iitolstykh commited on
Commit
35a501f
·
verified ·
1 Parent(s): 441f20a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -3
README.md CHANGED
@@ -1,3 +1,78 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - ru
6
+ library_name: gigacheck
7
+ tags:
8
+ - text-classification
9
+ - ai-detection
10
+ - multilingual
11
+ - gigacheck
12
+ ---
13
+
14
+ # GigaCheck-Classifier-Multi
15
+
16
+ <p style="text-align: center;">
17
+ <div align="center">
18
+ <img src= width="40%"/>
19
+ </div>
20
+ <p align="center">
21
+ <a href=""> 🌐 LLMTrace Website </a> |
22
+ <a href=""> 📜 LLMTrace Paper on arXiv </a> |
23
+ <a href="https://huggingface.co/datasets/iitolstykh/LLMTrace_classification"> 🤗 LLMTrace - Classification Dataset </a> |
24
+ </p>
25
+
26
+ ## Model Card
27
+
28
+ ### Model Description
29
+
30
+ This is the official `GigaCheck-Classifier-Multi` model from the `LLMTrace` project. It is a multilingual transformer-based model trained for the **binary classification of text** as either `human` or `ai`.
31
+
32
+ The model was trained jointly on the English and Russian portions of the `LLMTrace Classification dataset`. It is designed to be a robust baseline for detecting AI-generated content across multiple domains, text lengths and prompt types.
33
+
34
+ For complete details on the training data, methodology, and evaluation, please refer to our research paper: link(coming soon)
35
+
36
+ ### Intended Use & Limitations
37
+
38
+ This model is intended for academic research, analysis of AI-generated content, and as a baseline for developing more advanced detection tools.
39
+
40
+ **Limitations:**
41
+ * The model's performance may degrade on text generated by LLMs released after its training date (September 2025).
42
+ * It is not infallible and can produce false positives (flagging human text as AI) and false negatives.
43
+ * Performance may vary on domains or styles of text not well-represented in the training data.
44
+
45
+
46
+ ## Evaluation
47
+
48
+ The model was evaluated on the test split of the `LLMTrace Classification dataset`, which was not seen during training. Performance metrics are reported below:
49
+
50
+ | Metric | Value |
51
+ |-----------------------|---------|
52
+ | F1 Score (AI) | 98.64 |
53
+ | F1 Score (Human) | 98.00 |
54
+ | Mean Accuracy | 98.46 |
55
+ | TPR @ FPR=0.01 | 97.93 |
56
+
57
+ ## Citation
58
+
59
+ If you use this model in your research, please cite our papers:
60
+
61
+ ```bibtex
62
+ @article{Layer2025LLMTrace,
63
+ title={{LLMTrace: A Corpus for Classification and Fine-Grained Localization of AI-Written Text}},
64
+ author={Irina Tolstykh and Aleksandra Tsybina and Sergey Yakubson and Maksim Kuprashevich},
65
+ eprint={},
66
+ journal={},
67
+ archivePrefix={},
68
+ primaryClass={},
69
+ url={}
70
+ }```
71
+
72
+ ```bibtex
73
+ @article{tolstykh2024gigacheck,
74
+ title={{GigaCheck: Detecting LLM-generated Content}},
75
+ author={Irina Tolstykh and Aleksandra Tsybina and Sergey Yakubson and Aleksandr Gordeev and Vladimir Dokholyan and Maksim Kuprashevich},
76
+ journal={arXiv preprint arXiv:2410.23728},
77
+ year={2024}
78
+ }```