Delete feature_extraction_granite_speech.py
Browse files
feature_extraction_granite_speech.py
DELETED
|
@@ -1,118 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2025 The HuggingFace Inc. team.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
"""
|
| 16 |
-
Feature extractor class for Speech Granite
|
| 17 |
-
"""
|
| 18 |
-
|
| 19 |
-
import math
|
| 20 |
-
from typing import List, Optional
|
| 21 |
-
|
| 22 |
-
from transformers.feature_extraction_utils import BatchFeature, FeatureExtractionMixin
|
| 23 |
-
from transformers.utils import is_torch_available, is_torchaudio_available, logging
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
logger = logging.get_logger(__name__)
|
| 27 |
-
|
| 28 |
-
if is_torch_available():
|
| 29 |
-
import torch
|
| 30 |
-
|
| 31 |
-
if is_torchaudio_available():
|
| 32 |
-
import torchaudio
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
class GraniteSpeechFeatureExtractor(FeatureExtractionMixin):
|
| 36 |
-
model_input_names = ["input_features"]
|
| 37 |
-
|
| 38 |
-
def __init__(
|
| 39 |
-
self,
|
| 40 |
-
sampling_rate=16000,
|
| 41 |
-
n_fft=512,
|
| 42 |
-
win_length=400,
|
| 43 |
-
hop_length=160,
|
| 44 |
-
n_mels=80,
|
| 45 |
-
projector_window_size=15,
|
| 46 |
-
projector_downsample_rate=5,
|
| 47 |
-
**kwargs,
|
| 48 |
-
):
|
| 49 |
-
super().__init__(**kwargs)
|
| 50 |
-
self.melspec_kwargs = {
|
| 51 |
-
"sample_rate": sampling_rate,
|
| 52 |
-
"n_fft": n_fft,
|
| 53 |
-
"win_length": win_length,
|
| 54 |
-
"hop_length": hop_length,
|
| 55 |
-
"n_mels": n_mels,
|
| 56 |
-
}
|
| 57 |
-
# HACK - for now, lazily initialize the mel spectrogram transform;
|
| 58 |
-
# the feature extractor mixin explodes otherwise because
|
| 59 |
-
# it tries to log the feature extractor, and the melspectrogram
|
| 60 |
-
# transform isn't json serializable...
|
| 61 |
-
self.melspec = None
|
| 62 |
-
self.projector_window_size = projector_window_size
|
| 63 |
-
self.projector_downsample_rate = projector_downsample_rate
|
| 64 |
-
|
| 65 |
-
def _ensure_melspec_transform_is_initialized(self):
|
| 66 |
-
if self.melspec is None:
|
| 67 |
-
self.melspec = torchaudio.transforms.MelSpectrogram(**self.melspec_kwargs)
|
| 68 |
-
|
| 69 |
-
def __call__(
|
| 70 |
-
self,
|
| 71 |
-
x: torch.Tensor,
|
| 72 |
-
device: Optional[str] = "cpu",
|
| 73 |
-
) -> BatchFeature:
|
| 74 |
-
# TODO there is probably a better way to do both of these things...
|
| 75 |
-
self._ensure_melspec_transform_is_initialized()
|
| 76 |
-
if device is not None:
|
| 77 |
-
melspec = self.melspec.to(device)
|
| 78 |
-
x = x.to(device)
|
| 79 |
-
else:
|
| 80 |
-
melspec = self.melspec
|
| 81 |
-
|
| 82 |
-
B, _ = x.shape
|
| 83 |
-
with torch.no_grad():
|
| 84 |
-
mel = melspec(x.float())
|
| 85 |
-
logmel = mel.transpose(-1, -2).clip_(min=1e-10).log10_()
|
| 86 |
-
mx = logmel.amax(dim=(-2, -1), keepdim=True)
|
| 87 |
-
logmel = torch.maximum(logmel, mx - 8.0).div_(4).add_(1)
|
| 88 |
-
if logmel.shape[1] % 2 == 1:
|
| 89 |
-
logmel = logmel[:, :-1] # remove last frame if odd
|
| 90 |
-
x = logmel.reshape(B, -1, 2 * logmel.shape[-1]) # stacking and skipping by 2
|
| 91 |
-
|
| 92 |
-
if x.device != "cpu":
|
| 93 |
-
return x.detach().cpu()
|
| 94 |
-
return x
|
| 95 |
-
|
| 96 |
-
def _get_num_audio_features(self, audio_lengths: List[int]) -> List[int]:
|
| 97 |
-
"""
|
| 98 |
-
Gets the (variable length) variable length number of features
|
| 99 |
-
(i.e., projector output) for the sequences being considered.
|
| 100 |
-
"""
|
| 101 |
-
hop_length = self.melspec_kwargs["hop_length"]
|
| 102 |
-
effective_window_size = self.projector_window_size // self.projector_downsample_rate
|
| 103 |
-
|
| 104 |
-
projector_lengths = []
|
| 105 |
-
for raw_length in audio_lengths:
|
| 106 |
-
# mel sequence length computation
|
| 107 |
-
mel_length = raw_length // hop_length + 1
|
| 108 |
-
# encoder frame takes two mel features
|
| 109 |
-
encoder_length = mel_length // 2
|
| 110 |
-
nblocks = math.ceil(encoder_length / self.projector_window_size)
|
| 111 |
-
# projector output length
|
| 112 |
-
projector_length = nblocks * effective_window_size
|
| 113 |
-
projector_lengths.append(projector_length)
|
| 114 |
-
|
| 115 |
-
return projector_lengths
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
__all__ = ["GraniteSpeechFeatureExtractor"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|