
| 337 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Lfqa</th>
|
| 338 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">RAGTruth</th>
|
| 339 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Reveal</th>
|
| 340 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">TofuEval-MediaS</th>
|
| 341 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">TofuEval-MeetB</th>
|
| 342 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Wice</th>
|
| 343 |
+
</tr></thead>
|
| 344 |
+
<tbody>
|
| 345 |
+
<tr>
|
| 346 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.1-8b</td>
|
| 347 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.709 </td>
|
| 348 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.532 </td>
|
| 349 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.570 </td>
|
| 350 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.724 </td>
|
| 351 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.597 </td>
|
| 352 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.759 </td>
|
| 353 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.855 </td>
|
| 354 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.768 </td>
|
| 355 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.877 </td>
|
| 356 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.725 </td>
|
| 357 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.761 </td>
|
| 358 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.635 </td>
|
| 359 |
+
</tr>
|
| 360 |
+
<tr>
|
| 361 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.2-5b</td>
|
| 362 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.665 </td>
|
| 363 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.508 </td>
|
| 364 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.530 </td>
|
| 365 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.650 </td>
|
| 366 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.596 </td>
|
| 367 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.743 </td>
|
| 368 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.808 </td>
|
| 369 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.630 </td>
|
| 370 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.872 </td>
|
| 371 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.691 </td>
|
| 372 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.685 </td>
|
| 373 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.604 </td>
|
| 374 |
+
</tr>
|
| 375 |
+
<tr>
|
| 376 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.3-8b (no_think)</td>
|
| 377 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.761 </td>
|
| 378 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.669 </td>
|
| 379 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.738 </td>
|
| 380 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.767 </td>
|
| 381 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.596 </td>
|
| 382 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.729 </td>
|
| 383 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.878 </td>
|
| 384 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.831 </td>
|
| 385 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.894 </td>
|
| 386 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.736 </td>
|
| 387 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.815 </td>
|
| 388 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.720 </td>
|
| 389 |
+
</tr>
|
| 390 |
+
<tr>
|
| 391 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.3-8b (think)</td>
|
| 392 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.765 </td>
|
| 393 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.661 </td>
|
| 394 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.749 </td>
|
| 395 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.759 </td>
|
| 396 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.597 </td>
|
| 397 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.766 </td>
|
| 398 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.870 </td>
|
| 399 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.821 </td>
|
| 400 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.896 </td>
|
| 401 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.739 </td>
|
| 402 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.789 </td>
|
| 403 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.773 </td>
|
| 404 |
+
</tr>
|
| 405 |
+
</tbody></table>
|
| 406 |
+
|
| 407 |
|
| 408 |
|
| 409 |
We also report performance on TRUE benchmark (balanced accuracy) that measures faithfulness of LLM responses to the context.
|
| 410 |
|
| 411 |
+
<table>
|
| 412 |
+
<caption style="text-align:center"><b>TRUE</b></caption>
|
| 413 |
+
<thead>
|
| 414 |
+
<tr>
|
| 415 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
|
| 416 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">AVG</th>
|
| 417 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">begin</th>
|
| 418 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">dialfact</th>
|
| 419 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">frank</th>
|
| 420 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">mnbm</th>
|
| 421 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">paws</th>
|
| 422 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">q2</th>
|
| 423 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">qags_cnndm</th>
|
| 424 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">qags_xsum</th>
|
| 425 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">summeval</th>
|
| 426 |
+
</tr></thead>
|
| 427 |
+
<tbody>
|
| 428 |
+
<tr>
|
| 429 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.1-8b</td>
|
| 430 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.725 </td>
|
| 431 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.714 </td>
|
| 432 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.630 </td>
|
| 433 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.835 </td>
|
| 434 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.648 </td>
|
| 435 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.780 </td>
|
| 436 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.710 </td>
|
| 437 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.756 </td>
|
| 438 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.717 </td>
|
| 439 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.733 </td>
|
| 440 |
+
</tr>
|
| 441 |
+
<tr>
|
| 442 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.2-5b</td>
|
| 443 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.710 </td>
|
| 444 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.740 </td>
|
| 445 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.694 </td>
|
| 446 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.791 </td>
|
| 447 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.635 </td>
|
| 448 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.749 </td>
|
| 449 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.727 </td>
|
| 450 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.723 </td>
|
| 451 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.660 </td>
|
| 452 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.672 </td>
|
| 453 |
+
</tr>
|
| 454 |
+
<tr>
|
| 455 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.3-8b (no_think)</td>
|
| 456 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.777 </td>
|
| 457 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.733 </td>
|
| 458 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.684 </td>
|
| 459 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.886 </td>
|
| 460 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.660 </td>
|
| 461 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.825 </td>
|
| 462 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.801 </td>
|
| 463 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.814 </td>
|
| 464 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.796 </td>
|
| 465 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.796 </td>
|
| 466 |
+
</tr>
|
| 467 |
+
<tr>
|
| 468 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.3-8b (think)</td>
|
| 469 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.773 </td>
|
| 470 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.732 </td>
|
| 471 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.722 </td>
|
| 472 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.864 </td>
|
| 473 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.680 </td>
|
| 474 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.813 </td>
|
| 475 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.799 </td>
|
| 476 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.792 </td>
|
| 477 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.798 </td>
|
| 478 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.761 </td>
|
| 479 |
+
</tr>
|
| 480 |
+
</tbody></table>
|
| 481 |
|
| 482 |
|
| 483 |
### Function Calling Hallucination Benchmarks
|
| 484 |
The model performance is evaluated on the [FC Reward Bench evaluation](https://huggingface.co/datasets/ibm-research/fc-reward-bench) dataset. We use balanced accuracy as the metric to compare the various models.
|
| 485 |
|
| 486 |
+
<table>
|
| 487 |
+
<caption style="text-align:center"><b>fc-reward-bench</b></caption>
|
| 488 |
+
<thead>
|
| 489 |
+
<tr>
|
| 490 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
|
| 491 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">AVG</th>
|
| 492 |
+
</tr></thead>
|
| 493 |
+
<tbody>
|
| 494 |
+
<tr>
|
| 495 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.1-8b</td>
|
| 496 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.64 </td>
|
| 497 |
+
</tr>
|
| 498 |
+
<tr>
|
| 499 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.2-5b</td>
|
| 500 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.61 </td>
|
| 501 |
+
</tr>
|
| 502 |
+
<tr>
|
| 503 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.3-8b (no_think)</td>
|
| 504 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.74 </td>
|
| 505 |
+
</tr>
|
| 506 |
+
<tr>
|
| 507 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">granite-guardian-3.3-8b (think)</td>
|
| 508 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;"> 0.71 </td>
|
| 509 |
+
</tr>
|
| 510 |
+
</tbody></table>
|
| 511 |
|
| 512 |
|
| 513 |
## Training Data
|